1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
|
//===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of the ML eviction advisor and reward injection pass
//
//===----------------------------------------------------------------------===//
#include "RegAllocEvictionAdvisor.h"
#include "RegAllocGreedy.h"
#include "RegAllocScore.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MLModelRunner.h"
#include "llvm/Analysis/ModelUnderTrainingRunner.h"
#include "llvm/Analysis/NoInferenceModelRunner.h"
#include "llvm/Analysis/ReleaseModeModelRunner.h"
#include "llvm/Analysis/Utils/TFUtils.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Config/config.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetMachine.h"
#include <array>
#include <memory>
using namespace llvm;
#define DEBUG_TYPE "ml-regalloc"
// Generated header in release (AOT) mode
#if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL)
#include "RegallocEvictModel.h"
#endif
// Options that only make sense in development mode
#ifdef LLVM_HAVE_TF_API
static cl::opt<std::string> TrainingLog(
"regalloc-training-log", cl::Hidden,
cl::desc("Training log for the register allocator eviction model"));
static cl::opt<std::string> ModelUnderTraining(
"regalloc-model", cl::Hidden,
cl::desc("The model being trained for register allocation eviction"));
#endif // #ifdef LLVM_HAVE_TF_API
/// The score injection pass.
/// This pass calculates the score for a function and inserts it in the log, but
/// this happens only in development mode. It's a no-op otherwise.
namespace llvm {
class RegAllocScoring : public MachineFunctionPass {
public:
static char ID;
RegAllocScoring() : MachineFunctionPass(ID) {
initializeRegAllocScoringPass(*PassRegistry::getPassRegistry());
}
~RegAllocScoring() override = default;
StringRef getPassName() const override {
return "Register Allocation Pass Scoring";
}
/// RegAllocReward analysis usage.
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
AU.addRequired<MachineBlockFrequencyInfo>();
AU.addRequired<AAResultsWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
/// Performs this pass
bool runOnMachineFunction(MachineFunction &) override;
};
char RegAllocScoring::ID = 0;
FunctionPass *createRegAllocScoringPass() { return new RegAllocScoring(); }
} // namespace llvm
INITIALIZE_PASS(RegAllocScoring, "regallocscoringpass",
"Register Allocation Scoring Pass", false, false)
// ===================================
// Common ML Advisor declarations
// ===================================
namespace {
// This is the maximum number of interfererring ranges. That's the number of
// distinct AllocationOrder values, which comes from MCRegisterClass::RegsSize.
// For X86, that's 32.
// TODO: find a way to get this, statically, in a programmatic way.
static const int64_t MaxInterferences = 32;
// Logically, we can think of the feature set given to the evaluator as a 2D
// matrix. The rows are the features (see next). The columns correspond to the
// interferences. We treat the candidate virt reg as an 'interference', too, as
// its feature set is the same as that of the interferring ranges. So we'll have
// MaxInterferences + 1 columns and by convention, we will use the last column
// for the virt reg seeking allocation.
static const int64_t CandidateVirtRegPos = MaxInterferences;
static const int64_t NumberOfInterferences = CandidateVirtRegPos + 1;
// Most features are as described above, so we'll reuse this vector in defining
// them.
static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences};
// --------------
// Features table
// --------------
// For each interfering live range (incl. the candidate) we collect a number of
// features. However, because the features are of different types (and because
// of ML best practices), we organize the tensors per feature, not per
// candidate. Each such tensor has a scalar value corresponding to the
// interferring live range at that position, in the order in AllocationOrder.
// The last position corresponds to the virt reg seeking allocation.
// Exception to all that is the progression feature, which is just a scalar (see
// its documentation for details).
// Note on naming: the "_by_max" are normalized using the largest value of that
// tensor, as observed in the current decision making stage (i.e. for the
// current call to the advisor's tryFindEvictionCandidate)
//
// The feature list format: type, name, shape, documentation.
// Note: we can really just use int64 and float, hence the modeling of some
// bools as int64 values.
