1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
|
//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "AArch64TargetTransformInfo.h"
#include "AArch64ExpandImm.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/CodeGen/CostTable.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"
#include <algorithm>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "aarch64tti"
static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
cl::init(true), cl::Hidden);
static cl::opt<unsigned> SVEGatherOverhead("sve-gather-overhead", cl::init(10),
cl::Hidden);
static cl::opt<unsigned> SVEScatterOverhead("sve-scatter-overhead",
cl::init(10), cl::Hidden);
bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
const Function *Callee) const {
const TargetMachine &TM = getTLI()->getTargetMachine();
const FeatureBitset &CallerBits =
TM.getSubtargetImpl(*Caller)->getFeatureBits();
const FeatureBitset &CalleeBits =
TM.getSubtargetImpl(*Callee)->getFeatureBits();
// Inline a callee if its target-features are a subset of the callers
// target-features.
return (CallerBits & CalleeBits) == CalleeBits;
}
/// Calculate the cost of materializing a 64-bit value. This helper
/// method might only calculate a fraction of a larger immediate. Therefore it
/// is valid to return a cost of ZERO.
InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) {
// Check if the immediate can be encoded within an instruction.
if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
return 0;
if (Val < 0)
Val = ~Val;
// Calculate how many moves we will need to materialize this constant.
SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
AArch64_IMM::expandMOVImm(Val, 64, Insn);
return Insn.size();
}
/// Calculate the cost of materializing the given constant.
InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
if (BitSize == 0)
return ~0U;
// Sign-extend all constants to a multiple of 64-bit.
APInt ImmVal = Imm;
if (BitSize & 0x3f)
ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
// Split the constant into 64-bit chunks and calculate the cost for each
// chunk.
InstructionCost Cost = 0;
for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
int64_t Val = Tmp.getSExtValue();
Cost += getIntImmCost(Val);
}
// We need at least one instruction to materialze the constant.
return std::max<InstructionCost>(1, Cost);
}
InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind,
Instruction *Inst) {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
// There is no cost model for constants with a bit size of 0. Return TCC_Free
// here, so that constant hoisting will ignore this constant.
if (BitSize == 0)
return TTI::TCC_Free;
unsigned ImmIdx = ~0U;
switch (Opcode) {
default:
return TTI::TCC_Free;
case Instruction::GetElementPtr:
// Always hoist the base address of a GetElementPtr.
if (Idx == 0)
return 2 * TTI::TCC_Basic;
return TTI::TCC_Free;
case Instruction::Store:
ImmIdx = 0;
break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::ICmp:
ImmIdx = 1;
break;
// Always return TCC_Free for the shift value of a shift instruction.
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
if (Idx == 1)
return TTI::TCC_Free;
break;
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::IntToPtr:
case Instruction::PtrToInt:
case Instruction::BitCast:
case Instruction::PHI:
case Instruction::Call:
case Instruction::Select:
case Instruction::Ret:
case Instruction::Load:
break;
}
if (Idx == ImmIdx) {
int NumConstants = (BitSize + 63) / 64;
InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
return (Cost <= NumConstants * TTI::TCC_Basic)
? static_cast<int>(TTI::TCC_Free)
: Cost;
}
return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
}
InstructionCost
AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
// There is no cost model for constants with a bit size of 0. Return TCC_Free
// here, so that constant hoisting will ignore this constant.
if (BitSize == 0)
return TTI::TCC_Free;
// Most (all?) AArch64 intrinsics do not support folding immediates into the
// selected instruction, so we compute the materialization cost for the
// immediate directly.
if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv)
return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
switch (IID) {
default:
return TTI::TCC_Free;
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
if (Idx == 1) {
int NumConstants = (BitSize + 63) / 64;
InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
return (Cost <= NumConstants * TTI::TCC_Basic)
? static_cast<int>(TTI::TCC_Free)
: Cost;
}
break;
case Intrinsic::experimental_stackmap:
if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
return TTI::TCC_Free;
break;
case Intrinsic::experimental_patchpoint_void:
case Intrinsic::experimental_patchpoint_i64:
if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
return TTI::TCC_Free;
break;
case Intrinsic::experimental_gc_statepoint:
if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
return TTI::TCC_Free;
break;
}
return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
}
TargetTransformInfo::PopcntSupportKind
AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
if (TyWidth == 32 || TyWidth == 64)
return TTI::PSK_FastHardware;
// TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
return TTI::PSK_Software;
}
InstructionCost
AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) {
auto *RetTy = ICA.getReturnType();
switch (ICA.getID()) {
case Intrinsic::umin:
case Intrinsic::umax:
case Intrinsic::smin:
case Intrinsic::smax: {
static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
MVT::v8i16, MVT::v2i32, MVT::v4i32};
auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
// v2i64 types get converted to cmp+bif hence the cost of 2
if (LT.second == MVT::v2i64)
return LT.first * 2;
if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; }))
return LT.first;
break;
}
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat:
case Intrinsic::uadd_sat:
case Intrinsic::usub_sat: {
static const auto ValidSatTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
MVT::v8i16, MVT::v2i32, MVT::v4i32,
MVT::v2i64};
auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
// This is a base cost of 1 for the vadd, plus 3 extract shifts if we
// need to extend the type, as it uses shr(qadd(shl, shl)).
unsigned Instrs =
LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4;
if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; }))
return LT.first * Instrs;
break;
}
case Intrinsic::abs: {
static const auto ValidAbsTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
MVT::v8i16, MVT::v2i32, MVT::v4i32,
MVT::v2i64};
auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
if (any_of(ValidAbsTys, [<](MVT M) { return M == LT.second; }))
return LT.first;
break;
}
case Intrinsic::experimental_stepvector: {
InstructionCost Cost = 1; // Cost of the `index' instruction
auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
// Legalisation of illegal vectors involves an `index' instruction plus
// (LT.first - 1) vector adds.
if (LT.first > 1) {
Type *LegalVTy = EVT(LT.second).getTypeForEVT(RetTy->getContext());
InstructionCost AddCost =
getArithmeticInstrCost(Instruction::Add, LegalVTy, CostKind);
Cost += AddCost * (LT.first - 1);
}
return Cost;
}
case Intrinsic::bitreverse: {
static const CostTblEntry BitreverseTbl[] = {
{Intrinsic::bitreverse, MVT::i32, 1},
{Intrinsic::bitreverse, MVT::i64, 1},
{Intrinsic::bitreverse, MVT::v8i8, 1},
{Intrinsic::bitreverse, MVT::v16i8, 1},
{Intrinsic::bitreverse, MVT::v4i16, 2},
{Intrinsic::bitreverse, MVT::v8i16, 2},
{Intrinsic::bitreverse, MVT::v2i32, 2},
{Intrinsic::bitreverse, MVT::v4i32, 2},
{Intrinsic::bitreverse, MVT::v1i64, 2},
{Intrinsic::bitreverse, MVT::v2i64, 2},
};
const auto LegalisationCost = TLI->getTypeLegalizationCost(DL, RetTy);
const auto *Entry =
CostTableLookup(BitreverseTbl, ICA.getID(), LegalisationCost.second);
if (Entry) {
// Cost Model is using the legal type(i32) that i8 and i16 will be
// converted to +1 so that we match the actual lowering cost
if (TLI->getValueType(DL, RetTy, true) == MVT::i8 ||
TLI->getValueType(DL, RetTy, true) == MVT::i16)
return LegalisationCost.first * Entry->Cost + 1;
return LegalisationCost.first * Entry->Cost;
}
break;
}
case Intrinsic::ctpop: {
static const CostTblEntry CtpopCostTbl[] = {
{ISD::CTPOP, MVT::v2i64, 4},
{ISD::CTPOP, MVT::v4i32, 3},
{ISD::CTPOP, MVT::v8i16, 2},
{ISD::CTPOP, MVT::v16i8, 1},
{ISD::CTPOP, MVT::i64, 4},
{ISD::CTPOP, MVT::v2i32, 3},
{ISD::CTPOP, MVT::v4i16, 2},
{ISD::CTPOP, MVT::v8i8, 1},
{ISD::CTPOP, MVT::i32, 5},
};
auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
MVT MTy = LT.second;
if (const auto *Entry = CostTableLookup(CtpopCostTbl, ISD::CTPOP, MTy)) {
// Extra cost of +1 when illegal vector types are legalized by promoting
// the integer type.
int ExtraCost = MTy.isVector() && MTy.getScalarSizeInBits() !=
RetTy->getScalarSizeInBits()
? 1
: 0;
return LT.first * Entry->Cost + ExtraCost;
}
break;
}
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow: {
static const CostTblEntry WithOverflowCostTbl[] = {
{Intrinsic::sadd_with_overflow, MVT::i8, 3},
{Intrinsic::uadd_with_overflow, MVT::i8, 3},
{Intrinsic::sadd_with_overflow, MVT::i16, 3},
{Intrinsic::uadd_with_overflow, MVT::i16, 3},
{Intrinsic::sadd_with_overflow, MVT::i32, 1},
{Intrinsic::uadd_with_overflow, MVT::i32, 1},
{Intrinsic::sadd_with_overflow, MVT::i64, 1},
{Intrinsic::uadd_with_overflow, MVT::i64, 1},
{Intrinsic::ssub_with_overflow, MVT::i8, 3},
{Intrinsic::usub_with_overflow, MVT::i8, 3},
{Intrinsic::ssub_with_overflow, MVT::i16, 3},
{Intrinsic::usub_with_overflow, MVT::i16, 3},
{Intrinsic::ssub_with_overflow, MVT::i32, 1},
{Intrinsic::usub_with_overflow, MVT::i32, 1},
{Intrinsic::ssub_with_overflow, MVT::i64, 1},
{Intrinsic::usub_with_overflow, MVT::i64, 1},
{Intrinsic::smul_with_overflow, MVT::i8, 5},
{Intrinsic::umul_with_overflow, MVT::i8, 4},
{Intrinsic::smul_with_overflow, MVT::i16, 5},
{Intrinsic::umul_with_overflow, MVT::i16, 4},
{Intrinsic::smul_with_overflow, MVT::i32, 2}, // eg umull;tst
{Intrinsic::umul_with_overflow, MVT::i32, 2}, // eg umull;cmp sxtw
{Intrinsic::smul_with_overflow, MVT::i64, 3}, // eg mul;smulh;cmp
{Intrinsic::umul_with_overflow, MVT::i64, 3}, // eg mul;umulh;cmp asr
};
EVT MTy = TLI->getValueType(DL, RetTy->getContainedType(0), true);
if (MTy.isSimple())
if (const auto *Entry = CostTableLookup(WithOverflowCostTbl, ICA.getID(),
MTy.getSimpleVT()))
return Entry->Cost;
break;
}
default:
break;
}
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
}
/// The function will remove redundant reinterprets casting in the presence
/// of the control flow
static Optional<Instruction *> processPhiNode(InstCombiner &IC,
IntrinsicInst &II) {
SmallVector<Instruction *, 32> Worklist;
auto RequiredType = II.getType();
auto *PN = dyn_cast<PHINode>(II.getArgOperand(0));
assert(PN && "Expected Phi Node!");
// Don't create a new Phi unless we can remove the old one.
