1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
|
//===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the DAGTypeLegalizer class. This is a private interface
// shared between the code that implements the SelectionDAG::LegalizeTypes
// method.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
#define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
namespace llvm {
//===----------------------------------------------------------------------===//
/// This takes an arbitrary SelectionDAG as input and hacks on it until only
/// value types the target machine can handle are left. This involves promoting
/// small sizes to large sizes or splitting up large values into small values.
///
class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
const TargetLowering &TLI;
SelectionDAG &DAG;
public:
/// This pass uses the NodeId on the SDNodes to hold information about the
/// state of the node. The enum has all the values.
enum NodeIdFlags {
/// All operands have been processed, so this node is ready to be handled.
ReadyToProcess = 0,
/// This is a new node, not before seen, that was created in the process of
/// legalizing some other node.
NewNode = -1,
/// This node's ID needs to be set to the number of its unprocessed
/// operands.
Unanalyzed = -2,
/// This is a node that has already been processed.
Processed = -3
// 1+ - This is a node which has this many unprocessed operands.
};
private:
/// This is a bitvector that contains two bits for each simple value type,
/// where the two bits correspond to the LegalizeAction enum from
/// TargetLowering. This can be queried with "getTypeAction(VT)".
TargetLowering::ValueTypeActionImpl ValueTypeActions;
/// Return how we should legalize values of this type.
TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
return TLI.getTypeAction(*DAG.getContext(), VT);
}
/// Return true if this type is legal on this target.
bool isTypeLegal(EVT VT) const {
return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
}
/// Return true if this is a simple legal type.
bool isSimpleLegalType(EVT VT) const {
return VT.isSimple() && TLI.isTypeLegal(VT);
}
EVT getSetCCResultType(EVT VT) const {
return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
}
/// Pretend all of this node's results are legal.
bool IgnoreNodeResults(SDNode *N) const {
return N->getOpcode() == ISD::TargetConstant ||
N->getOpcode() == ISD::Register;
}
// Bijection from SDValue to unique id. As each created node gets a
// new id we do not need to worry about reuse expunging. Should we
// run out of ids, we can do a one time expensive compactifcation.
typedef unsigned TableId;
TableId NextValueId = 1;
SmallDenseMap<SDValue, TableId, 8> ValueToIdMap;
SmallDenseMap<TableId, SDValue, 8> IdToValueMap;
/// For integer nodes that are below legal width, this map indicates what
/// promoted value to use.
SmallDenseMap<TableId, TableId, 8> PromotedIntegers;
/// For integer nodes that need to be expanded this map indicates which
/// operands are the expanded version of the input.
SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedIntegers;
/// For floating-point nodes converted to integers of the same size, this map
/// indicates the converted value to use.
SmallDenseMap<TableId, TableId, 8> SoftenedFloats;
/// For floating-point nodes that have a smaller precision than the smallest
/// supported precision, this map indicates what promoted value to use.
SmallDenseMap<TableId, TableId, 8> PromotedFloats;
/// For floating-point nodes that have a smaller precision than the smallest
/// supported precision, this map indicates the converted value to use.
SmallDenseMap<TableId, TableId, 8> SoftPromotedHalfs;
/// For float nodes that need to be expanded this map indicates which operands
/// are the expanded version of the input.
SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedFloats;
/// For nodes that are <1 x ty>, this map indicates the scalar value of type
/// 'ty' to use.
SmallDenseMap<TableId, TableId, 8> ScalarizedVectors;
/// For nodes that need to be split this map indicates which operands are the
/// expanded version of the input.
SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> SplitVectors;
/// For vector nodes that need to be widened, indicates the widened value to
/// use.
SmallDenseMap<TableId, TableId, 8> WidenedVectors;
/// For values that have been replaced with another, indicates the replacement
/// value to use.
SmallDenseMap<TableId, TableId, 8> ReplacedValues;
/// This defines a worklist of nodes to process. In order to be pushed onto
/// this worklist, all operands of a node must have already been processed.
SmallVector<SDNode*, 128> Worklist;
TableId getTableId(SDValue V) {
assert(V.getNode() && "Getting TableId on SDValue()");
auto I = ValueToIdMap.find(V);
if (I != ValueToIdMap.end()) {
// replace if there's been a shift.
RemapId(I->second);
assert(I->second && "All Ids should be nonzero");
return I->second;
}
// Add if it's not there.
ValueToIdMap.insert(std::make_pair(V, NextValueId));
IdToValueMap.insert(std::make_pair(NextValueId, V));
++NextValueId;
assert(NextValueId != 0 &&
"Ran out of Ids. Increase id type size or add compactification");
return NextValueId - 1;
}
const SDValue &getSDValue(TableId &Id) {
RemapId(Id);
assert(Id && "TableId should be non-zero");
auto I = IdToValueMap.find(Id);
assert(I != IdToValueMap.end() && "cannot find Id in map");
return I->second;
}
public:
explicit DAGTypeLegalizer(SelectionDAG &dag)
: TLI(dag.getTargetLoweringInfo()), DAG(dag),
ValueTypeActions(TLI.getValueTypeActions()) {
static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
"Too many value types for ValueTypeActions to hold!");
}
/// This is the main entry point for the type legalizer. This does a
/// top-down traversal of the dag, legalizing types as it goes. Returns
/// "true" if it made any changes.
bool run();
void NoteDeletion(SDNode *Old, SDNode *New) {
assert(Old != New && "node replaced with self");
for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
TableId NewId = getTableId(SDValue(New, i));
TableId OldId = getTableId(SDValue(Old, i));
if (OldId != NewId) {
ReplacedValues[OldId] = NewId;
// Delete Node from tables. We cannot do this when OldId == NewId,
// because NewId can still have table references to it in
// ReplacedValues.