#define RA_EVICT_FEATURES_LIST(M) \
M(int64_t, mask, PerLiveRangeShape, \
"boolean values, 0 for unavailable candidates (i.e. if a position is 0, " \
"it " \
"can't be evicted)") \
M(int64_t, is_free, PerLiveRangeShape, \
"boolean values, 1 if this phys reg is actually free (no interferences)") \
M(float, nr_urgent, PerLiveRangeShape, \
"number of 'urgent' intervals, normalized. Urgent are those that are OK " \
"to break cascades") \
M(float, nr_broken_hints, PerLiveRangeShape, \
"if this position were evicted, how many broken hints would there be") \
M(int64_t, is_hint, PerLiveRangeShape, \
"is this a preferred phys reg for the candidate") \
M(int64_t, is_local, PerLiveRangeShape, \
"is this live range local to a basic block") \
M(float, nr_rematerializable, PerLiveRangeShape, \
"nr rematerializable ranges") \
M(float, nr_defs_and_uses, PerLiveRangeShape, \
"bb freq - weighed nr defs and uses") \
M(float, weighed_reads_by_max, PerLiveRangeShape, \
"bb freq - weighed nr of reads, normalized") \
M(float, weighed_writes_by_max, PerLiveRangeShape, \
"bb feq - weighed nr of writes, normalized") \
M(float, weighed_read_writes_by_max, PerLiveRangeShape, \
"bb freq - weighed nr of uses that are both read and writes, normalized") \
M(float, weighed_indvars_by_max, PerLiveRangeShape, \
"bb freq - weighed nr of uses that are indvars, normalized") \
M(float, hint_weights_by_max, PerLiveRangeShape, \
"bb freq - weighed nr of uses that are hints, normalized") \
M(float, start_bb_freq_by_max, PerLiveRangeShape, \
"the freq in the start block, normalized") \
M(float, end_bb_freq_by_max, PerLiveRangeShape, \
"freq of end block, normalized") \
M(float, hottest_bb_freq_by_max, PerLiveRangeShape, \
"hottest BB freq, normalized") \
M(float, liverange_size, PerLiveRangeShape, \
"size (instr index diff) of the LR") \
M(float, use_def_density, PerLiveRangeShape, \
"the max weight, as computed by the manual heuristic") \
M(int64_t, max_stage, PerLiveRangeShape, \
"largest stage of an interval in this LR") \
M(int64_t, min_stage, PerLiveRangeShape, \
"lowest stage of an interval in this LR") \
M(float, progress, {1}, "ratio of current queue size to initial size")
// The model learns to pick one of the mask == 1 interferences. This is the name
// of the output tensor.
// The contract with the model is that the output will be guaranteed to be to a
// mask == 1 position.
// Using a macro here to avoid 'not used' warnings (and keep cond compilation to
// a minimum)
#define DecisionName "index_to_evict"
// Named features index.
enum FeatureIDs {
#define _FEATURE_IDX(_, name, __, ___) name,
RA_EVICT_FEATURES_LIST(_FEATURE_IDX)
#undef _FEATURE_IDX
FeatureCount
};
// The ML advisor will typically have a sparse input to the evaluator, because
// various phys regs won't be available. It's easier (maintenance-wise) to
// bulk-reset the state of the evaluator each time we are about to use it again.
template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) {
size_t Ret = sizeof(T);
for (const auto V : Shape)
Ret *= V;
return Ret;
}
void resetInputs(MLModelRunner &Runner) {
#define _RESET(TYPE, NAME, SHAPE, __) \
std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0, \
getTotalSize<TYPE>(SHAPE));
RA_EVICT_FEATURES_LIST(_RESET)
#undef _RESET
}
// Per-live interval components that get aggregated into the feature values that
// will be passed to the evaluator.
struct LIFeatureComponents {
double R = 0;
double W = 0;
double RW = 0;
double IndVarUpdates = 0;
double HintWeights = 0.0;
int64_t NrDefsAndUses = 0;
float HottestBlockFreq = 0.0;
bool IsRemat = false;
};
using CandidateRegList =
std::array<std::pair<MCRegister, bool>, NumberOfInterferences>;
using FeaturesListNormalizer = std::array<float, FeatureIDs::FeatureCount>;
/// The ML evictor (commonalities between release and development mode)
class MLEvictAdvisor : public RegAllocEvictionAdvisor {
public:
MLEvictAdvisor(MachineFunction &MF, const RAGreedy &RA, MLModelRunner *Runner,
const MachineBlockFrequencyInfo &MBFI,
const MachineLoopInfo &Loops);
protected:
const RegAllocEvictionAdvisor &getDefaultAdvisor() const {
return static_cast<const RegAllocEvictionAdvisor &>(DefaultAdvisor);
}
// The assumption is that if the Runner could not be constructed, we emit-ed
// error, and we shouldn't be asking for it here.