if (!PN->hasOneUse())
return None;
for (Value *IncValPhi : PN->incoming_values()) {
auto *Reinterpret = dyn_cast<IntrinsicInst>(IncValPhi);
if (!Reinterpret ||
Reinterpret->getIntrinsicID() !=
Intrinsic::aarch64_sve_convert_to_svbool ||
RequiredType != Reinterpret->getArgOperand(0)->getType())
return None;
}
// Create the new Phi
LLVMContext &Ctx = PN->getContext();
IRBuilder<> Builder(Ctx);
Builder.SetInsertPoint(PN);
PHINode *NPN = Builder.CreatePHI(RequiredType, PN->getNumIncomingValues());
Worklist.push_back(PN);
for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) {
auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(I));
NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I));
Worklist.push_back(Reinterpret);
}
// Cleanup Phi Node and reinterprets
return IC.replaceInstUsesWith(II, NPN);
}
// (from_svbool (binop (to_svbool pred) (svbool_t _) (svbool_t _))))
// => (binop (pred) (from_svbool _) (from_svbool _))
//
// The above transformation eliminates a `to_svbool` in the predicate
// operand of bitwise operation `binop` by narrowing the vector width of
// the operation. For example, it would convert a `<vscale x 16 x i1>
// and` into a `<vscale x 4 x i1> and`. This is profitable because
// to_svbool must zero the new lanes during widening, whereas
// from_svbool is free.
static Optional<Instruction *> tryCombineFromSVBoolBinOp(InstCombiner &IC,
IntrinsicInst &II) {
auto BinOp = dyn_cast<IntrinsicInst>(II.getOperand(0));
if (!BinOp)
return None;
auto IntrinsicID = BinOp->getIntrinsicID();
switch (IntrinsicID) {
case Intrinsic::aarch64_sve_and_z:
case Intrinsic::aarch64_sve_bic_z:
case Intrinsic::aarch64_sve_eor_z:
case Intrinsic::aarch64_sve_nand_z:
case Intrinsic::aarch64_sve_nor_z:
case Intrinsic::aarch64_sve_orn_z:
case Intrinsic::aarch64_sve_orr_z:
break;
default:
return None;
}
auto BinOpPred = BinOp->getOperand(0);
auto BinOpOp1 = BinOp->getOperand(1);
auto BinOpOp2 = BinOp->getOperand(2);
auto PredIntr = dyn_cast<IntrinsicInst>(BinOpPred);
if (!PredIntr ||
PredIntr->getIntrinsicID() != Intrinsic::aarch64_sve_convert_to_svbool)
return None;
auto PredOp = PredIntr->getOperand(0);
auto PredOpTy = cast<VectorType>(PredOp->getType());
if (PredOpTy != II.getType())
return None;
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
SmallVector<Value *> NarrowedBinOpArgs = {PredOp};
auto NarrowBinOpOp1 = Builder.CreateIntrinsic(
Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp1});
NarrowedBinOpArgs.push_back(NarrowBinOpOp1);
if (BinOpOp1 == BinOpOp2)
NarrowedBinOpArgs.push_back(NarrowBinOpOp1);
else
NarrowedBinOpArgs.push_back(Builder.CreateIntrinsic(
Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp2}));
auto NarrowedBinOp =
Builder.CreateIntrinsic(IntrinsicID, {PredOpTy}, NarrowedBinOpArgs);
return IC.replaceInstUsesWith(II, NarrowedBinOp);
}
static Optional<Instruction *> instCombineConvertFromSVBool(InstCombiner &IC,
IntrinsicInst &II) {
// If the reinterpret instruction operand is a PHI Node
if (isa<PHINode>(II.getArgOperand(0)))
return processPhiNode(IC, II);
if (auto BinOpCombine = tryCombineFromSVBoolBinOp(IC, II))
return BinOpCombine;
SmallVector<Instruction *, 32> CandidatesForRemoval;
Value *Cursor = II.getOperand(0), *EarliestReplacement = nullptr;
const auto *IVTy = cast<VectorType>(II.getType());
// Walk the chain of conversions.
while (Cursor) {
// If the type of the cursor has fewer lanes than the final result, zeroing
// must take place, which breaks the equivalence chain.
const auto *CursorVTy = cast<VectorType>(Cursor->getType());
if (CursorVTy->getElementCount().getKnownMinValue() <
IVTy->getElementCount().getKnownMinValue())
break;
// If the cursor has the same type as I, it is a viable replacement.
if (Cursor->getType() == IVTy)
EarliestReplacement = Cursor;
auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor);
// If this is not an SVE conversion intrinsic, this is the end of the chain.
if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() ==
Intrinsic::aarch64_sve_convert_to_svbool ||
IntrinsicCursor->getIntrinsicID() ==
Intrinsic::aarch64_sve_convert_from_svbool))
break;
CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor);
Cursor = IntrinsicCursor->getOperand(0);
}
// If no viable replacement in the conversion chain was found, there is
// nothing to do.
if (!EarliestReplacement)
return None;
return IC.replaceInstUsesWith(II, EarliestReplacement);
}
static Optional<Instruction *> instCombineSVEDup(InstCombiner &IC,
IntrinsicInst &II) {
IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
if (!Pg)
return None;
if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
return None;
const auto PTruePattern =
cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
if (PTruePattern != AArch64SVEPredPattern::vl1)
return None;
// The intrinsic is inserting into lane zero so use an insert instead.
auto *IdxTy = Type::getInt64Ty(II.getContext());
auto *Insert = InsertElementInst::Create(
II.getArgOperand(0), II.getArgOperand(2), ConstantInt::get(IdxTy, 0));
Insert->insertBefore(&II);
Insert->takeName(&II);
return IC.replaceInstUsesWith(II, Insert);
}
static Optional<Instruction *> instCombineSVEDupX(InstCombiner &IC,
IntrinsicInst &II) {
// Replace DupX with a regular IR splat.
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
auto *RetTy = cast<ScalableVectorType>(II.getType());
Value *Splat =
Builder.CreateVectorSplat(RetTy->getElementCount(), II.getArgOperand(0));
Splat->takeName(&II);
return IC.replaceInstUsesWith(II, Splat);
}
static Optional<Instruction *> instCombineSVECmpNE(InstCombiner &IC,
IntrinsicInst &II) {
LLVMContext &Ctx = II.getContext();
IRBuilder<> Builder(Ctx);
Builder.SetInsertPoint(&II);
// Check that the predicate is all active
auto *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(0));
if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
return None;
const auto PTruePattern =
cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
if (PTruePattern != AArch64SVEPredPattern::all)
return None;
// Check that we have a compare of zero..
auto *SplatValue =
dyn_cast_or_null<ConstantInt>(getSplatValue(II.getArgOperand(2)));
if (!SplatValue || !SplatValue->isZero())
return None;
// ..against a dupq
auto *DupQLane = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
if (!DupQLane ||
DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane)
return None;
// Where the dupq is a lane 0 replicate of a vector insert
if (!cast<ConstantInt>(DupQLane->getArgOperand(1))->isZero())
return None;
auto *VecIns = dyn_cast<IntrinsicInst>(DupQLane->getArgOperand(0));
if (!VecIns ||
VecIns->getIntrinsicID() != Intrinsic::experimental_vector_insert)
return None;
// Where the vector insert is a fixed constant vector insert into undef at
// index zero
if (!isa<UndefValue>(VecIns->getArgOperand(0)))
return None;
if (!cast<ConstantInt>(VecIns->getArgOperand(2))->isZero())
return None;
auto *ConstVec = dyn_cast<Constant>(VecIns->getArgOperand(1));
if (!ConstVec)
return None;
auto *VecTy = dyn_cast<FixedVectorType>(ConstVec->getType());
auto *OutTy = dyn_cast<ScalableVectorType>(II.getType());
if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements())
return None;
unsigned NumElts = VecTy->getNumElements();
unsigned PredicateBits = 0;
// Expand intrinsic operands to a 16-bit byte level predicate
for (unsigned I = 0; I < NumElts; ++I) {
auto *Arg = dyn_cast<ConstantInt>(ConstVec->getAggregateElement(I));
if (!Arg)
return None;
if (!Arg->isZero())
PredicateBits |= 1 << (I * (16 / NumElts));
}
// If all bits are zero bail early with an empty predicate
if (PredicateBits == 0) {
auto *PFalse = Constant::getNullValue(II.getType());
PFalse->takeName(&II);
return IC.replaceInstUsesWith(II, PFalse);
}
// Calculate largest predicate type used (where byte predicate is largest)
unsigned Mask = 8;
for (unsigned I = 0; I < 16; ++I)
if ((PredicateBits & (1 << I)) != 0)
Mask |= (I % 8);
unsigned PredSize = Mask & -Mask;
auto *PredType = ScalableVectorType::get(
Type::getInt1Ty(Ctx), AArch64::SVEBitsPerBlock / (PredSize * 8));
// Ensure all relevant bits are set
for (unsigned I = 0; I < 16; I += PredSize)
if ((PredicateBits & (1 << I)) == 0)
return None;
auto *PTruePat =
ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
{PredType}, {PTruePat});
auto *ConvertToSVBool = Builder.CreateIntrinsic(
Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue});
auto *ConvertFromSVBool =
Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool,
{II.getType()}, {ConvertToSVBool});
ConvertFromSVBool->takeName(&II);
return IC.replaceInstUsesWith(II, ConvertFromSVBool);
}
static Optional<Instruction *> instCombineSVELast(InstCombiner &IC,
IntrinsicInst &II) {
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
Value *Pg = II.getArgOperand(0);
Value *Vec = II.getArgOperand(1);
auto IntrinsicID = II.getIntrinsicID();
bool IsAfter = IntrinsicID == Intrinsic::aarch64_sve_lasta;
// lastX(splat(X)) --> X
if (auto *SplatVal = getSplatValue(Vec))
return IC.replaceInstUsesWith(II, SplatVal);
// If x and/or y is a splat value then:
// lastX (binop (x, y)) --> binop(lastX(x), lastX(y))
Value *LHS, *RHS;
if (match(Vec, m_OneUse(m_BinOp(m_Value(LHS), m_Value(RHS))))) {
if (isSplatValue(LHS) || isSplatValue(RHS)) {
auto *OldBinOp = cast<BinaryOperator>(Vec);
auto OpC = OldBinOp->getOpcode();
auto *NewLHS =
Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, LHS});
auto *NewRHS =
Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, RHS});
auto *NewBinOp = BinaryOperator::CreateWithCopiedFlags(
OpC, NewLHS, NewRHS, OldBinOp, OldBinOp->getName(), &II);
return IC.replaceInstUsesWith(II, NewBinOp);
}
}
auto *C = dyn_cast<Constant>(Pg);
if (IsAfter && C && C->isNullValue()) {
// The intrinsic is extracting lane 0 so use an extract instead.