IdToValueMap.erase(OldId);
PromotedIntegers.erase(OldId);
ExpandedIntegers.erase(OldId);
SoftenedFloats.erase(OldId);
PromotedFloats.erase(OldId);
SoftPromotedHalfs.erase(OldId);
ExpandedFloats.erase(OldId);
ScalarizedVectors.erase(OldId);
SplitVectors.erase(OldId);
WidenedVectors.erase(OldId);
}
ValueToIdMap.erase(SDValue(Old, i));
}
}
SelectionDAG &getDAG() const { return DAG; }
private:
SDNode *AnalyzeNewNode(SDNode *N);
void AnalyzeNewValue(SDValue &Val);
void PerformExpensiveChecks();
void RemapId(TableId &Id);
void RemapValue(SDValue &V);
// Common routines.
SDValue BitConvertToInteger(SDValue Op);
SDValue BitConvertVectorToIntegerVector(SDValue Op);
SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
bool CustomWidenLowerNode(SDNode *N, EVT VT);
/// Replace each result of the given MERGE_VALUES node with the corresponding
/// input operand, except for the result 'ResNo', for which the corresponding
/// input operand is returned.
SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
SDValue JoinIntegers(SDValue Lo, SDValue Hi);
std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
void ReplaceValueWith(SDValue From, SDValue To);
void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
SDValue &Lo, SDValue &Hi);
//===--------------------------------------------------------------------===//
// Integer Promotion Support: LegalizeIntegerTypes.cpp
//===--------------------------------------------------------------------===//
/// Given a processed operand Op which was promoted to a larger integer type,
/// this returns the promoted value. The low bits of the promoted value
/// corresponding to the original type are exactly equal to Op.
/// The extra bits contain rubbish, so the promoted value may need to be zero-
/// or sign-extended from the original type before it is usable (the helpers
/// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
/// For example, if Op is an i16 and was promoted to an i32, then this method
/// returns an i32, the lower 16 bits of which coincide with Op, and the upper
/// 16 bits of which contain rubbish.
SDValue GetPromotedInteger(SDValue Op) {
TableId &PromotedId = PromotedIntegers[getTableId(Op)];
SDValue PromotedOp = getSDValue(PromotedId);
assert(PromotedOp.getNode() && "Operand wasn't promoted?");
return PromotedOp;
}
void SetPromotedInteger(SDValue Op, SDValue Result);
/// Get a promoted operand and sign extend it to the final size.
SDValue SExtPromotedInteger(SDValue Op) {
EVT OldVT = Op.getValueType();
SDLoc dl(Op);
Op = GetPromotedInteger(Op);
return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
DAG.getValueType(OldVT));
}
/// Get a promoted operand and zero extend it to the final size.
SDValue ZExtPromotedInteger(SDValue Op) {
EVT OldVT = Op.getValueType();
SDLoc dl(Op);
Op = GetPromotedInteger(Op);
return DAG.getZeroExtendInReg(Op, dl, OldVT);
}
// Get a promoted operand and sign or zero extend it to the final size
// (depending on TargetLoweringInfo::isSExtCheaperThanZExt). For a given
// subtarget and type, the choice of sign or zero-extension will be
// consistent.
SDValue SExtOrZExtPromotedInteger(SDValue Op) {
EVT OldVT = Op.getValueType();
SDLoc DL(Op);
Op = GetPromotedInteger(Op);
if (TLI.isSExtCheaperThanZExt(OldVT, Op.getValueType()))
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), Op,
DAG.getValueType(OldVT));
return DAG.getZeroExtendInReg(Op, DL, OldVT);
}
// Promote the given operand V (vector or scalar) according to N's specific
// reduction kind. N must be an integer VECREDUCE_* or VP_REDUCE_*. Returns
// the nominal extension opcode (ISD::(ANY|ZERO|SIGN)_EXTEND) and the
// promoted value.