const MLModelRunner &getRunner() const { return *Runner; }
/// This just calls Evaluate on the Runner, but in the development mode case,
/// if we're just capturing the log of the default advisor, it needs to call
/// the latter instead, so we need to pass all the necessary parameters for
/// it. In the development case, it will also log.
virtual int64_t tryFindEvictionCandidatePosition(
LiveInterval &VirtReg, const AllocationOrder &Order, unsigned OrderLimit,
uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const;
/// Load the features of the given VirtReg (allocated or not) at column Pos,
/// but if that can't be evicted, return false instead.
bool
loadInterferenceFeatures(LiveInterval &VirtReg, MCRegister PhysReg,
bool IsHint, const SmallVirtRegSet &FixedRegisters,
std::array<float, FeatureIDs::FeatureCount> &Largest,
size_t Pos) const;
private:
static float getInitialQueueSize(const MachineFunction &MF);
MCRegister tryFindEvictionCandidate(
LiveInterval &VirtReg, const AllocationOrder &Order,
uint8_t CostPerUseLimit,
const SmallVirtRegSet &FixedRegisters) const override;
void extractFeatures(const SmallVectorImpl<LiveInterval *> &Intervals,
std::array<float, FeatureIDs::FeatureCount> &Largest,
size_t Pos, int64_t IsHint, int64_t LocalIntfsCount,
float NrUrgent) const;
// Point-in-time: we didn't learn this, so we always delegate to the default.
bool canEvictHintInterference(
LiveInterval &VirtReg, MCRegister PhysReg,
const SmallVirtRegSet &FixedRegisters) const override {
return getDefaultAdvisor().canEvictHintInterference(VirtReg, PhysReg,
FixedRegisters);
}
const LIFeatureComponents
getLIFeatureComponents(const LiveInterval &LI) const;
// Hold on to a default advisor for:
// 1) the implementation of canEvictHintInterference, because we didn't learn
// that nuance yet;
// 2) for bootstrapping (logging) in the development mode case.
const DefaultEvictionAdvisor DefaultAdvisor;
MLModelRunner *const Runner;
const MachineBlockFrequencyInfo &MBFI;
const MachineLoopInfo &Loops;
// Indices of those features we don't want to normalize.
// This could be static and shared, but its initialization is non-trivial.
std::bitset<FeatureIDs::FeatureCount> DoNotNormalize;
const float InitialQSize;
};
// ===================================
// Release (AOT) - specifics
// ===================================
#if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL)
const std::array<std::string, FeatureIDs::FeatureCount> FeatureNames{
#define _GETNAME(_, NAME, __, ___) #NAME,
RA_EVICT_FEATURES_LIST(_GETNAME)
#undef _GETNAME
};
class ReleaseModeEvictionAdvisorAnalysis final
: public RegAllocEvictionAdvisorAnalysis {
public:
ReleaseModeEvictionAdvisorAnalysis()
: RegAllocEvictionAdvisorAnalysis(AdvisorMode::Release) {}
// support for isa<> and dyn_cast.
static bool classof(const RegAllocEvictionAdvisorAnalysis *R) {
return R->getAdvisorMode() == AdvisorMode::Release;
}
private:
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineBlockFrequencyInfo>();
AU.addRequired<MachineLoopInfo>();
RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU);
}
std::unique_ptr<RegAllocEvictionAdvisor>
getAdvisor(MachineFunction &MF, const RAGreedy &RA) override {
if (!Runner)
Runner = std::make_unique<ReleaseModeModelRunner<RegallocEvictModel>>(
MF.getFunction().getContext(), FeatureNames, DecisionName);
return std::make_unique<MLEvictAdvisor>(
MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(),
getAnalysis<MachineLoopInfo>());
}
std::unique_ptr<ReleaseModeModelRunner<RegallocEvictModel>> Runner;
};
#endif
// ===================================
// Development mode-specifics
// ===================================
//
// Features we log
#ifdef LLVM_HAVE_TF_API
#define _DECL_FEATURES(type, name, shape, _) \
TensorSpec::createSpec<type>(#name, shape),
static const std::vector<TensorSpec> InputFeatures{
{RA_EVICT_FEATURES_LIST(_DECL_FEATURES)},
};
#undef _DECL_FEATURES
static const TensorSpec Output =
TensorSpec::createSpec<int64_t>(DecisionName, {1});
static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1});
// Features we bind on the model. The tensor names have a prefix, and we also
// need to include some tensors that are expected to be present by the training
// algo.