auto *IdxTy = Type::getInt64Ty(II.getContext());
auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, 0));
Extract->insertBefore(&II);
Extract->takeName(&II);
return IC.replaceInstUsesWith(II, Extract);
}
auto *IntrPG = dyn_cast<IntrinsicInst>(Pg);
if (!IntrPG)
return None;
if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
return None;
const auto PTruePattern =
cast<ConstantInt>(IntrPG->getOperand(0))->getZExtValue();
// Can the intrinsic's predicate be converted to a known constant index?
unsigned MinNumElts = getNumElementsFromSVEPredPattern(PTruePattern);
if (!MinNumElts)
return None;
unsigned Idx = MinNumElts - 1;
// Increment the index if extracting the element after the last active
// predicate element.
if (IsAfter)
++Idx;
// Ignore extracts whose index is larger than the known minimum vector
// length. NOTE: This is an artificial constraint where we prefer to
// maintain what the user asked for until an alternative is proven faster.
auto *PgVTy = cast<ScalableVectorType>(Pg->getType());
if (Idx >= PgVTy->getMinNumElements())
return None;
// The intrinsic is extracting a fixed lane so use an extract instead.
auto *IdxTy = Type::getInt64Ty(II.getContext());
auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, Idx));
Extract->insertBefore(&II);
Extract->takeName(&II);
return IC.replaceInstUsesWith(II, Extract);
}
static Optional<Instruction *> instCombineRDFFR(InstCombiner &IC,
IntrinsicInst &II) {
LLVMContext &Ctx = II.getContext();
IRBuilder<> Builder(Ctx);
Builder.SetInsertPoint(&II);
// Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr
// can work with RDFFR_PP for ptest elimination.
auto *AllPat =
ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
{II.getType()}, {AllPat});
auto *RDFFR =
Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue});
RDFFR->takeName(&II);
return IC.replaceInstUsesWith(II, RDFFR);
}
static Optional<Instruction *>
instCombineSVECntElts(InstCombiner &IC, IntrinsicInst &II, unsigned NumElts) {
const auto Pattern = cast<ConstantInt>(II.getArgOperand(0))->getZExtValue();
if (Pattern == AArch64SVEPredPattern::all) {
LLVMContext &Ctx = II.getContext();
IRBuilder<> Builder(Ctx);
Builder.SetInsertPoint(&II);
Constant *StepVal = ConstantInt::get(II.getType(), NumElts);
auto *VScale = Builder.CreateVScale(StepVal);
VScale->takeName(&II);
return IC.replaceInstUsesWith(II, VScale);
}
unsigned MinNumElts = getNumElementsFromSVEPredPattern(Pattern);
return MinNumElts && NumElts >= MinNumElts
? Optional<Instruction *>(IC.replaceInstUsesWith(
II, ConstantInt::get(II.getType(), MinNumElts)))
: None;
}
static Optional<Instruction *> instCombineSVEPTest(InstCombiner &IC,
IntrinsicInst &II) {
IntrinsicInst *Op1 = dyn_cast<IntrinsicInst>(II.getArgOperand(0));
IntrinsicInst *Op2 = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
if (Op1 && Op2 &&
Op1->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
Op2->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
Op1->getArgOperand(0)->getType() == Op2->getArgOperand(0)->getType()) {
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
Value *Ops[] = {Op1->getArgOperand(0), Op2->getArgOperand(0)};
Type *Tys[] = {Op1->getArgOperand(0)->getType()};
auto *PTest = Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops);
PTest->takeName(&II);
return IC.replaceInstUsesWith(II, PTest);
}
return None;
}
static Optional<Instruction *> instCombineSVEVectorFMLA(InstCombiner &IC,
IntrinsicInst &II) {
// fold (fadd p a (fmul p b c)) -> (fma p a b c)
Value *P = II.getOperand(0);
Value *A = II.getOperand(1);
auto FMul = II.getOperand(2);
Value *B, *C;
if (!match(FMul, m_Intrinsic<Intrinsic::aarch64_sve_fmul>(
m_Specific(P), m_Value(B), m_Value(C))))
return None;
if (!FMul->hasOneUse())
return None;
llvm::FastMathFlags FAddFlags = II.getFastMathFlags();
// Stop the combine when the flags on the inputs differ in case dropping flags
// would lead to us missing out on more beneficial optimizations.
if (FAddFlags != cast<CallInst>(FMul)->getFastMathFlags())
return None;
if (!FAddFlags.allowContract())
return None;
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
auto FMLA = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_fmla,
{II.getType()}, {P, A, B, C}, &II);
FMLA->setFastMathFlags(FAddFlags);
return IC.replaceInstUsesWith(II, FMLA);
}
static bool isAllActivePredicate(Value *Pred) {
// Look through convert.from.svbool(convert.to.svbool(...) chain.
Value *UncastedPred;
if (match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_convert_from_svbool>(
m_Intrinsic<Intrinsic::aarch64_sve_convert_to_svbool>(
m_Value(UncastedPred)))))
// If the predicate has the same or less lanes than the uncasted
// predicate then we know the casting has no effect.
if (cast<ScalableVectorType>(Pred->getType())->getMinNumElements() <=
cast<ScalableVectorType>(UncastedPred->getType())->getMinNumElements())
Pred = UncastedPred;
return match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
m_ConstantInt<AArch64SVEPredPattern::all>()));
}
static Optional<Instruction *>
instCombineSVELD1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
Value *Pred = II.getOperand(0);
Value *PtrOp = II.getOperand(1);
Type *VecTy = II.getType();
Value *VecPtr = Builder.CreateBitCast(PtrOp, VecTy->getPointerTo());
if (isAllActivePredicate(Pred)) {
LoadInst *Load = Builder.CreateLoad(VecTy, VecPtr);
return IC.replaceInstUsesWith(II, Load);
}
CallInst *MaskedLoad =
Builder.CreateMaskedLoad(VecTy, VecPtr, PtrOp->getPointerAlignment(DL),
Pred, ConstantAggregateZero::get(VecTy));
return IC.replaceInstUsesWith(II, MaskedLoad);
}
static Optional<Instruction *>
instCombineSVEST1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
Value *VecOp = II.getOperand(0);
Value *Pred = II.getOperand(1);
Value *PtrOp = II.getOperand(2);
Value *VecPtr =
Builder.CreateBitCast(PtrOp, VecOp->getType()->getPointerTo());
if (isAllActivePredicate(Pred)) {
Builder.CreateStore(VecOp, VecPtr);
return IC.eraseInstFromFunction(II);
}
Builder.CreateMaskedStore(VecOp, VecPtr, PtrOp->getPointerAlignment(DL),
Pred);
return IC.eraseInstFromFunction(II);
}
static Instruction::BinaryOps intrinsicIDToBinOpCode(unsigned Intrinsic) {
switch (Intrinsic) {
case Intrinsic::aarch64_sve_fmul:
return Instruction::BinaryOps::FMul;
case Intrinsic::aarch64_sve_fadd:
return Instruction::BinaryOps::FAdd;
case Intrinsic::aarch64_sve_fsub:
return Instruction::BinaryOps::FSub;
default:
return Instruction::BinaryOpsEnd;
}
}
static Optional<Instruction *> instCombineSVEVectorBinOp(InstCombiner &IC,
IntrinsicInst &II) {
auto *OpPredicate = II.getOperand(0);
auto BinOpCode = intrinsicIDToBinOpCode(II.getIntrinsicID());
if (BinOpCode == Instruction::BinaryOpsEnd ||
!match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
m_ConstantInt<AArch64SVEPredPattern::all>())))
return None;
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
Builder.setFastMathFlags(II.getFastMathFlags());
auto BinOp =
Builder.CreateBinOp(BinOpCode, II.getOperand(1), II.getOperand(2));
return IC.replaceInstUsesWith(II, BinOp);
}
static Optional<Instruction *> instCombineSVEVectorFAdd(InstCombiner &IC,
IntrinsicInst &II) {
if (auto FMLA = instCombineSVEVectorFMLA(IC, II))
return FMLA;
return instCombineSVEVectorBinOp(IC, II);
}
static Optional<Instruction *> instCombineSVEVectorMul(InstCombiner &IC,
IntrinsicInst &II) {
auto *OpPredicate = II.getOperand(0);
auto *OpMultiplicand = II.getOperand(1);
auto *OpMultiplier = II.getOperand(2);
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
// Return true if a given instruction is a unit splat value, false otherwise.
auto IsUnitSplat = [](auto *I) {
auto *SplatValue = getSplatValue(I);
if (!SplatValue)
return false;
return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
};
// Return true if a given instruction is an aarch64_sve_dup intrinsic call
// with a unit splat value, false otherwise.
auto IsUnitDup = [](auto *I) {
auto *IntrI = dyn_cast<IntrinsicInst>(I);
if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup)
return false;
auto *SplatValue = IntrI->getOperand(2);
return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
};
if (IsUnitSplat(OpMultiplier)) {
// [f]mul pg %n, (dupx 1) => %n
OpMultiplicand->takeName(&II);
return IC.replaceInstUsesWith(II, OpMultiplicand);
} else if (IsUnitDup(OpMultiplier)) {
// [f]mul pg %n, (dup pg 1) => %n
auto *DupInst = cast<IntrinsicInst>(OpMultiplier);
auto *DupPg = DupInst->getOperand(1);
// TODO: this is naive. The optimization is still valid if DupPg
// 'encompasses' OpPredicate, not only if they're the same predicate.
if (OpPredicate == DupPg) {
OpMultiplicand->takeName(&II);
return IC.replaceInstUsesWith(II, OpMultiplicand);
}
}
return instCombineSVEVectorBinOp(IC, II);
}
static Optional<Instruction *> instCombineSVEUnpack(InstCombiner &IC,
IntrinsicInst &II) {
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
Value *UnpackArg = II.getArgOperand(0);
auto *RetTy = cast<ScalableVectorType>(II.getType());
bool IsSigned = II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpkhi ||
II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpklo;
// Hi = uunpkhi(splat(X)) --> Hi = splat(extend(X))
// Lo = uunpklo(splat(X)) --> Lo = splat(extend(X))
if (auto *ScalarArg = getSplatValue(UnpackArg)) {
ScalarArg =
Builder.CreateIntCast(ScalarArg, RetTy->getScalarType(), IsSigned);
Value *NewVal =
Builder.CreateVectorSplat(RetTy->getElementCount(), ScalarArg);
NewVal->takeName(&II);
return IC.replaceInstUsesWith(II, NewVal);
}
return None;
}
static Optional<Instruction *> instCombineSVETBL(InstCombiner &IC,
IntrinsicInst &II) {
auto *OpVal = II.getOperand(0);
auto *OpIndices = II.getOperand(1);
VectorType *VTy = cast<VectorType>(II.getType());
// Check whether OpIndices is a constant splat value < minimal element count
// of result.
auto *SplatValue = dyn_cast_or_null<ConstantInt>(getSplatValue(OpIndices));
if (!SplatValue ||
SplatValue->getValue().uge(VTy->getElementCount().getKnownMinValue()))
return None;
// Convert sve_tbl(OpVal sve_dup_x(SplatValue)) to
// splat_vector(extractelement(OpVal, SplatValue)) for further optimization.