SDValue PromoteIntOpVectorReduction(SDNode *N, SDValue V);
// Integer Result Promotion.
void PromoteIntegerResult(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_AssertSext(SDNode *N);
SDValue PromoteIntRes_AssertZext(SDNode *N);
SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
SDValue PromoteIntRes_INSERT_SUBVECTOR(SDNode *N);
SDValue PromoteIntRes_VECTOR_REVERSE(SDNode *N);
SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
SDValue PromoteIntRes_VECTOR_SPLICE(SDNode *N);
SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
SDValue PromoteIntRes_SPLAT_VECTOR(SDNode *N);
SDValue PromoteIntRes_STEP_VECTOR(SDNode *N);
SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N);
SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
SDValue PromoteIntRes_BITCAST(SDNode *N);
SDValue PromoteIntRes_BSWAP(SDNode *N);
SDValue PromoteIntRes_BITREVERSE(SDNode *N);
SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
SDValue PromoteIntRes_Constant(SDNode *N);
SDValue PromoteIntRes_CTLZ(SDNode *N);
SDValue PromoteIntRes_CTPOP_PARITY(SDNode *N);
SDValue PromoteIntRes_CTTZ(SDNode *N);
SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
SDValue PromoteIntRes_FP_TO_XINT_SAT(SDNode *N);
SDValue PromoteIntRes_FP_TO_FP16(SDNode *N);
SDValue PromoteIntRes_FREEZE(SDNode *N);
SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
SDValue PromoteIntRes_LOAD(LoadSDNode *N);
SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N);
SDValue PromoteIntRes_Overflow(SDNode *N);
SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_Select(SDNode *N);
SDValue PromoteIntRes_SELECT_CC(SDNode *N);
SDValue PromoteIntRes_SETCC(SDNode *N);
SDValue PromoteIntRes_SHL(SDNode *N);
SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N);
SDValue PromoteIntRes_SExtIntBinOp(SDNode *N);
SDValue PromoteIntRes_UMINUMAX(SDNode *N);
SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
SDValue PromoteIntRes_SRA(SDNode *N);
SDValue PromoteIntRes_SRL(SDNode *N);
SDValue PromoteIntRes_TRUNCATE(SDNode *N);
SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_ADDSUBCARRY(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_SADDSUBO_CARRY(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_UNDEF(SDNode *N);
SDValue PromoteIntRes_VAARG(SDNode *N);
SDValue PromoteIntRes_VSCALE(SDNode *N);
SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_ADDSUBSHLSAT(SDNode *N);
SDValue PromoteIntRes_MULFIX(SDNode *N);
SDValue PromoteIntRes_DIVFIX(SDNode *N);
SDValue PromoteIntRes_FLT_ROUNDS(SDNode *N);
SDValue PromoteIntRes_VECREDUCE(SDNode *N);
SDValue PromoteIntRes_VP_REDUCE(SDNode *N);
SDValue PromoteIntRes_ABS(SDNode *N);
SDValue PromoteIntRes_Rotate(SDNode *N);
SDValue PromoteIntRes_FunnelShift(SDNode *N);
// Integer Operand Promotion.
bool PromoteIntegerOperand(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
SDValue PromoteIntOp_BITCAST(SDNode *N);
SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N);
SDValue PromoteIntOp_INSERT_SUBVECTOR(SDNode *N);
SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
SDValue PromoteIntOp_SPLAT_VECTOR(SDNode *N);
SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_Shift(SDNode *N);
SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
SDValue PromoteIntOp_STRICT_SINT_TO_FP(SDNode *N);
SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_TRUNCATE(SDNode *N);
SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
SDValue PromoteIntOp_STRICT_UINT_TO_FP(SDNode *N);
SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_ADDSUBCARRY(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_FRAMERETURNADDR(SDNode *N);
SDValue PromoteIntOp_PREFETCH(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_FIX(SDNode *N);
SDValue PromoteIntOp_FPOWI(SDNode *N);
SDValue PromoteIntOp_VECREDUCE(SDNode *N);
SDValue PromoteIntOp_VP_REDUCE(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_SET_ROUNDING(SDNode *N);
void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
//===--------------------------------------------------------------------===//
// Integer Expansion Support: LegalizeIntegerTypes.cpp
//===--------------------------------------------------------------------===//
/// Given a processed operand Op which was expanded into two integers of half
/// the size, this returns the two halves. The low bits of Op are exactly
/// equal to the bits of Lo; the high bits exactly equal Hi.
/// For example, if Op is an i64 which was expanded into two i32's, then this
/// method returns the two i32's, with Lo being equal to the lower 32 bits of
/// Op, and Hi being equal to the upper 32 bits.
void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
// Integer Result Expansion.
void ExpandIntegerResult(SDNode *N, unsigned ResNo);
void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ABS (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_READCYCLECOUNTER (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_FLT_ROUNDS (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_FP_TO_SINT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_FP_TO_UINT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_FP_TO_XINT_SAT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_LLROUND_LLRINT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUBCARRY (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SADDSUBO_CARRY (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_BITREVERSE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_PARITY (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_MINMAX (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_UADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_XMULO (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUBSAT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SHLSAT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_MULFIX (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_DIVFIX (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ATOMIC_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_VECREDUCE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_Rotate (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_FunnelShift (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_VSCALE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandShiftByConstant(SDNode *N, const APInt &Amt,
SDValue &Lo, SDValue &Hi);
bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
// Integer Operand Expansion.