// TODO: can we just get rid of these?
#define _DECL_TRAIN_FEATURES(type, name, shape, _) \
TensorSpec::createSpec<type>(std::string("action_") + #name, shape),
static const std::vector<TensorSpec> TrainingInputFeatures{
{RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES)
TensorSpec::createSpec<float>("action_discount", {1}),
TensorSpec::createSpec<int32_t>("action_step_type", {1}),
TensorSpec::createSpec<float>("action_reward", {1})}};
#undef _DECL_TRAIN_FEATURES
class DevelopmentModeEvictAdvisor : public MLEvictAdvisor {
public:
DevelopmentModeEvictAdvisor(MachineFunction &MF, const RAGreedy &RA,
MLModelRunner *Runner,
const MachineBlockFrequencyInfo &MBFI,
const MachineLoopInfo &Loops, Logger *Log)
: MLEvictAdvisor(MF, RA, Runner, MBFI, Loops), Log(Log) {}
private:
int64_t tryFindEvictionCandidatePosition(
LiveInterval &VirtReg, const AllocationOrder &Order, unsigned OrderLimit,
uint8_t CostPerUseLimit,
const SmallVirtRegSet &FixedRegisters) const override;
Logger *const Log;
};
class DevelopmentModeEvictionAdvisorAnalysis final
: public RegAllocEvictionAdvisorAnalysis {
public:
DevelopmentModeEvictionAdvisorAnalysis()
: RegAllocEvictionAdvisorAnalysis(AdvisorMode::Development) {}
// support for isa<> and dyn_cast.
static bool classof(const RegAllocEvictionAdvisorAnalysis *R) {
return R->getAdvisorMode() == AdvisorMode::Development;
}
/// get the logger for the given function, or nullptr if we didn't collect
/// one. This is used to inject the score by the RegAllocScoring pass.
Logger *getLogger(const MachineFunction &MF) const {
auto I = LogMap.find(MF.getName());
if (I == LogMap.end())
return nullptr;
return I->second.get();
}
private:
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineBlockFrequencyInfo>();
AU.addRequired<MachineLoopInfo>();
RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU);
}
// Save all the logs (when requested).
bool doFinalization(Module &M) override {
if (TrainingLog.empty())
return false;
std::error_code EC;
auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC);
if (EC) {
M.getContext().emitError(EC.message() + ":" + TrainingLog);
return false;
}
Logger::flushLogs(*OS, LogMap);
return false;
}
std::unique_ptr<RegAllocEvictionAdvisor>
getAdvisor(MachineFunction &MF, const RAGreedy &RA) override {
LLVMContext &Ctx = MF.getFunction().getContext();
if (ModelUnderTraining.empty() && TrainingLog.empty()) {
Ctx.emitError("Regalloc development mode should be requested with at "
"least logging enabled and/or a training model");
return nullptr;
}
if (!Runner) {
if (ModelUnderTraining.empty())
Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures);
else
Runner = ModelUnderTrainingRunner::createAndEnsureValid(
Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures);
if (!Runner) {
Ctx.emitError("Regalloc: could not set up the model runner");
return nullptr;
}
}
Logger *Log = nullptr;
if (!TrainingLog.empty()) {
std::vector<LoggedFeatureSpec> LFS;
for (const auto &FS : InputFeatures)
LFS.push_back({FS, None});
if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get()))
if (MUTR->outputLoggedFeatureSpecs().size() > 1)
append_range(LFS, drop_begin(MUTR->outputLoggedFeatureSpecs()));
// We always log the output; in particular, if we're not evaluating, we
// don't have an output spec json file. That's why we handle the
// 'normal' output separately.