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
auto *Extract = Builder.CreateExtractElement(OpVal, SplatValue);
auto *VectorSplat =
Builder.CreateVectorSplat(VTy->getElementCount(), Extract);
VectorSplat->takeName(&II);
return IC.replaceInstUsesWith(II, VectorSplat);
}
static Optional<Instruction *> instCombineSVETupleGet(InstCombiner &IC,
IntrinsicInst &II) {
// Try to remove sequences of tuple get/set.
Value *SetTuple, *SetIndex, *SetValue;
auto *GetTuple = II.getArgOperand(0);
auto *GetIndex = II.getArgOperand(1);
// Check that we have tuple_get(GetTuple, GetIndex) where GetTuple is a
// call to tuple_set i.e. tuple_set(SetTuple, SetIndex, SetValue).
// Make sure that the types of the current intrinsic and SetValue match
// in order to safely remove the sequence.
if (!match(GetTuple,
m_Intrinsic<Intrinsic::aarch64_sve_tuple_set>(
m_Value(SetTuple), m_Value(SetIndex), m_Value(SetValue))) ||
SetValue->getType() != II.getType())
return None;
// Case where we get the same index right after setting it.
// tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex) --> SetValue
if (GetIndex == SetIndex)
return IC.replaceInstUsesWith(II, SetValue);
// If we are getting a different index than what was set in the tuple_set
// intrinsic. We can just set the input tuple to the one up in the chain.
// tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex)
// --> tuple_get(SetTuple, GetIndex)
return IC.replaceOperand(II, 0, SetTuple);
}
static Optional<Instruction *> instCombineSVEZip(InstCombiner &IC,
IntrinsicInst &II) {
// zip1(uzp1(A, B), uzp2(A, B)) --> A
// zip2(uzp1(A, B), uzp2(A, B)) --> B
Value *A, *B;
if (match(II.getArgOperand(0),
m_Intrinsic<Intrinsic::aarch64_sve_uzp1>(m_Value(A), m_Value(B))) &&
match(II.getArgOperand(1), m_Intrinsic<Intrinsic::aarch64_sve_uzp2>(
m_Specific(A), m_Specific(B))))
return IC.replaceInstUsesWith(
II, (II.getIntrinsicID() == Intrinsic::aarch64_sve_zip1 ? A : B));
return None;
}
static Optional<Instruction *> instCombineLD1GatherIndex(InstCombiner &IC,
IntrinsicInst &II) {
Value *Mask = II.getOperand(0);
Value *BasePtr = II.getOperand(1);
Value *Index = II.getOperand(2);
Type *Ty = II.getType();
Type *BasePtrTy = BasePtr->getType();
Value *PassThru = ConstantAggregateZero::get(Ty);
// Contiguous gather => masked load.
// (sve.ld1.gather.index Mask BasePtr (sve.index IndexBase 1))
// => (masked.load (gep BasePtr IndexBase) Align Mask zeroinitializer)
Value *IndexBase;
if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
m_Value(IndexBase), m_SpecificInt(1)))) {
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
Align Alignment =
BasePtr->getPointerAlignment(II.getModule()->getDataLayout());
Type *VecPtrTy = PointerType::getUnqual(Ty);
Value *Ptr = Builder.CreateGEP(BasePtrTy->getPointerElementType(), BasePtr,
IndexBase);
Ptr = Builder.CreateBitCast(Ptr, VecPtrTy);
CallInst *MaskedLoad =
Builder.CreateMaskedLoad(Ty, Ptr, Alignment, Mask, PassThru);
MaskedLoad->takeName(&II);
return IC.replaceInstUsesWith(II, MaskedLoad);
}
return None;
}
static Optional<Instruction *> instCombineST1ScatterIndex(InstCombiner &IC,
IntrinsicInst &II) {
Value *Val = II.getOperand(0);
Value *Mask = II.getOperand(1);
Value *BasePtr = II.getOperand(2);
Value *Index = II.getOperand(3);
Type *Ty = Val->getType();
Type *BasePtrTy = BasePtr->getType();
// Contiguous scatter => masked store.
// (sve.ld1.scatter.index Value Mask BasePtr (sve.index IndexBase 1))
// => (masked.store Value (gep BasePtr IndexBase) Align Mask)
Value *IndexBase;
if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
m_Value(IndexBase), m_SpecificInt(1)))) {
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
Align Alignment =
BasePtr->getPointerAlignment(II.getModule()->getDataLayout());
Value *Ptr = Builder.CreateGEP(BasePtrTy->getPointerElementType(), BasePtr,
IndexBase);
Type *VecPtrTy = PointerType::getUnqual(Ty);
Ptr = Builder.CreateBitCast(Ptr, VecPtrTy);
(void)Builder.CreateMaskedStore(Val, Ptr, Alignment, Mask);
return IC.eraseInstFromFunction(II);
}
return None;
}
static Optional<Instruction *> instCombineSVESDIV(InstCombiner &IC,
IntrinsicInst &II) {
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
Type *Int32Ty = Builder.getInt32Ty();
Value *Pred = II.getOperand(0);
Value *Vec = II.getOperand(1);
Value *DivVec = II.getOperand(2);
Value *SplatValue = getSplatValue(DivVec);
ConstantInt *SplatConstantInt = dyn_cast_or_null<ConstantInt>(SplatValue);
if (!SplatConstantInt)
return None;
APInt Divisor = SplatConstantInt->getValue();
if (Divisor.isPowerOf2()) {
Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2());
auto ASRD = Builder.CreateIntrinsic(
Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
return IC.replaceInstUsesWith(II, ASRD);
}
if (Divisor.isNegatedPowerOf2()) {
Divisor.negate();
Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2());
auto ASRD = Builder.CreateIntrinsic(
Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
auto NEG = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_neg,
{ASRD->getType()}, {ASRD, Pred, ASRD});
return IC.replaceInstUsesWith(II, NEG);
}
return None;
}
Optional<Instruction *>
AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC,
IntrinsicInst &II) const {
Intrinsic::ID IID = II.getIntrinsicID();
switch (IID) {
default:
break;
case Intrinsic::aarch64_sve_convert_from_svbool:
return instCombineConvertFromSVBool(IC, II);
case Intrinsic::aarch64_sve_dup:
return instCombineSVEDup(IC, II);
case Intrinsic::aarch64_sve_dup_x:
return instCombineSVEDupX(IC, II);
case Intrinsic::aarch64_sve_cmpne:
case Intrinsic::aarch64_sve_cmpne_wide:
return instCombineSVECmpNE(IC, II);
case Intrinsic::aarch64_sve_rdffr:
return instCombineRDFFR(IC, II);
case Intrinsic::aarch64_sve_lasta:
case Intrinsic::aarch64_sve_lastb:
return instCombineSVELast(IC, II);
case Intrinsic::aarch64_sve_cntd:
return instCombineSVECntElts(IC, II, 2);
case Intrinsic::aarch64_sve_cntw:
return instCombineSVECntElts(IC, II, 4);
case Intrinsic::aarch64_sve_cnth:
return instCombineSVECntElts(IC, II, 8);
case Intrinsic::aarch64_sve_cntb:
return instCombineSVECntElts(IC, II, 16);
case Intrinsic::aarch64_sve_ptest_any:
case Intrinsic::aarch64_sve_ptest_first:
case Intrinsic::aarch64_sve_ptest_last:
return instCombineSVEPTest(IC, II);
case Intrinsic::aarch64_sve_mul:
case Intrinsic::aarch64_sve_fmul:
return instCombineSVEVectorMul(IC, II);
case Intrinsic::aarch64_sve_fadd:
return instCombineSVEVectorFAdd(IC, II);
case Intrinsic::aarch64_sve_fsub:
return instCombineSVEVectorBinOp(IC, II);
case Intrinsic::aarch64_sve_tbl:
return instCombineSVETBL(IC, II);
case Intrinsic::aarch64_sve_uunpkhi:
case Intrinsic::aarch64_sve_uunpklo:
case Intrinsic::aarch64_sve_sunpkhi:
case Intrinsic::aarch64_sve_sunpklo:
return instCombineSVEUnpack(IC, II);
case Intrinsic::aarch64_sve_tuple_get:
return instCombineSVETupleGet(IC, II);
case Intrinsic::aarch64_sve_zip1:
case Intrinsic::aarch64_sve_zip2:
return instCombineSVEZip(IC, II);
case Intrinsic::aarch64_sve_ld1_gather_index:
return instCombineLD1GatherIndex(IC, II);
case Intrinsic::aarch64_sve_st1_scatter_index:
return instCombineST1ScatterIndex(IC, II);
case Intrinsic::aarch64_sve_ld1:
return instCombineSVELD1(IC, II, DL);
case Intrinsic::aarch64_sve_st1:
return instCombineSVEST1(IC, II, DL);
case Intrinsic::aarch64_sve_sdiv:
return instCombineSVESDIV(IC, II);
}
return None;
}
Optional<Value *> AArch64TTIImpl::simplifyDemandedVectorEltsIntrinsic(
InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts,
APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
std::function<void(Instruction *, unsigned, APInt, APInt &)>
SimplifyAndSetOp) const {
switch (II.getIntrinsicID()) {
default:
break;
case Intrinsic::aarch64_neon_fcvtxn:
case Intrinsic::aarch64_neon_rshrn:
case Intrinsic::aarch64_neon_sqrshrn:
case Intrinsic::aarch64_neon_sqrshrun:
case Intrinsic::aarch64_neon_sqshrn:
case Intrinsic::aarch64_neon_sqshrun:
case Intrinsic::aarch64_neon_sqxtn:
case Intrinsic::aarch64_neon_sqxtun:
case Intrinsic::aarch64_neon_uqrshrn:
case Intrinsic::aarch64_neon_uqshrn:
case Intrinsic::aarch64_neon_uqxtn:
SimplifyAndSetOp(&II, 0, OrigDemandedElts, UndefElts);
break;
}
return None;
}
bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
ArrayRef<const Value *> Args) {
// A helper that returns a vector type from the given type. The number of
// elements in type Ty determine the vector width.
auto toVectorTy = [&](Type *ArgTy) {
return VectorType::get(ArgTy->getScalarType(),
cast<VectorType>(DstTy)->getElementCount());
};
// Exit early if DstTy is not a vector type whose elements are at least
// 16-bits wide.
if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16)
return false;
// Determine if the operation has a widening variant. We consider both the
// "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
// instructions.