bool ExpandIntegerOperand(SDNode *N, unsigned OpNo);
SDValue ExpandIntOp_BR_CC(SDNode *N);
SDValue ExpandIntOp_SELECT_CC(SDNode *N);
SDValue ExpandIntOp_SETCC(SDNode *N);
SDValue ExpandIntOp_SETCCCARRY(SDNode *N);
SDValue ExpandIntOp_Shift(SDNode *N);
SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue ExpandIntOp_TRUNCATE(SDNode *N);
SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
SDValue ExpandIntOp_RETURNADDR(SDNode *N);
SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
SDValue ExpandIntOp_SPLAT_VECTOR(SDNode *N);
void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
ISD::CondCode &CCCode, const SDLoc &dl);
//===--------------------------------------------------------------------===//
// Float to Integer Conversion Support: LegalizeFloatTypes.cpp
//===--------------------------------------------------------------------===//
/// GetSoftenedFloat - Given a processed operand Op which was converted to an
/// integer of the same size, this returns the integer. The integer contains
/// exactly the same bits as Op - only the type changed. For example, if Op
/// is an f32 which was softened to an i32, then this method returns an i32,
/// the bits of which coincide with those of Op
SDValue GetSoftenedFloat(SDValue Op) {
TableId Id = getTableId(Op);
auto Iter = SoftenedFloats.find(Id);
if (Iter == SoftenedFloats.end()) {
assert(isSimpleLegalType(Op.getValueType()) &&
"Operand wasn't converted to integer?");
return Op;
}
SDValue SoftenedOp = getSDValue(Iter->second);
assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?");
return SoftenedOp;
}
void SetSoftenedFloat(SDValue Op, SDValue Result);
// Convert Float Results to Integer.
void SoftenFloatResult(SDNode *N, unsigned ResNo);
SDValue SoftenFloatRes_Unary(SDNode *N, RTLIB::Libcall LC);
SDValue SoftenFloatRes_Binary(SDNode *N, RTLIB::Libcall LC);
SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
SDValue SoftenFloatRes_ARITH_FENCE(SDNode *N);
SDValue SoftenFloatRes_BITCAST(SDNode *N);
SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
SDValue SoftenFloatRes_ConstantFP(SDNode *N);
SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo);
SDValue SoftenFloatRes_FABS(SDNode *N);
SDValue SoftenFloatRes_FMINNUM(SDNode *N);
SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
SDValue SoftenFloatRes_FADD(SDNode *N);
SDValue SoftenFloatRes_FCBRT(SDNode *N);
SDValue SoftenFloatRes_FCEIL(SDNode *N);
SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
SDValue SoftenFloatRes_FCOS(SDNode *N);
SDValue SoftenFloatRes_FDIV(SDNode *N);
SDValue SoftenFloatRes_FEXP(SDNode *N);
SDValue SoftenFloatRes_FEXP2(SDNode *N);
SDValue SoftenFloatRes_FFLOOR(SDNode *N);
SDValue SoftenFloatRes_FLOG(SDNode *N);
SDValue SoftenFloatRes_FLOG2(SDNode *N);
SDValue SoftenFloatRes_FLOG10(SDNode *N);
SDValue SoftenFloatRes_FMA(SDNode *N);
SDValue SoftenFloatRes_FMUL(SDNode *N);
SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
SDValue SoftenFloatRes_FNEG(SDNode *N);
SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
SDValue SoftenFloatRes_FPOW(SDNode *N);
SDValue SoftenFloatRes_FPOWI(SDNode *N);
SDValue SoftenFloatRes_FREEZE(SDNode *N);
SDValue SoftenFloatRes_FREM(SDNode *N);
SDValue SoftenFloatRes_FRINT(SDNode *N);
SDValue SoftenFloatRes_FROUND(SDNode *N);
SDValue SoftenFloatRes_FROUNDEVEN(SDNode *N);
SDValue SoftenFloatRes_FSIN(SDNode *N);
SDValue SoftenFloatRes_FSQRT(SDNode *N);
SDValue SoftenFloatRes_FSUB(SDNode *N);
SDValue SoftenFloatRes_FTRUNC(SDNode *N);
SDValue SoftenFloatRes_LOAD(SDNode *N);
SDValue SoftenFloatRes_SELECT(SDNode *N);
SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
SDValue SoftenFloatRes_UNDEF(SDNode *N);
SDValue SoftenFloatRes_VAARG(SDNode *N);
SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
SDValue SoftenFloatRes_VECREDUCE(SDNode *N);
SDValue SoftenFloatRes_VECREDUCE_SEQ(SDNode *N);
// Convert Float Operand to Integer.
bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
SDValue SoftenFloatOp_Unary(SDNode *N, RTLIB::Libcall LC);
SDValue SoftenFloatOp_BITCAST(SDNode *N);
SDValue SoftenFloatOp_BR_CC(SDNode *N);
SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N);
SDValue SoftenFloatOp_FP_TO_XINT_SAT(SDNode *N);
SDValue SoftenFloatOp_LROUND(SDNode *N);
SDValue SoftenFloatOp_LLROUND(SDNode *N);
SDValue SoftenFloatOp_LRINT(SDNode *N);
SDValue SoftenFloatOp_LLRINT(SDNode *N);
SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
SDValue SoftenFloatOp_SETCC(SDNode *N);
SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
SDValue SoftenFloatOp_FCOPYSIGN(SDNode *N);
//===--------------------------------------------------------------------===//
// Float Expansion Support: LegalizeFloatTypes.cpp
//===--------------------------------------------------------------------===//
/// Given a processed operand Op which was expanded into two floating-point
/// values of half the size, this returns the two halves.