LFS.push_back({Output, None});
auto I = LogMap.insert(std::make_pair(
MF.getFunction().getName(),
std::make_unique<Logger>(LFS, Reward, /*IncludeReward*/ true)));
assert(I.second);
Log = I.first->second.get();
}
return std::make_unique<DevelopmentModeEvictAdvisor>(
MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(),
getAnalysis<MachineLoopInfo>(), Log);
}
std::unique_ptr<MLModelRunner> Runner;
StringMap<std::unique_ptr<Logger>> LogMap;
};
#endif //#ifdef LLVM_HAVE_TF_API
} // namespace
float MLEvictAdvisor::getInitialQueueSize(const MachineFunction &MF) {
auto &MRI = MF.getRegInfo();
float Ret = 0.0;
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
Register Reg = Register::index2VirtReg(I);
if (MRI.reg_nodbg_empty(Reg))
continue;
++Ret;
}
return Ret;
}
MLEvictAdvisor::MLEvictAdvisor(MachineFunction &MF, const RAGreedy &RA,
MLModelRunner *Runner,
const MachineBlockFrequencyInfo &MBFI,
const MachineLoopInfo &Loops)
: RegAllocEvictionAdvisor(MF, RA), DefaultAdvisor(MF, RA),
Runner(std::move(Runner)), MBFI(MBFI), Loops(Loops),
InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF)) {
assert(this->Runner);
DoNotNormalize.set(FeatureIDs::mask);
DoNotNormalize.set(FeatureIDs::is_free);
DoNotNormalize.set(FeatureIDs::is_hint);
DoNotNormalize.set(FeatureIDs::is_local);
DoNotNormalize.set(FeatureIDs::min_stage);
DoNotNormalize.set(FeatureIDs::max_stage);
DoNotNormalize.set(FeatureIDs::progress);
}
int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition(
LiveInterval &, const AllocationOrder &, unsigned, uint8_t,
const SmallVirtRegSet &) const {
int64_t Ret = Runner->evaluate<int64_t>();
assert(Ret >= 0);
assert(Ret <= CandidateVirtRegPos);
return Ret;
}
bool MLEvictAdvisor::loadInterferenceFeatures(
LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint,
const SmallVirtRegSet &FixedRegisters, FeaturesListNormalizer &Largest,
size_t Pos) const {
// It is only possible to evict virtual register interference.
if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) {
// leave unavailable
return false;
}
const bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
int64_t LocalIntfs = 0;
float NrUrgent = 0.0f;
// The cascade tracking is the same as in the default advisor
unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(VirtReg.reg());
SmallVector<LiveInterval *, MaxInterferences> InterferingIntervals;
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
// Different from the default heuristic, we don't make any assumptions about
// what having more than 10 results in the query may mean.
const auto &IFIntervals = Q.interferingVRegs();
if (IFIntervals.empty() && InterferingIntervals.empty())
continue;
InterferingIntervals.append(IFIntervals.begin(), IFIntervals.end());
for (LiveInterval *Intf : reverse(IFIntervals)) {
assert(Register::isVirtualRegister(Intf->reg()) &&
"Only expecting virtual register interference from query");
// This is the same set of legality checks as in the default case: don't
// try to evict fixed regs or 'done' ones. Also don't break cascades,
// except in the urgent case, with the same nuances used in the default
// heuristic.
// We could try sharing this between the advisors, but it may end up
// more complex than it is right now.
if (FixedRegisters.count(Intf->reg()))
return false;
if (RA.getExtraInfo().getStage(*Intf) == RS_Done)
return false;
bool Urgent =
!VirtReg.isSpillable() &&
(Intf->isSpillable() ||
RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
RegClassInfo.getNumAllocatableRegs(
MRI->getRegClass(Intf->reg())));
// Only evict older cascades or live ranges without a cascade.
unsigned IntfCascade = RA.getExtraInfo().getCascade(Intf->reg());
if (Cascade <= IntfCascade) {
if (!Urgent)
return false;
++NrUrgent;
}
LocalIntfs += (IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
(!EnableLocalReassign || !canReassign(*Intf, PhysReg)));
}
}
// OK, so if we made it this far, this LR is an eviction candidate, load its
// features.