//
// TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
// verify that their extending operands are eliminated during code
// generation.
switch (Opcode) {
case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
break;
default:
return false;
}
// To be a widening instruction (either the "wide" or "long" versions), the
// second operand must be a sign- or zero extend having a single user. We
// only consider extends having a single user because they may otherwise not
// be eliminated.
if (Args.size() != 2 ||
(!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) ||
!Args[1]->hasOneUse())
return false;
auto *Extend = cast<CastInst>(Args[1]);
// Legalize the destination type and ensure it can be used in a widening
// operation.
auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy);
unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
return false;
// Legalize the source type and ensure it can be used in a widening
// operation.
auto *SrcTy = toVectorTy(Extend->getSrcTy());
auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy);
unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
return false;
// Get the total number of vector elements in the legalized types.
InstructionCost NumDstEls =
DstTyL.first * DstTyL.second.getVectorMinNumElements();
InstructionCost NumSrcEls =
SrcTyL.first * SrcTyL.second.getVectorMinNumElements();
// Return true if the legalized types have the same number of vector elements
// and the destination element type size is twice that of the source type.
return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
}
InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src,
TTI::CastContextHint CCH,
TTI::TargetCostKind CostKind,
const Instruction *I) {
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
// If the cast is observable, and it is used by a widening instruction (e.g.,
// uaddl, saddw, etc.), it may be free.
if (I && I->hasOneUse()) {
auto *SingleUser = cast<Instruction>(*I->user_begin());
SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
// If the cast is the second operand, it is free. We will generate either
// a "wide" or "long" version of the widening instruction.
if (I == SingleUser->getOperand(1))
return 0;
// If the cast is not the second operand, it will be free if it looks the
// same as the second operand. In this case, we will generate a "long"
// version of the widening instruction.
if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
return 0;
}
}
// TODO: Allow non-throughput costs that aren't binary.
auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
if (CostKind != TTI::TCK_RecipThroughput)
return Cost == 0 ? 0 : 1;
return Cost;
};
EVT SrcTy = TLI->getValueType(DL, Src);
EVT DstTy = TLI->getValueType(DL, Dst);
if (!SrcTy.isSimple() || !DstTy.isSimple())
return AdjustCost(
BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
static const TypeConversionCostTblEntry
ConversionTbl[] = {
{ ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
// Truncations on nxvmiN
{ ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 1 },
{ ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 1 },
{ ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 1 },
{ ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 1 },
{ ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 1 },
{ ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 2 },
{ ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 1 },
{ ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 3 },
{ ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 5 },
{ ISD::TRUNCATE, MVT::nxv16i1, MVT::nxv16i8, 1 },
{ ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 1 },
{ ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 1 },
{ ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 1 },
{ ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 2 },
{ ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 3 },
{ ISD::TRUNCATE, MVT::nxv8i32, MVT::nxv8i64, 6 },
// The number of shll instructions for the extension.
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
{ ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
{ ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
// LowerVectorINT_TO_FP:
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
// Complex: to v2f32
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
// Complex: to v4f32
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
// Complex: to v8f32
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
// Complex: to v16f32
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
// Complex: to v2f64
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
// LowerVectorFP_TO_INT
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
{ ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
{ ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
// Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
{ ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
{ ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
{ ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 },
{ ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
{ ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
{ ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 },
// Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
{ ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
{ ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 },
{ ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
{ ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 },
// Complex, from nxv2f32.
{ ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
{ ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
{ ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
{ ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f32, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f32, 1 },
// Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
{ ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
{ ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 },
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
{ ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
{ ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 },
// Complex, from nxv2f64.
{ ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
{ ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
{ ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
{ ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f64, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f64, 1 },
// Complex, from nxv4f32.
{ ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
{ ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
{ ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
{ ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f32, 1 },
{ ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
{ ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
{ ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
{ ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f32, 1 },
// Complex, from nxv8f64. Illegal -> illegal conversions not required.
{ ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
{ ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f64, 7 },
{ ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
{ ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f64, 7 },
// Complex, from nxv4f64. Illegal -> illegal conversions not required.
{ ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
{ ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
{ ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f64, 3 },
{ ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
{ ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
{ ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f64, 3 },
// Complex, from nxv8f32. Illegal -> illegal conversions not required.
{ ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
{ ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f32, 3 },
{ ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
{ ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f32, 3 },
// Complex, from nxv8f16.
{ ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
{ ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
{ ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
{ ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f16, 1 },
{ ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
{ ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
{ ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
{ ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f16, 1 },
// Complex, from nxv4f16.
{ ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
{ ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
{ ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
{ ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f16, 1 },
{ ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
{ ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
{ ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
{ ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f16, 1 },
// Complex, from nxv2f16.
{ ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
{ ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
{ ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
{ ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f16, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f16, 1 },
// Truncate from nxvmf32 to nxvmf16.
{ ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1 },
{ ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1 },
{ ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3 },
// Truncate from nxvmf64 to nxvmf16.
{ ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1 },
{ ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3 },
{ ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7 },
// Truncate from nxvmf64 to nxvmf32.
{ ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1 },
{ ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3 },
{ ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6 },
// Extend from nxvmf16 to nxvmf32.
{ ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1},
{ ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1},
{ ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2},
// Extend from nxvmf16 to nxvmf64.
{ ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1},
{ ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2},
{ ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4},
// Extend from nxvmf32 to nxvmf64.
{ ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1},
{ ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2},
{ ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6},
// Bitcasts from float to integer
{ ISD::BITCAST, MVT::nxv2f16, MVT::nxv2i16, 0 },
{ ISD::BITCAST, MVT::nxv4f16, MVT::nxv4i16, 0 },
{ ISD::BITCAST, MVT::nxv2f32, MVT::nxv2i32, 0 },
// Bitcasts from integer to float
{ ISD::BITCAST, MVT::nxv2i16, MVT::nxv2f16, 0 },
{ ISD::BITCAST, MVT::nxv4i16, MVT::nxv4f16, 0 },
{ ISD::BITCAST, MVT::nxv2i32, MVT::nxv2f32, 0 },
};
if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
DstTy.getSimpleVT(),
SrcTy.getSimpleVT()))
return AdjustCost(Entry->Cost);
return AdjustCost(
BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
}
InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode,
Type *Dst,
VectorType *VecTy,
unsigned Index) {
// Make sure we were given a valid extend opcode.
assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
"Invalid opcode");
// We are extending an element we extract from a vector, so the source type
// of the extend is the element type of the vector.
auto *Src = VecTy->getElementType();
// Sign- and zero-extends are for integer types only.
assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
// Get the cost for the extract. We compute the cost (if any) for the extend
// below.
InstructionCost Cost =
getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);
// Legalize the types.
auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
auto DstVT = TLI->getValueType(DL, Dst);
auto SrcVT = TLI->getValueType(DL, Src);
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
// If the resulting type is still a vector and the destination type is legal,
// we may get the extension for free. If not, get the default cost for the
// extend.
if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
CostKind);
// The destination type should be larger than the element type. If not, get
// the default cost for the extend.
if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits())
return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
CostKind);
switch (Opcode) {
default:
llvm_unreachable("Opcode should be either SExt or ZExt");
// For sign-extends, we only need a smov, which performs the extension
// automatically.
case Instruction::SExt:
return Cost;
// For zero-extends, the extend is performed automatically by a umov unless
// the destination type is i64 and the element type is i8 or i16.
case Instruction::ZExt:
if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
return Cost;
}
// If we are unable to perform the extend for free, get the default cost.
return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
CostKind);
}
InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode,
TTI::TargetCostKind CostKind,
const Instruction *I) {
if (CostKind != TTI::TCK_RecipThroughput)
return Opcode == Instruction::PHI ? 0 : 1;
assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind");
// Branches are assumed to be predicted.
return 0;
}
InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) {
assert(Val->isVectorTy() && "This must be a vector type");
if (Index != -1U) {
// Legalize the type.
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
// This type is legalized to a scalar type.
if (!LT.second.isVector())
return 0;
// The type may be split. For fixed-width vectors we can normalize the
// index to the new type.
if (LT.second.isFixedLengthVector()) {
unsigned Width = LT.second.getVectorNumElements();
Index = Index % Width;
}
// The element at index zero is already inside the vector.
if (Index == 0)
return 0;
}
// All other insert/extracts cost this much.
return ST->getVectorInsertExtractBaseCost();
}
InstructionCost AArch64TTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
TTI::OperandValueProperties Opd1PropInfo,
TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
const Instruction *CxtI) {
// TODO: Handle more cost kinds.
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
Opd2Info, Opd1PropInfo,
Opd2PropInfo, Args, CxtI);
// Legalize the type.
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
// If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
// add in the widening overhead specified by the sub-target. Since the
// extends feeding widening instructions are performed automatically, they
// aren't present in the generated code and have a zero cost. By adding a
// widening overhead here, we attach the total cost of the combined operation
// to the widening instruction.
InstructionCost Cost = 0;
if (isWideningInstruction(Ty, Opcode, Args))
Cost += ST->getWideningBaseCost();
int ISD = TLI->InstructionOpcodeToISD(Opcode);
switch (ISD) {
default:
return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
Opd2Info,
Opd1PropInfo, Opd2PropInfo);
case ISD::SDIV:
if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
// On AArch64, scalar signed division by constants power-of-two are
// normally expanded to the sequence ADD + CMP + SELECT + SRA.
// The OperandValue properties many not be same as that of previous
// operation; conservatively assume OP_None.
Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind,
Opd1Info, Opd2Info,
TargetTransformInfo::OP_None,
TargetTransformInfo::OP_None);
Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind,
Opd1Info, Opd2Info,
TargetTransformInfo::OP_None,
TargetTransformInfo::OP_None);
Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind,
Opd1Info, Opd2Info,
TargetTransformInfo::OP_None,
TargetTransformInfo::OP_None);
Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
Opd1Info, Opd2Info,
TargetTransformInfo::OP_None,
TargetTransformInfo::OP_None);
return Cost;
}
LLVM_FALLTHROUGH;
case ISD::UDIV:
if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) {
auto VT = TLI->getValueType(DL, Ty);
if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
// Vector signed division by constant are expanded to the
// sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
// to MULHS + SUB + SRL + ADD + SRL.
InstructionCost MulCost = getArithmeticInstrCost(
Instruction::Mul, Ty, CostKind, Opd1Info, Opd2Info,
TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
InstructionCost AddCost = getArithmeticInstrCost(
Instruction::Add, Ty, CostKind, Opd1Info, Opd2Info,
TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
InstructionCost ShrCost = getArithmeticInstrCost(
Instruction::AShr, Ty, CostKind, Opd1Info, Opd2Info,
TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
}
}
Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
Opd2Info,
Opd1PropInfo, Opd2PropInfo);
if (Ty->isVectorTy()) {
// On AArch64, vector divisions are not supported natively and are
// expanded into scalar divisions of each pair of elements.
Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind,
Opd1Info, Opd2Info, Opd1PropInfo,
Opd2PropInfo);
Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind,
Opd1Info, Opd2Info, Opd1PropInfo,
Opd2PropInfo);
// TODO: if one of the arguments is scalar, then it's not necessary to
// double the cost of handling the vector elements.
Cost += Cost;
}
return Cost;
case ISD::MUL:
if (LT.second != MVT::v2i64)
return (Cost + 1) * LT.first;
// Since we do not have a MUL.2d instruction, a mul <2 x i64> is expensive
// as elements are extracted from the vectors and the muls scalarized.
// As getScalarizationOverhead is a bit too pessimistic, we estimate the
// cost for a i64 vector directly here, which is:
// - four i64 extracts,
// - two i64 inserts, and
// - two muls.
// So, for a v2i64 with LT.First = 1 the cost is 8, and for a v4i64 with
// LT.first = 2 the cost is 16.
return LT.first * 8;
case ISD::ADD:
case ISD::XOR:
case ISD::OR:
case ISD::AND:
// These nodes are marked as 'custom' for combining purposes only.
// We know that they are legal. See LowerAdd in ISelLowering.
return (Cost + 1) * LT.first;
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FNEG:
// These nodes are marked as 'custom' just to lower them to SVE.
// We know said lowering will incur no additional cost.
if (!Ty->getScalarType()->isFP128Ty())
return (Cost + 2) * LT.first;
return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
Opd2Info,
Opd1PropInfo, Opd2PropInfo);
}
}
InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty,
ScalarEvolution *SE,
const SCEV *Ptr) {
// Address computations in vectorized code with non-consecutive addresses will
// likely result in more instructions compared to scalar code where the
// computation can more often be merged into the index mode. The resulting
// extra micro-ops can significantly decrease throughput.
unsigned NumVectorInstToHideOverhead = 10;
int MaxMergeDistance = 64;
if (Ty->isVectorTy() && SE &&
!BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
return NumVectorInstToHideOverhead;
// In many cases the address computation is not merged into the instruction
// addressing mode.
return 1;
}
InstructionCost AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind,
const Instruction *I) {
// TODO: Handle other cost kinds.
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
I);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
// We don't lower some vector selects well that are wider than the register
// width.
if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) {
// We would need this many instructions to hide the scalarization happening.
const int AmortizationCost = 20;
// If VecPred is not set, check if we can get a predicate from the context
// instruction, if its type matches the requested ValTy.
if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) {
CmpInst::Predicate CurrentPred;
if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(),
m_Value())))
VecPred = CurrentPred;
}
// Check if we have a compare/select chain that can be lowered using
// a (F)CMxx & BFI pair.
if (CmpInst::isIntPredicate(VecPred) || VecPred == CmpInst::FCMP_OLE ||
VecPred == CmpInst::FCMP_OLT || VecPred == CmpInst::FCMP_OGT ||
VecPred == CmpInst::FCMP_OGE || VecPred == CmpInst::FCMP_OEQ ||
VecPred == CmpInst::FCMP_UNE) {
static const auto ValidMinMaxTys = {
MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32,
MVT::v4i32, MVT::v2i64, MVT::v2f32, MVT::v4f32, MVT::v2f64};
static const auto ValidFP16MinMaxTys = {MVT::v4f16, MVT::v8f16};
auto LT = TLI->getTypeLegalizationCost(DL, ValTy);
if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; }) ||
(ST->hasFullFP16() &&
any_of(ValidFP16MinMaxTys, [<](MVT M) { return M == LT.second; })))
return LT.first;
}
static const TypeConversionCostTblEntry
VectorSelectTbl[] = {
{ ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
{ ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
{ ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
{ ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
{ ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
{ ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
};
EVT SelCondTy = TLI->getValueType(DL, CondTy);
EVT SelValTy = TLI->getValueType(DL, ValTy);
if (SelCondTy.isSimple() && SelValTy.isSimple()) {
if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
SelCondTy.getSimpleVT(),
SelValTy.getSimpleVT()))
return Entry->Cost;
}
}
// The base case handles scalable vectors fine for now, since it treats the
// cost as 1 * legalization cost.
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
}
AArch64TTIImpl::TTI::MemCmpExpansionOptions
AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
TTI::MemCmpExpansionOptions Options;
if (ST->requiresStrictAlign()) {
// TODO: Add cost modeling for strict align. Misaligned loads expand to
// a bunch of instructions when strict align is enabled.
return Options;
}
Options.AllowOverlappingLoads = true;
Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
Options.NumLoadsPerBlock = Options.MaxNumLoads;
// TODO: Though vector loads usually perform well on AArch64, in some targets
// they may wake up the FP unit, which raises the power consumption. Perhaps
// they could be used with no holds barred (-O3).
Options.LoadSizes = {8, 4, 2, 1};
return Options;
}
InstructionCost
AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind) {
if (useNeonVector(Src))
return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind);
auto LT = TLI->getTypeLegalizationCost(DL, Src);
if (!LT.first.isValid())
return InstructionCost::getInvalid();
// The code-generator is currently not able to handle scalable vectors
// of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
// it. This change will be removed when code-generation for these types is
// sufficiently reliable.
if (cast<VectorType>(Src)->getElementCount() == ElementCount::getScalable(1))
return InstructionCost::getInvalid();
return LT.first * 2;
}
static unsigned getSVEGatherScatterOverhead(unsigned Opcode) {
return Opcode == Instruction::Load ? SVEGatherOverhead : SVEScatterOverhead;
}
InstructionCost AArch64TTIImpl::getGatherScatterOpCost(
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
if (useNeonVector(DataTy))
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
auto *VT = cast<VectorType>(DataTy);
auto LT = TLI->getTypeLegalizationCost(DL, DataTy);
if (!LT.first.isValid())
return InstructionCost::getInvalid();
// The code-generator is currently not able to handle scalable vectors
// of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
// it. This change will be removed when code-generation for these types is
// sufficiently reliable.
if (cast<VectorType>(DataTy)->getElementCount() ==
ElementCount::getScalable(1))
return InstructionCost::getInvalid();
ElementCount LegalVF = LT.second.getVectorElementCount();
InstructionCost MemOpCost =
getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind, I);
// Add on an overhead cost for using gathers/scatters.
// TODO: At the moment this is applied unilaterally for all CPUs, but at some
// point we may want a per-CPU overhead.
MemOpCost *= getSVEGatherScatterOverhead(Opcode);
return LT.first * MemOpCost * getMaxNumElements(LegalVF);
}
bool AArch64TTIImpl::useNeonVector(const Type *Ty) const {
return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors();
}
InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
MaybeAlign Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind,
const Instruction *I) {
EVT VT = TLI->getValueType(DL, Ty, true);
// Type legalization can't handle structs
if (VT == MVT::Other)
return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
CostKind);
auto LT = TLI->getTypeLegalizationCost(DL, Ty);
if (!LT.first.isValid())
return InstructionCost::getInvalid();
// The code-generator is currently not able to handle scalable vectors
// of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
// it. This change will be removed when code-generation for these types is
// sufficiently reliable.
if (auto *VTy = dyn_cast<ScalableVectorType>(Ty))
if (VTy->getElementCount() == ElementCount::getScalable(1))
return InstructionCost::getInvalid();
// TODO: consider latency as well for TCK_SizeAndLatency.
if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
return LT.first;
if (CostKind != TTI::TCK_RecipThroughput)
return 1;
if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) {
// Unaligned stores are extremely inefficient. We don't split all
// unaligned 128-bit stores because the negative impact that has shown in
// practice on inlined block copy code.
// We make such stores expensive so that we will only vectorize if there
// are 6 other instructions getting vectorized.
const int AmortizationCost = 6;
return LT.first * 2 * AmortizationCost;
}
// Check truncating stores and extending loads.
if (useNeonVector(Ty) &&
Ty->getScalarSizeInBits() != LT.second.getScalarSizeInBits()) {
// v4i8 types are lowered to scalar a load/store and sshll/xtn.
if (VT == MVT::v4i8)
return 2;
// Otherwise we need to scalarize.
return cast<FixedVectorType>(Ty)->getNumElements() * 2;
}
return LT.first;
}
InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
bool UseMaskForCond, bool UseMaskForGaps) {
assert(Factor >= 2 && "Invalid interleave factor");
auto *VecVTy = cast<FixedVectorType>(VecTy);
if (!UseMaskForCond && !UseMaskForGaps &&
Factor <= TLI->getMaxSupportedInterleaveFactor()) {
unsigned NumElts = VecVTy->getNumElements();
auto *SubVecTy =
FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
// ldN/stN only support legal vector types of size 64 or 128 in bits.