/// The low bits of Op are exactly equal to the bits of Lo; the high bits
/// exactly equal Hi. For example, if Op is a ppcf128 which was expanded
/// into two f64's, then this method returns the two f64's, with Lo being
/// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
// Float Result Expansion.
void ExpandFloatResult(SDNode *N, unsigned ResNo);
void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_Unary(SDNode *N, RTLIB::Libcall LC,
SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_Binary(SDNode *N, RTLIB::Libcall LC,
SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FMINNUM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FMAXNUM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FCBRT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FCOS (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FEXP (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FEXP2 (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FFLOOR (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FLOG (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FLOG2 (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FLOG10 (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FMA (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FPOW (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FREEZE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FREM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FROUND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FROUNDEVEN(SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FTRUNC (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
// Float Operand Expansion.
bool ExpandFloatOperand(SDNode *N, unsigned OpNo);
SDValue ExpandFloatOp_BR_CC(SDNode *N);
SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
SDValue ExpandFloatOp_FP_TO_XINT(SDNode *N);
SDValue ExpandFloatOp_LROUND(SDNode *N);
SDValue ExpandFloatOp_LLROUND(SDNode *N);
SDValue ExpandFloatOp_LRINT(SDNode *N);
SDValue ExpandFloatOp_LLRINT(SDNode *N);
SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
SDValue ExpandFloatOp_SETCC(SDNode *N);
SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
ISD::CondCode &CCCode, const SDLoc &dl,
SDValue &Chain, bool IsSignaling = false);
//===--------------------------------------------------------------------===//
// Float promotion support: LegalizeFloatTypes.cpp
//===--------------------------------------------------------------------===//
SDValue GetPromotedFloat(SDValue Op) {
TableId &PromotedId = PromotedFloats[getTableId(Op)];
SDValue PromotedOp = getSDValue(PromotedId);
assert(PromotedOp.getNode() && "Operand wasn't promoted?");
return PromotedOp;
}
void SetPromotedFloat(SDValue Op, SDValue Result);
void PromoteFloatResult(SDNode *N, unsigned ResNo);
SDValue PromoteFloatRes_BITCAST(SDNode *N);
SDValue PromoteFloatRes_BinOp(SDNode *N);
SDValue PromoteFloatRes_ConstantFP(SDNode *N);
SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N);
SDValue PromoteFloatRes_FMAD(SDNode *N);
SDValue PromoteFloatRes_FPOWI(SDNode *N);
SDValue PromoteFloatRes_FP_ROUND(SDNode *N);
SDValue PromoteFloatRes_LOAD(SDNode *N);
SDValue PromoteFloatRes_SELECT(SDNode *N);
SDValue PromoteFloatRes_SELECT_CC(SDNode *N);
SDValue PromoteFloatRes_UnaryOp(SDNode *N);
SDValue PromoteFloatRes_UNDEF(SDNode *N);
SDValue BitcastToInt_ATOMIC_SWAP(SDNode *N);
SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N);
SDValue PromoteFloatRes_VECREDUCE(SDNode *N);
SDValue PromoteFloatRes_VECREDUCE_SEQ(SDNode *N);
bool PromoteFloatOperand(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_FP_TO_XINT_SAT(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo);
//===--------------------------------------------------------------------===//
// Half soft promotion support: LegalizeFloatTypes.cpp
//===--------------------------------------------------------------------===//
SDValue GetSoftPromotedHalf(SDValue Op) {
TableId &PromotedId = SoftPromotedHalfs[getTableId(Op)];
SDValue PromotedOp = getSDValue(PromotedId);
assert(PromotedOp.getNode() && "Operand wasn't promoted?");
return PromotedOp;
}
void SetSoftPromotedHalf(SDValue Op, SDValue Result);
void SoftPromoteHalfResult(SDNode *N, unsigned ResNo);
SDValue SoftPromoteHalfRes_BinOp(SDNode *N);
SDValue SoftPromoteHalfRes_BITCAST(SDNode *N);
SDValue SoftPromoteHalfRes_ConstantFP(SDNode *N);
SDValue SoftPromoteHalfRes_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue SoftPromoteHalfRes_FCOPYSIGN(SDNode *N);
SDValue SoftPromoteHalfRes_FMAD(SDNode *N);
SDValue SoftPromoteHalfRes_FPOWI(SDNode *N);
SDValue SoftPromoteHalfRes_FP_ROUND(SDNode *N);
SDValue SoftPromoteHalfRes_LOAD(SDNode *N);
SDValue SoftPromoteHalfRes_SELECT(SDNode *N);
SDValue SoftPromoteHalfRes_SELECT_CC(SDNode *N);
SDValue SoftPromoteHalfRes_UnaryOp(SDNode *N);
SDValue SoftPromoteHalfRes_XINT_TO_FP(SDNode *N);
SDValue SoftPromoteHalfRes_UNDEF(SDNode *N);
SDValue SoftPromoteHalfRes_VECREDUCE(SDNode *N);
SDValue SoftPromoteHalfRes_VECREDUCE_SEQ(SDNode *N);
bool SoftPromoteHalfOperand(SDNode *N, unsigned OpNo);
SDValue SoftPromoteHalfOp_BITCAST(SDNode *N);
SDValue SoftPromoteHalfOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
SDValue SoftPromoteHalfOp_FP_EXTEND(SDNode *N);
SDValue SoftPromoteHalfOp_FP_TO_XINT(SDNode *N);
SDValue SoftPromoteHalfOp_FP_TO_XINT_SAT(SDNode *N);
SDValue SoftPromoteHalfOp_SETCC(SDNode *N);
SDValue SoftPromoteHalfOp_SELECT_CC(SDNode *N, unsigned OpNo);
SDValue SoftPromoteHalfOp_STORE(SDNode *N, unsigned OpNo);
//===--------------------------------------------------------------------===//
// Scalarization Support: LegalizeVectorTypes.cpp
//===--------------------------------------------------------------------===//
/// Given a processed one-element vector Op which was scalarized to its
/// element type, this returns the element. For example, if Op is a v1i32,
/// Op = < i32 val >, this method returns val, an i32.