extractFeatures(InterferingIntervals, Largest, Pos, IsHint, LocalIntfs,
NrUrgent);
return true;
}
MCRegister MLEvictAdvisor::tryFindEvictionCandidate(
LiveInterval &VirtReg, const AllocationOrder &Order,
uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const {
auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit);
if (!MaybeOrderLimit)
return MCRegister::NoRegister;
unsigned OrderLimit = *MaybeOrderLimit;
// The heuristic sets initial costs such as, if CostPerUseLimit is
// max<uint8_t>, then any of the costs of the legally-evictable intervals
// would be lower. When that happens, one of those will be selected.
// Therefore, we allow the candidate be selected, unless the candidate is
// unspillable, in which case it would be incorrect to not find a register for
// it.
const bool MustFindEviction =
(!VirtReg.isSpillable() && CostPerUseLimit == static_cast<uint8_t>(~0u));
// Number of available candidates - if 0, no need to continue.
size_t Available = 0;
// Make sure we don't have leftover partial state from an attempt where we had
// no available candidates and bailed out early.
resetInputs(*Runner);
// Track the index->register mapping because AllocationOrder doesn't do that
// and we'd have to scan it.
// Also track their mask, to write asserts/debug.
CandidateRegList Regs;
Regs.fill({0, false});
// Track the largest value of features seen during this eviction session. We
// only normalize (some of) the float features, but it's just simpler to
// dimension 'Largest' to all the features, especially since we have the
// 'DoNotNormalize' list.
FeaturesListNormalizer Largest;
Largest.fill(0.0);
// Same overal idea as in the default eviction policy - we visit the values of
// AllocationOrder one at a time. If it's not legally available, we mask off
// the corresponding feature column (==do nothing because we already reset all
// the features to 0)
// Use Pos to capture the column we load features at - in AllocationOrder
// order.
size_t Pos = 0;
for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
++I, ++Pos) {
MCRegister PhysReg = *I;
assert(!Regs[Pos].second);
assert(PhysReg);
if (!canAllocatePhysReg(CostPerUseLimit, PhysReg)) {
continue;
}
if (loadInterferenceFeatures(VirtReg, PhysReg, I.isHint(), FixedRegisters,
Largest, Pos)) {
++Available;
Regs[Pos] = std::make_pair(PhysReg, true);
}
}
if (Available == 0) {
// Nothing to decide, nothing to learn.
assert(!MustFindEviction);
return MCRegister::NoRegister;
}
const size_t ValidPosLimit = Pos;
// If we must find eviction, the candidate should be masked out of the
// decision making process.
Regs[CandidateVirtRegPos].second = !MustFindEviction;
if (!MustFindEviction)
extractFeatures(SmallVector<LiveInterval *, 1>(1, &VirtReg), Largest,
CandidateVirtRegPos, /*IsHint*/ 0, /*LocalIntfsCount*/ 0,
/*NrUrgent*/ 0.0);
assert(InitialQSize > 0.0 && "We couldn't have gotten here if we had "
"nothing to allocate initially.");
// Normalize the features.
for (auto &V : Largest)
V = V ? V : 1.0;
for (size_t FeatureIndex = 0; FeatureIndex < FeatureIDs::FeatureCount;
++FeatureIndex) {
if (DoNotNormalize.test(FeatureIndex))
continue;
for (size_t Pos = 0; Pos < NumberOfInterferences; ++Pos) {
Runner->getTensor<float>(FeatureIndex)[Pos] /= Largest[FeatureIndex];
}
}
*Runner->getTensor<float>(FeatureIDs::progress) =
static_cast<float>(RA.getQueueSize()) / InitialQSize;
// Get a decision.
size_t CandidatePos = tryFindEvictionCandidatePosition(
VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters);
// The contract with the ML side is that CandidatePos is mask == 1 (i.e.