// Accesses having vector types that are a multiple of 128 bits can be
// matched to more than one ldN/stN instruction.
bool UseScalable;
if (NumElts % Factor == 0 &&
TLI->isLegalInterleavedAccessType(SubVecTy, DL, UseScalable))
return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL, UseScalable);
}
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
Alignment, AddressSpace, CostKind,
UseMaskForCond, UseMaskForGaps);
}
InstructionCost
AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
InstructionCost Cost = 0;
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
for (auto *I : Tys) {
if (!I->isVectorTy())
continue;
if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() ==
128)
Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) +
getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind);
}
return Cost;
}
unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
return ST->getMaxInterleaveFactor();
}
// For Falkor, we want to avoid having too many strided loads in a loop since
// that can exhaust the HW prefetcher resources. We adjust the unroller
// MaxCount preference below to attempt to ensure unrolling doesn't create too
// many strided loads.
static void
getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TargetTransformInfo::UnrollingPreferences &UP) {
enum { MaxStridedLoads = 7 };
auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
int StridedLoads = 0;
// FIXME? We could make this more precise by looking at the CFG and
// e.g. not counting loads in each side of an if-then-else diamond.
for (const auto BB : L->blocks()) {
for (auto &I : *BB) {
LoadInst *LMemI = dyn_cast<LoadInst>(&I);
if (!LMemI)
continue;
Value *PtrValue = LMemI->getPointerOperand();
if (L->isLoopInvariant(PtrValue))
continue;
const SCEV *LSCEV = SE.getSCEV(PtrValue);
const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
continue;
// FIXME? We could take pairing of unrolled load copies into account
// by looking at the AddRec, but we would probably have to limit this
// to loops with no stores or other memory optimization barriers.
++StridedLoads;
// We've seen enough strided loads that seeing more won't make a
// difference.
if (StridedLoads > MaxStridedLoads / 2)
return StridedLoads;
}
}
return StridedLoads;
};
int StridedLoads = countStridedLoads(L, SE);
LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
<< " strided loads\n");
// Pick the largest power of 2 unroll count that won't result in too many
// strided loads.
if (StridedLoads) {
UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
<< UP.MaxCount << '\n');
}
}
void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) {
// Enable partial unrolling and runtime unrolling.
BaseT::getUnrollingPreferences(L, SE, UP, ORE);
UP.UpperBound = true;
// For inner loop, it is more likely to be a hot one, and the runtime check
// can be promoted out from LICM pass, so the overhead is less, let's try
// a larger threshold to unroll more loops.
if (L->getLoopDepth() > 1)
UP.PartialThreshold *= 2;
// Disable partial & runtime unrolling on -Os.
UP.PartialOptSizeThreshold = 0;
if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
EnableFalkorHWPFUnrollFix)
getFalkorUnrollingPreferences(L, SE, UP);
// Scan the loop: don't unroll loops with calls as this could prevent
// inlining. Don't unroll vector loops either, as they don't benefit much from
// unrolling.
for (auto *BB : L->getBlocks()) {
for (auto &I : *BB) {
// Don't unroll vectorised loop.
if (I.getType()->isVectorTy())
return;
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
if (!isLoweredToCall(F))
continue;
}
return;
}
}
}
// Enable runtime unrolling for in-order models
// If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by
// checking for that case, we can ensure that the default behaviour is
// unchanged
if (ST->getProcFamily() != AArch64Subtarget::Others &&
!ST->getSchedModel().isOutOfOrder()) {
UP.Runtime = true;
UP.Partial = true;
UP.UnrollRemainder = true;
UP.DefaultUnrollRuntimeCount = 4;
UP.UnrollAndJam = true;
UP.UnrollAndJamInnerLoopThreshold = 60;
}
}
void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP) {
BaseT::getPeelingPreferences(L, SE, PP);
}
Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
Type *ExpectedType) {
switch (Inst->getIntrinsicID()) {
default:
return nullptr;
case Intrinsic::aarch64_neon_st2:
case Intrinsic::aarch64_neon_st3:
case Intrinsic::aarch64_neon_st4: {
// Create a struct type
StructType *ST = dyn_cast<StructType>(ExpectedType);
if (!ST)
return nullptr;
unsigned NumElts = Inst->arg_size() - 1;
if (ST->getNumElements() != NumElts)
return nullptr;
for (unsigned i = 0, e = NumElts; i != e; ++i) {
if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
return nullptr;
}
Value *Res = UndefValue::get(ExpectedType);
IRBuilder<> Builder(Inst);
for (unsigned i = 0, e = NumElts; i != e; ++i) {
Value *L = Inst->getArgOperand(i);
Res = Builder.CreateInsertValue(Res, L, i);
}
return Res;
}
case Intrinsic::aarch64_neon_ld2:
case Intrinsic::aarch64_neon_ld3:
case Intrinsic::aarch64_neon_ld4:
if (Inst->getType() == ExpectedType)
return Inst;
return nullptr;
}
}
bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
MemIntrinsicInfo &Info) {
switch (Inst->getIntrinsicID()) {
default:
break;
case Intrinsic::aarch64_neon_ld2:
case Intrinsic::aarch64_neon_ld3:
case Intrinsic::aarch64_neon_ld4:
Info.ReadMem = true;
Info.WriteMem = false;
Info.PtrVal = Inst->getArgOperand(0);
break;
case Intrinsic::aarch64_neon_st2:
case Intrinsic::aarch64_neon_st3:
case Intrinsic::aarch64_neon_st4:
Info.ReadMem = false;
Info.WriteMem = true;
Info.PtrVal = Inst->getArgOperand(Inst->arg_size() - 1);
break;
}
switch (Inst->getIntrinsicID()) {
default:
return false;
case Intrinsic::aarch64_neon_ld2:
case Intrinsic::aarch64_neon_st2:
Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
break;
case Intrinsic::aarch64_neon_ld3:
case Intrinsic::aarch64_neon_st3:
Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
break;
case Intrinsic::aarch64_neon_ld4:
case Intrinsic::aarch64_neon_st4:
Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
break;
}
return true;
}
/// See if \p I should be considered for address type promotion. We check if \p
/// I is a sext with right type and used in memory accesses. If it used in a
/// "complex" getelementptr, we allow it to be promoted without finding other
/// sext instructions that sign extended the same initial value. A getelementptr
/// is considered as "complex" if it has more than 2 operands.
bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
bool Considerable = false;
AllowPromotionWithoutCommonHeader = false;
if (!isa<SExtInst>(&I))
return false;
Type *ConsideredSExtType =
Type::getInt64Ty(I.getParent()->getParent()->getContext());
if (I.getType() != ConsideredSExtType)
return false;
// See if the sext is the one with the right type and used in at least one
// GetElementPtrInst.
for (const User *U : I.users()) {
if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
Considerable = true;
// A getelementptr is considered as "complex" if it has more than 2
// operands. We will promote a SExt used in such complex GEP as we
// expect some computation to be merged if they are done on 64 bits.
if (GEPInst->getNumOperands() > 2) {
AllowPromotionWithoutCommonHeader = true;
break;
}
}
}
return Considerable;
}
bool AArch64TTIImpl::isLegalToVectorizeReduction(
const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
if (!VF.isScalable())
return true;
Type *Ty = RdxDesc.getRecurrenceType();
if (Ty->isBFloatTy() || !isElementTypeLegalForScalableVector(Ty))
return false;
switch (RdxDesc.getRecurrenceKind()) {
case RecurKind::Add:
case RecurKind::FAdd:
case RecurKind::And:
case RecurKind::Or:
case RecurKind::Xor:
case RecurKind::SMin:
case RecurKind::SMax:
case RecurKind::UMin:
case RecurKind::UMax:
case RecurKind::FMin:
case RecurKind::FMax:
case RecurKind::SelectICmp:
case RecurKind::SelectFCmp:
case RecurKind::FMulAdd:
return true;
default:
return false;
}
}
InstructionCost
AArch64TTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
bool IsUnsigned,
TTI::TargetCostKind CostKind) {
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16())
return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
assert((isa<ScalableVectorType>(Ty) == isa<ScalableVectorType>(CondTy)) &&
"Both vector needs to be equally scalable");
InstructionCost LegalizationCost = 0;
if (LT.first > 1) {
Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext());
unsigned MinMaxOpcode =
Ty->isFPOrFPVectorTy()
? Intrinsic::maxnum
: (IsUnsigned ? Intrinsic::umin : Intrinsic::smin);
IntrinsicCostAttributes Attrs(MinMaxOpcode, LegalVTy, {LegalVTy, LegalVTy});
LegalizationCost = getIntrinsicInstrCost(Attrs, CostKind) * (LT.first - 1);
}
return LegalizationCost + /*Cost of horizontal reduction*/ 2;
}
InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE(
unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind) {
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
InstructionCost LegalizationCost = 0;
if (LT.first > 1) {
Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext());
LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind);
LegalizationCost *= LT.first - 1;
}
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
// Add the final reduction cost for the legal horizontal reduction
switch (ISD) {
case ISD::ADD:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::FADD:
return LegalizationCost + 2;
default:
return InstructionCost::getInvalid();
}
}
InstructionCost
AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
Optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind) {
if (TTI::requiresOrderedReduction(FMF)) {
if (auto *FixedVTy = dyn_cast<FixedVectorType>(ValTy)) {
InstructionCost BaseCost =
BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
// Add on extra cost to reflect the extra overhead on some CPUs. We still
// end up vectorizing for more computationally intensive loops.
return BaseCost + FixedVTy->getNumElements();
}
if (Opcode != Instruction::FAdd)
return InstructionCost::getInvalid();
auto *VTy = cast<ScalableVectorType>(ValTy);
InstructionCost Cost =
getArithmeticInstrCost(Opcode, VTy->getScalarType(), CostKind);
Cost *= getMaxNumElements(VTy->getElementCount());
return Cost;
}
if (isa<ScalableVectorType>(ValTy))
return getArithmeticReductionCostSVE(Opcode, ValTy, CostKind);
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
MVT MTy = LT.second;
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
// Horizontal adds can use the 'addv' instruction. We model the cost of these
// instructions as twice a normal vector add, plus 1 for each legalization
// step (LT.first). This is the only arithmetic vector reduction operation for
// which we have an instruction.