SDValue GetScalarizedVector(SDValue Op) {
TableId &ScalarizedId = ScalarizedVectors[getTableId(Op)];
SDValue ScalarizedOp = getSDValue(ScalarizedId);
assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
return ScalarizedOp;
}
void SetScalarizedVector(SDValue Op, SDValue Result);
// Vector Result Scalarization: <1 x ty> -> ty.
void ScalarizeVectorResult(SDNode *N, unsigned ResNo);
SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
SDValue ScalarizeVecRes_BinOp(SDNode *N);
SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
SDValue ScalarizeVecRes_StrictFPOp(SDNode *N);
SDValue ScalarizeVecRes_OverflowOp(SDNode *N, unsigned ResNo);
SDValue ScalarizeVecRes_InregOp(SDNode *N);
SDValue ScalarizeVecRes_VecInregOp(SDNode *N);
SDValue ScalarizeVecRes_BITCAST(SDNode *N);
SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
SDValue ScalarizeVecRes_FPOWI(SDNode *N);
SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
SDValue ScalarizeVecRes_VSELECT(SDNode *N);
SDValue ScalarizeVecRes_SELECT(SDNode *N);
SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
SDValue ScalarizeVecRes_SETCC(SDNode *N);
SDValue ScalarizeVecRes_UNDEF(SDNode *N);
SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
SDValue ScalarizeVecRes_FP_TO_XINT_SAT(SDNode *N);
SDValue ScalarizeVecRes_FIX(SDNode *N);
// Vector Operand Scalarization: <1 x ty> -> ty.
bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
SDValue ScalarizeVecOp_BITCAST(SDNode *N);
SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
SDValue ScalarizeVecOp_UnaryOp_StrictFP(SDNode *N);
SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue ScalarizeVecOp_VSELECT(SDNode *N);
SDValue ScalarizeVecOp_VSETCC(SDNode *N);
SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
SDValue ScalarizeVecOp_STRICT_FP_ROUND(SDNode *N, unsigned OpNo);
SDValue ScalarizeVecOp_FP_EXTEND(SDNode *N);
SDValue ScalarizeVecOp_STRICT_FP_EXTEND(SDNode *N);
SDValue ScalarizeVecOp_VECREDUCE(SDNode *N);
SDValue ScalarizeVecOp_VECREDUCE_SEQ(SDNode *N);
//===--------------------------------------------------------------------===//
// Vector Splitting Support: LegalizeVectorTypes.cpp
//===--------------------------------------------------------------------===//
/// Given a processed vector Op which was split into vectors of half the size,
/// this method returns the halves. The first elements of Op coincide with the
/// elements of Lo; the remaining elements of Op coincide with the elements of
/// Hi: Op is what you would get by concatenating Lo and Hi.
/// For example, if Op is a v8i32 that was split into two v4i32's, then this
/// method returns the two v4i32's, with Lo corresponding to the first 4
/// elements of Op, and Hi to the last 4 elements.
void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
/// Split mask operator of a VP intrinsic.
std::pair<SDValue, SDValue> SplitMask(SDValue Mask);
/// Split mask operator of a VP intrinsic in a given location.