// Regs[CandidatePos].second)
assert(Regs[CandidatePos].second);
if (CandidatePos == CandidateVirtRegPos) {
assert(!MustFindEviction);
return MCRegister::NoRegister;
}
assert(CandidatePos < ValidPosLimit);
(void)ValidPosLimit;
return Regs[CandidatePos].first;
}
const LIFeatureComponents
MLEvictAdvisor::getLIFeatureComponents(const LiveInterval &LI) const {
LIFeatureComponents Ret;
SmallPtrSet<MachineInstr *, 8> Visited;
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
for (MachineRegisterInfo::reg_instr_nodbg_iterator
I = MRI->reg_instr_nodbg_begin(LI.reg()),
E = MRI->reg_instr_nodbg_end();
I != E;) {
MachineInstr *MI = &*(I++);
++Ret.NrDefsAndUses;
if (!Visited.insert(MI).second)
continue;
if (MI->isIdentityCopy() || MI->isImplicitDef())
continue;
bool Reads, Writes;
std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg());
float Freq = MBFI.getBlockFreqRelativeToEntryBlock(MI->getParent());
Ret.HottestBlockFreq = std::max(Freq, Ret.HottestBlockFreq);
Ret.R += (Reads && !Writes) * Freq;
Ret.W += (!Reads && Writes) * Freq;
Ret.RW += (Reads && Writes) * Freq;
auto *MBB = MI->getParent();
auto *Loop = Loops.getLoopFor(MBB);
bool IsExiting = Loop ? Loop->isLoopExiting(MBB) : false;
if (Writes && IsExiting && LIS->isLiveOutOfMBB(LI, MBB))
Ret.IndVarUpdates += Freq;
if (MI->isCopy() && VirtRegAuxInfo::copyHint(MI, LI.reg(), TRI, *MRI))
Ret.HintWeights += Freq;
}
Ret.IsRemat = VirtRegAuxInfo::isRematerializable(
LI, *LIS, *VRM, *MF.getSubtarget().getInstrInfo());
return Ret;
}
// Overall, this currently mimics what we do for weight calculation, but instead
// of accummulating the various features, we keep them separate.
void MLEvictAdvisor::extractFeatures(
const SmallVectorImpl<LiveInterval *> &Intervals,
std::array<float, FeatureIDs::FeatureCount> &Largest, size_t Pos,
int64_t IsHint, int64_t LocalIntfsCount, float NrUrgent) const {
int64_t NrDefsAndUses = 0;
int64_t NrBrokenHints = 0;
double R = 0.0;
double W = 0.0;
double RW = 0.0;
double IndVarUpdates = 0.0;
double HintWeights = 0.0;
float StartBBFreq = 0.0;
float EndBBFreq = 0.0;
float HottestBlockFreq = 0.0;
int32_t NrRematerializable = 0;
float TotalWeight = 0.0;
SlotIndex EndSI = LIS->getSlotIndexes()->getZeroIndex();
SlotIndex StartSI = LIS->getSlotIndexes()->getLastIndex();
int64_t MaxStage = 0;
int64_t MinStage =
Intervals.empty() ? 0 : std::numeric_limits<int64_t>::max();
for (const auto *L : Intervals) {
const LiveInterval &LI = *L;
MaxStage = std::max<int64_t>(
MaxStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI)));
MinStage = std::min<int64_t>(
MinStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI)));
TotalWeight = std::max(TotalWeight, LI.weight());
if (LI.beginIndex() < StartSI)
StartSI = LI.beginIndex();
if (LI.endIndex() > EndSI)
EndSI = LI.endIndex();
const LIFeatureComponents LIFC = getLIFeatureComponents(LI);
NrBrokenHints += VRM->hasPreferredPhys(LI.reg());
NrDefsAndUses += LIFC.NrDefsAndUses;
HottestBlockFreq = std::max(HottestBlockFreq, LIFC.HottestBlockFreq);
R += LIFC.R;
W += LIFC.W;
RW += LIFC.RW;
IndVarUpdates += LIFC.IndVarUpdates;
HintWeights += LIFC.HintWeights;
NrRematerializable += LIFC.IsRemat;
}
size_t Size = 0;
if (!Intervals.empty()) {
StartBBFreq =
MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(StartSI));
if (EndSI >= LIS->getSlotIndexes()->getLastIndex())
EndSI = LIS->getSlotIndexes()->getLastIndex().getPrevIndex();
EndBBFreq =
MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(EndSI));
Size = StartSI.distance(EndSI);
}
// Set the features at the column 'Pos'.