// OR, XOR and AND costs should match the codegen from:
// OR: llvm/test/CodeGen/AArch64/reduce-or.ll
// XOR: llvm/test/CodeGen/AArch64/reduce-xor.ll
// AND: llvm/test/CodeGen/AArch64/reduce-and.ll
static const CostTblEntry CostTblNoPairwise[]{
{ISD::ADD, MVT::v8i8, 2},
{ISD::ADD, MVT::v16i8, 2},
{ISD::ADD, MVT::v4i16, 2},
{ISD::ADD, MVT::v8i16, 2},
{ISD::ADD, MVT::v4i32, 2},
{ISD::OR, MVT::v8i8, 15},
{ISD::OR, MVT::v16i8, 17},
{ISD::OR, MVT::v4i16, 7},
{ISD::OR, MVT::v8i16, 9},
{ISD::OR, MVT::v2i32, 3},
{ISD::OR, MVT::v4i32, 5},
{ISD::OR, MVT::v2i64, 3},
{ISD::XOR, MVT::v8i8, 15},
{ISD::XOR, MVT::v16i8, 17},
{ISD::XOR, MVT::v4i16, 7},
{ISD::XOR, MVT::v8i16, 9},
{ISD::XOR, MVT::v2i32, 3},
{ISD::XOR, MVT::v4i32, 5},
{ISD::XOR, MVT::v2i64, 3},
{ISD::AND, MVT::v8i8, 15},
{ISD::AND, MVT::v16i8, 17},
{ISD::AND, MVT::v4i16, 7},
{ISD::AND, MVT::v8i16, 9},
{ISD::AND, MVT::v2i32, 3},
{ISD::AND, MVT::v4i32, 5},
{ISD::AND, MVT::v2i64, 3},
};
switch (ISD) {
default:
break;
case ISD::ADD:
if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
return (LT.first - 1) + Entry->Cost;
break;
case ISD::XOR:
case ISD::AND:
case ISD::OR:
const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy);
if (!Entry)
break;
auto *ValVTy = cast<FixedVectorType>(ValTy);
if (!ValVTy->getElementType()->isIntegerTy(1) &&
MTy.getVectorNumElements() <= ValVTy->getNumElements() &&
isPowerOf2_32(ValVTy->getNumElements())) {
InstructionCost ExtraCost = 0;
if (LT.first != 1) {
// Type needs to be split, so there is an extra cost of LT.first - 1
// arithmetic ops.
auto *Ty = FixedVectorType::get(ValTy->getElementType(),
MTy.getVectorNumElements());
ExtraCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
ExtraCost *= LT.first - 1;
}
return Entry->Cost + ExtraCost;
}
break;
}
return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
}
InstructionCost AArch64TTIImpl::getSpliceCost(VectorType *Tp, int Index) {
static const CostTblEntry ShuffleTbl[] = {
{ TTI::SK_Splice, MVT::nxv16i8, 1 },
{ TTI::SK_Splice, MVT::nxv8i16, 1 },
{ TTI::SK_Splice, MVT::nxv4i32, 1 },
{ TTI::SK_Splice, MVT::nxv2i64, 1 },
{ TTI::SK_Splice, MVT::nxv2f16, 1 },
{ TTI::SK_Splice, MVT::nxv4f16, 1 },
{ TTI::SK_Splice, MVT::nxv8f16, 1 },
{ TTI::SK_Splice, MVT::nxv2bf16, 1 },
{ TTI::SK_Splice, MVT::nxv4bf16, 1 },
{ TTI::SK_Splice, MVT::nxv8bf16, 1 },
{ TTI::SK_Splice, MVT::nxv2f32, 1 },
{ TTI::SK_Splice, MVT::nxv4f32, 1 },
{ TTI::SK_Splice, MVT::nxv2f64, 1 },
};
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
Type *LegalVTy = EVT(LT.second).getTypeForEVT(Tp->getContext());
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
EVT PromotedVT = LT.second.getScalarType() == MVT::i1
? TLI->getPromotedVTForPredicate(EVT(LT.second))
: LT.second;
Type *PromotedVTy = EVT(PromotedVT).getTypeForEVT(Tp->getContext());
InstructionCost LegalizationCost = 0;
if (Index < 0) {
LegalizationCost =
getCmpSelInstrCost(Instruction::ICmp, PromotedVTy, PromotedVTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind) +
getCmpSelInstrCost(Instruction::Select, PromotedVTy, LegalVTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
}
// Predicated splice are promoted when lowering. See AArch64ISelLowering.cpp
// Cost performed on a promoted type.
if (LT.second.getScalarType() == MVT::i1) {
LegalizationCost +=
getCastInstrCost(Instruction::ZExt, PromotedVTy, LegalVTy,
TTI::CastContextHint::None, CostKind) +
getCastInstrCost(Instruction::Trunc, LegalVTy, PromotedVTy,
TTI::CastContextHint::None, CostKind);
}
const auto *Entry =
CostTableLookup(ShuffleTbl, TTI::SK_Splice, PromotedVT.getSimpleVT());
assert(Entry && "Illegal Type for Splice");
LegalizationCost += Entry->Cost;
return LegalizationCost * LT.first;
}
InstructionCost AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
VectorType *Tp,
ArrayRef<int> Mask, int Index,
VectorType *SubTp) {
Kind = improveShuffleKindFromMask(Kind, Mask);
if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc ||
Kind == TTI::SK_Reverse) {
static const CostTblEntry ShuffleTbl[] = {
// Broadcast shuffle kinds can be performed with 'dup'.
{ TTI::SK_Broadcast, MVT::v8i8, 1 },
{ TTI::SK_Broadcast, MVT::v16i8, 1 },
{ TTI::SK_Broadcast, MVT::v4i16, 1 },
{ TTI::SK_Broadcast, MVT::v8i16, 1 },
{ TTI::SK_Broadcast, MVT::v2i32, 1 },
{ TTI::SK_Broadcast, MVT::v4i32, 1 },
{ TTI::SK_Broadcast, MVT::v2i64, 1 },
{ TTI::SK_Broadcast, MVT::v2f32, 1 },
{ TTI::SK_Broadcast, MVT::v4f32, 1 },
{ TTI::SK_Broadcast, MVT::v2f64, 1 },
// Transpose shuffle kinds can be performed with 'trn1/trn2' and
// 'zip1/zip2' instructions.
{ TTI::SK_Transpose, MVT::v8i8, 1 },
{ TTI::SK_Transpose, MVT::v16i8, 1 },
{ TTI::SK_Transpose, MVT::v4i16, 1 },
{ TTI::SK_Transpose, MVT::v8i16, 1 },
{ TTI::SK_Transpose, MVT::v2i32, 1 },
{ TTI::SK_Transpose, MVT::v4i32, 1 },
{ TTI::SK_Transpose, MVT::v2i64, 1 },
{ TTI::SK_Transpose, MVT::v2f32, 1 },
{ TTI::SK_Transpose, MVT::v4f32, 1 },
{ TTI::SK_Transpose, MVT::v2f64, 1 },
// Select shuffle kinds.
// TODO: handle vXi8/vXi16.
{ TTI::SK_Select, MVT::v2i32, 1 }, // mov.
{ TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar).
{ TTI::SK_Select, MVT::v2i64, 1 }, // mov.
{ TTI::SK_Select, MVT::v2f32, 1 }, // mov.
{ TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar).
{ TTI::SK_Select, MVT::v2f64, 1 }, // mov.
// PermuteSingleSrc shuffle kinds.
{ TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov.
{ TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case.
{ TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov.
{ TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov.
{ TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case.
{ TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov.
{ TTI::SK_PermuteSingleSrc, MVT::v4i16, 3 }, // perfectshuffle worst case.
{ TTI::SK_PermuteSingleSrc, MVT::v4f16, 3 }, // perfectshuffle worst case.
{ TTI::SK_PermuteSingleSrc, MVT::v4bf16, 3 }, // perfectshuffle worst case.
{ TTI::SK_PermuteSingleSrc, MVT::v8i16, 8 }, // constpool + load + tbl
{ TTI::SK_PermuteSingleSrc, MVT::v8f16, 8 }, // constpool + load + tbl
{ TTI::SK_PermuteSingleSrc, MVT::v8bf16, 8 }, // constpool + load + tbl
{ TTI::SK_PermuteSingleSrc, MVT::v8i8, 8 }, // constpool + load + tbl
{ TTI::SK_PermuteSingleSrc, MVT::v16i8, 8 }, // constpool + load + tbl
// Reverse can be lowered with `rev`.
{ TTI::SK_Reverse, MVT::v2i32, 1 }, // mov.
{ TTI::SK_Reverse, MVT::v4i32, 2 }, // REV64; EXT
{ TTI::SK_Reverse, MVT::v2i64, 1 }, // mov.
{ TTI::SK_Reverse, MVT::v2f32, 1 }, // mov.
{ TTI::SK_Reverse, MVT::v4f32, 2 }, // REV64; EXT
{ TTI::SK_Reverse, MVT::v2f64, 1 }, // mov.
// Broadcast shuffle kinds for scalable vectors
{ TTI::SK_Broadcast, MVT::nxv16i8, 1 },
{ TTI::SK_Broadcast, MVT::nxv8i16, 1 },
{ TTI::SK_Broadcast, MVT::nxv4i32, 1 },
{ TTI::SK_Broadcast, MVT::nxv2i64, 1 },
{ TTI::SK_Broadcast, MVT::nxv2f16, 1 },
{ TTI::SK_Broadcast, MVT::nxv4f16, 1 },
{ TTI::SK_Broadcast, MVT::nxv8f16, 1 },
{ TTI::SK_Broadcast, MVT::nxv2bf16, 1 },
{ TTI::SK_Broadcast, MVT::nxv4bf16, 1 },
{ TTI::SK_Broadcast, MVT::nxv8bf16, 1 },
{ TTI::SK_Broadcast, MVT::nxv2f32, 1 },
{ TTI::SK_Broadcast, MVT::nxv4f32, 1 },
{ TTI::SK_Broadcast, MVT::nxv2f64, 1 },
{ TTI::SK_Broadcast, MVT::nxv16i1, 1 },
{ TTI::SK_Broadcast, MVT::nxv8i1, 1 },
{ TTI::SK_Broadcast, MVT::nxv4i1, 1 },
{ TTI::SK_Broadcast, MVT::nxv2i1, 1 },
// Handle the cases for vector.reverse with scalable vectors
{ TTI::SK_Reverse, MVT::nxv16i8, 1 },
{ TTI::SK_Reverse, MVT::nxv8i16, 1 },
{ TTI::SK_Reverse, MVT::nxv4i32, 1 },
{ TTI::SK_Reverse, MVT::nxv2i64, 1 },
{ TTI::SK_Reverse, MVT::nxv2f16, 1 },
{ TTI::SK_Reverse, MVT::nxv4f16, 1 },
{ TTI::SK_Reverse, MVT::nxv8f16, 1 },
{ TTI::SK_Reverse, MVT::nxv2bf16, 1 },
{ TTI::SK_Reverse, MVT::nxv4bf16, 1 },
{ TTI::SK_Reverse, MVT::nxv8bf16, 1 },
{ TTI::SK_Reverse, MVT::nxv2f32, 1 },
{ TTI::SK_Reverse, MVT::nxv4f32, 1 },
{ TTI::SK_Reverse, MVT::nxv2f64, 1 },
{ TTI::SK_Reverse, MVT::nxv16i1, 1 },
{ TTI::SK_Reverse, MVT::nxv8i1, 1 },
{ TTI::SK_Reverse, MVT::nxv4i1, 1 },
{ TTI::SK_Reverse, MVT::nxv2i1, 1 },
};
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
return LT.first * Entry->Cost;
}
if (Kind == TTI::SK_Splice && isa<ScalableVectorType>(Tp))
return getSpliceCost(Tp, Index);
return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp);
}
|