std::pair<SDValue, SDValue> SplitMask(SDValue Mask, const SDLoc &DL);
// Helper function for incrementing the pointer when splitting
// memory operations
void IncrementPointer(MemSDNode *N, EVT MemVT, MachinePointerInfo &MPI,
SDValue &Ptr, uint64_t *ScaledOffset = nullptr);
// Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
void SplitVectorResult(SDNode *N, unsigned ResNo);
void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_OverflowOp(SDNode *N, unsigned ResNo,
SDValue &Lo, SDValue &Hi);
void SplitVecRes_FIX(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_FCOPYSIGN(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi);
void SplitVecRes_VP_LOAD(VPLoadSDNode *LD, SDValue &Lo, SDValue &Hi);
void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi);
void SplitVecRes_Gather(MemSDNode *VPGT, SDValue &Lo, SDValue &Hi,
bool SplitSETCC = false);
void SplitVecRes_ScalarOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_STEP_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_VECTOR_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
SDValue &Hi);
void SplitVecRes_VECTOR_SPLICE(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_FP_TO_XINT_SAT(SDNode *N, SDValue &Lo, SDValue &Hi);
// Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
bool SplitVectorOperand(SDNode *N, unsigned OpNo);
SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo);
SDValue SplitVecOp_VECREDUCE_SEQ(SDNode *N);
SDValue SplitVecOp_VP_REDUCE(SDNode *N, unsigned OpNo);
SDValue SplitVecOp_UnaryOp(SDNode *N);
SDValue SplitVecOp_TruncateHelper(SDNode *N);
SDValue SplitVecOp_BITCAST(SDNode *N);
SDValue SplitVecOp_INSERT_SUBVECTOR(SDNode *N, unsigned OpNo);
SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue SplitVecOp_ExtVecInRegOp(SDNode *N);
SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue SplitVecOp_VP_STORE(VPStoreSDNode *N, unsigned OpNo);
SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
SDValue SplitVecOp_Scatter(MemSDNode *N, unsigned OpNo);
SDValue SplitVecOp_Gather(MemSDNode *MGT, unsigned OpNo);
SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
SDValue SplitVecOp_VSETCC(SDNode *N);
SDValue SplitVecOp_FP_ROUND(SDNode *N);
SDValue SplitVecOp_FCOPYSIGN(SDNode *N);
SDValue SplitVecOp_FP_TO_XINT_SAT(SDNode *N);
//===--------------------------------------------------------------------===//
// Vector Widening Support: LegalizeVectorTypes.cpp
//===--------------------------------------------------------------------===//
/// Given a processed vector Op which was widened into a larger vector, this
/// method returns the larger vector. The elements of the returned vector
/// consist of the elements of Op followed by elements containing rubbish.
/// For example, if Op is a v2i32 that was widened to a v4i32, then this
/// method returns a v4i32 for which the first two elements are the same as
/// those of Op, while the last two elements contain rubbish.
SDValue GetWidenedVector(SDValue Op) {
TableId &WidenedId = WidenedVectors[getTableId(Op)];
SDValue WidenedOp = getSDValue(WidenedId);
assert(WidenedOp.getNode() && "Operand wasn't widened?");
return WidenedOp;
}
void SetWidenedVector(SDValue Op, SDValue Result);
/// Given a mask Mask, returns the larger vector into which Mask was widened.
SDValue GetWidenedMask(SDValue Mask, ElementCount EC) {
// For VP operations, we must also widen the mask. Note that the mask type
// may not actually need widening, leading it be split along with the VP
// operation.
// FIXME: This could lead to an infinite split/widen loop. We only handle
// the case where the mask needs widening to an identically-sized type as
// the vector inputs.
assert(getTypeAction(Mask.getValueType()) ==
TargetLowering::TypeWidenVector &&
"Unable to widen binary VP op");
Mask = GetWidenedVector(Mask);
assert(Mask.getValueType().getVectorElementCount() == EC &&
"Unable to widen binary VP op");
return Mask;
}
// Widen Vector Result Promotion.
void WidenVectorResult(SDNode *N, unsigned ResNo);
SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
SDValue WidenVecRes_BITCAST(SDNode* N);
SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N);
SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
SDValue WidenVecRes_INSERT_SUBVECTOR(SDNode *N);
SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
SDValue WidenVecRes_LOAD(SDNode* N);
SDValue WidenVecRes_VP_LOAD(VPLoadSDNode *N);
SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N);
SDValue WidenVecRes_VP_GATHER(VPGatherSDNode* N);
SDValue WidenVecRes_ScalarOp(SDNode* N);
SDValue WidenVecRes_Select(SDNode *N);
SDValue WidenVSELECTMask(SDNode *N);
SDValue WidenVecRes_SELECT_CC(SDNode* N);
SDValue WidenVecRes_SETCC(SDNode* N);
SDValue WidenVecRes_STRICT_FSETCC(SDNode* N);
SDValue WidenVecRes_UNDEF(SDNode *N);
SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
SDValue WidenVecRes_Ternary(SDNode *N);
SDValue WidenVecRes_Binary(SDNode *N);
SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
SDValue WidenVecRes_BinaryWithExtraScalarOp(SDNode *N);
SDValue WidenVecRes_StrictFP(SDNode *N);
SDValue WidenVecRes_OverflowOp(SDNode *N, unsigned ResNo);
SDValue WidenVecRes_Convert(SDNode *N);
SDValue WidenVecRes_Convert_StrictFP(SDNode *N);
SDValue WidenVecRes_FP_TO_XINT_SAT(SDNode *N);
SDValue WidenVecRes_FCOPYSIGN(SDNode *N);
SDValue WidenVecRes_POWI(SDNode *N);
SDValue WidenVecRes_Unary(SDNode *N);
SDValue WidenVecRes_InregOp(SDNode *N);
// Widen Vector Operand.