#define SET(ID, TYPE, VAL) \
do { \
Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL); \
if (!DoNotNormalize.test(FeatureIDs::ID)) \
Largest[FeatureIDs::ID] = \
std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL)); \
} while (false)
SET(mask, int64_t, 1);
SET(is_free, int64_t, Intervals.empty());
SET(nr_urgent, float, NrUrgent);
SET(nr_broken_hints, float, NrBrokenHints);
SET(is_hint, int64_t, IsHint);
SET(is_local, int64_t, LocalIntfsCount);
SET(nr_rematerializable, float, NrRematerializable);
SET(nr_defs_and_uses, float, NrDefsAndUses);
SET(weighed_reads_by_max, float, R);
SET(weighed_writes_by_max, float, W);
SET(weighed_read_writes_by_max, float, RW);
SET(weighed_indvars_by_max, float, IndVarUpdates);
SET(hint_weights_by_max, float, HintWeights);
SET(start_bb_freq_by_max, float, StartBBFreq);
SET(end_bb_freq_by_max, float, EndBBFreq);
SET(hottest_bb_freq_by_max, float, HottestBlockFreq);
SET(liverange_size, float, Size);
SET(use_def_density, float, TotalWeight);
SET(max_stage, int64_t, MaxStage);
SET(min_stage, int64_t, MinStage);
#undef SET
}
// Development mode-specific implementations
#ifdef LLVM_HAVE_TF_API
RegAllocEvictionAdvisorAnalysis *llvm::createDevelopmentModeAdvisor() {
return new DevelopmentModeEvictionAdvisorAnalysis();
}
int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition(
LiveInterval &VirtReg, const AllocationOrder &Order, unsigned OrderLimit,
uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const {
int64_t Ret = 0;
if (isa<ModelUnderTrainingRunner>(getRunner())) {
Ret = MLEvictAdvisor::tryFindEvictionCandidatePosition(
VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters);
} else {
MCRegister PhysReg = getDefaultAdvisor().tryFindEvictionCandidate(
VirtReg, Order, CostPerUseLimit, FixedRegisters);
// Find the index of the selected PhysReg. We need it for logging, otherwise
// this is wasted cycles (but so would starting development mode without a
// model nor logging)
if (!PhysReg)
Ret = CandidateVirtRegPos;
else
for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit);
I != E; ++I, ++Ret)
if (*I == PhysReg)
break;
}
if (TrainingLog.empty())
return Ret;
size_t CurrentFeature = 0;
for (; CurrentFeature < FeatureIDs::FeatureCount; ++CurrentFeature) {
Log->logSpecifiedTensorValue(
CurrentFeature, reinterpret_cast<const char *>(
getRunner().getTensorUntyped(CurrentFeature)));
}
if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner()))
for (size_t I = 1; I < MUTR->outputLoggedFeatureSpecs().size();
++I, ++CurrentFeature)
Log->logSpecifiedTensorValue(
CurrentFeature,
reinterpret_cast<const char *>(
MUTR->lastEvaluationResult()->getUntypedTensorValue(I)));
// The output is right after the features and the extra outputs
Log->logInt64Value(CurrentFeature, &Ret);
return Ret;
}
bool RegAllocScoring::runOnMachineFunction(MachineFunction &MF) {
if (auto *DevModeAnalysis = dyn_cast<DevelopmentModeEvictionAdvisorAnalysis>(
&getAnalysis<RegAllocEvictionAdvisorAnalysis>()))
if (auto *Log = DevModeAnalysis->getLogger(MF))
Log->logFloatFinalReward(static_cast<float>(
calculateRegAllocScore(
MF, getAnalysis<MachineBlockFrequencyInfo>(),
getAnalysis<AAResultsWrapperPass>().getAAResults())
.getScore()));
return false;
}
#endif // #ifdef LLVM_HAVE_TF_API
#if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL)
RegAllocEvictionAdvisorAnalysis *llvm::createReleaseModeAdvisor() {
return new ReleaseModeEvictionAdvisorAnalysis();
}
#endif
// In all cases except development mode, we don't need scoring.
#if !defined(LLVM_HAVE_TF_API)
bool RegAllocScoring::runOnMachineFunction(MachineFunction &) { return false; }
#endif
|