bool WidenVectorOperand(SDNode *N, unsigned OpNo);
SDValue WidenVecOp_BITCAST(SDNode *N);
SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
SDValue WidenVecOp_EXTEND(SDNode *N);
SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue WidenVecOp_INSERT_SUBVECTOR(SDNode *N);
SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
SDValue WidenVecOp_STORE(SDNode* N);
SDValue WidenVecOp_VP_STORE(SDNode *N, unsigned OpNo);
SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo);
SDValue WidenVecOp_MGATHER(SDNode* N, unsigned OpNo);
SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo);
SDValue WidenVecOp_VP_SCATTER(SDNode* N, unsigned OpNo);
SDValue WidenVecOp_SETCC(SDNode* N);
SDValue WidenVecOp_STRICT_FSETCC(SDNode* N);
SDValue WidenVecOp_VSELECT(SDNode *N);
SDValue WidenVecOp_Convert(SDNode *N);
SDValue WidenVecOp_FP_TO_XINT_SAT(SDNode *N);
SDValue WidenVecOp_FCOPYSIGN(SDNode *N);
SDValue WidenVecOp_VECREDUCE(SDNode *N);
SDValue WidenVecOp_VECREDUCE_SEQ(SDNode *N);
SDValue WidenVecOp_VP_REDUCE(SDNode *N);
/// Helper function to generate a set of operations to perform
/// a vector operation for a wider type.
///
SDValue UnrollVectorOp_StrictFP(SDNode *N, unsigned ResNE);
//===--------------------------------------------------------------------===//
// Vector Widening Utilities Support: LegalizeVectorTypes.cpp
//===--------------------------------------------------------------------===//
/// Helper function to generate a set of loads to load a vector with a
/// resulting wider type. It takes:
/// LdChain: list of chains for the load to be generated.
/// Ld: load to widen
SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
LoadSDNode *LD);
/// Helper function to generate a set of extension loads to load a vector with
/// a resulting wider type. It takes:
/// LdChain: list of chains for the load to be generated.
/// Ld: load to widen
/// ExtType: extension element type
SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
LoadSDNode *LD, ISD::LoadExtType ExtType);
/// Helper function to generate a set of stores to store a widen vector into
/// non-widen memory. Returns true if successful, false otherwise.
/// StChain: list of chains for the stores we have generated
/// ST: store of a widen value
bool GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
/// Modifies a vector input (widen or narrows) to a vector of NVT. The
/// input vector must have the same element type as NVT.
/// When FillWithZeroes is "on" the vector will be widened with zeroes.
/// By default, the vector will be widened with undefined values.
SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false);
/// Return a mask of vector type MaskVT to replace InMask. Also adjust
/// MaskVT to ToMaskVT if needed with vector extension or truncation.
SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT);
//===--------------------------------------------------------------------===//
// Generic Splitting: LegalizeTypesGeneric.cpp
//===--------------------------------------------------------------------===//
// Legalization methods which only use that the illegal type is split into two
// not necessarily identical types. As such they can be used for splitting
// vectors and expanding integers and floats.
void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
if (Op.getValueType().isVector())
GetSplitVector(Op, Lo, Hi);
else if (Op.getValueType().isInteger())
GetExpandedInteger(Op, Lo, Hi);
else
GetExpandedFloat(Op, Lo, Hi);
}
/// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
/// given value.
void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
// Generic Result Splitting.
void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
SDValue &Lo, SDValue &Hi);
void SplitRes_ARITH_FENCE (SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitRes_Select (SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitRes_FREEZE (SDNode *N, SDValue &Lo, SDValue &Hi);
//===--------------------------------------------------------------------===//
// Generic Expansion: LegalizeTypesGeneric.cpp
//===--------------------------------------------------------------------===//
// Legalization methods which only use that the illegal type is split into two
// identical types of half the size, and that the Lo/Hi part is stored first
// in memory on little/big-endian machines, followed by the Hi/Lo part. As
// such they can be used for expanding integers and floats.
void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
if (Op.getValueType().isInteger())
GetExpandedInteger(Op, Lo, Hi);
else
GetExpandedFloat(Op, Lo, Hi);
}
/// This function will split the integer \p Op into \p NumElements
/// operations of type \p EltVT and store them in \p Ops.
void IntegerToVector(SDValue Op, unsigned NumElements,
SmallVectorImpl<SDValue> &Ops, EVT EltVT);
// Generic Result Expansion.
void ExpandRes_MERGE_VALUES (SDNode *N, unsigned ResNo,
SDValue &Lo, SDValue &Hi);
void ExpandRes_BITCAST (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_VAARG (SDNode *N, SDValue &Lo, SDValue &Hi);
// Generic Operand Expansion.
SDValue ExpandOp_BITCAST (SDNode *N);
SDValue ExpandOp_BUILD_VECTOR (SDNode *N);
SDValue ExpandOp_EXTRACT_ELEMENT (SDNode *N);
SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo);
};
} // end namespace llvm.
#endif
|