File: GCNHazardRecognizer.cpp

package info (click to toggle)
llvm-toolchain-14 1%3A14.0.6-20
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,496,436 kB
  • sloc: cpp: 5,593,990; ansic: 986,873; asm: 585,869; python: 184,223; objc: 72,530; lisp: 31,119; f90: 27,793; javascript: 9,780; pascal: 9,762; sh: 9,482; perl: 7,468; ml: 5,432; awk: 3,523; makefile: 2,547; xml: 953; cs: 573; fortran: 567
file content (1847 lines) | stat: -rw-r--r-- 62,335 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
//===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements hazard recognizers for scheduling on GCN processors.
//
//===----------------------------------------------------------------------===//

#include "GCNHazardRecognizer.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/Support/TargetParser.h"

using namespace llvm;

//===----------------------------------------------------------------------===//
// Hazard Recoginizer Implementation
//===----------------------------------------------------------------------===//

static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF,
                                                 const GCNSubtarget &ST);

GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
  IsHazardRecognizerMode(false),
  CurrCycleInstr(nullptr),
  MF(MF),
  ST(MF.getSubtarget<GCNSubtarget>()),
  TII(*ST.getInstrInfo()),
  TRI(TII.getRegisterInfo()),
  ClauseUses(TRI.getNumRegUnits()),
  ClauseDefs(TRI.getNumRegUnits()) {
  MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 19 : 5;
  TSchedModel.init(&ST);
  RunLdsBranchVmemWARHazardFixup = shouldRunLdsBranchVmemWARHazardFixup(MF, ST);
}

void GCNHazardRecognizer::Reset() {
  EmittedInstrs.clear();
}

void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
  EmitInstruction(SU->getInstr());
}

void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
  CurrCycleInstr = MI;
}

static bool isDivFMas(unsigned Opcode) {
  return Opcode == AMDGPU::V_DIV_FMAS_F32_e64 || Opcode == AMDGPU::V_DIV_FMAS_F64_e64;
}

static bool isSGetReg(unsigned Opcode) {
  return Opcode == AMDGPU::S_GETREG_B32;
}

static bool isSSetReg(unsigned Opcode) {
  switch (Opcode) {
  case AMDGPU::S_SETREG_B32:
  case AMDGPU::S_SETREG_B32_mode:
  case AMDGPU::S_SETREG_IMM32_B32:
  case AMDGPU::S_SETREG_IMM32_B32_mode:
    return true;
  }
  return false;
}

static bool isRWLane(unsigned Opcode) {
  return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32;
}

static bool isRFE(unsigned Opcode) {
  return Opcode == AMDGPU::S_RFE_B64;
}

static bool isSMovRel(unsigned Opcode) {
  switch (Opcode) {
  case AMDGPU::S_MOVRELS_B32:
  case AMDGPU::S_MOVRELS_B64:
  case AMDGPU::S_MOVRELD_B32:
  case AMDGPU::S_MOVRELD_B64:
    return true;
  default:
    return false;
  }
}

static bool isDGEMM(unsigned Opcode) {
  return Opcode == AMDGPU::V_MFMA_F64_4X4X4F64_e64 ||
         Opcode == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64 ||
         Opcode == AMDGPU::V_MFMA_F64_16X16X4F64_e64 ||
         Opcode == AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64 ||
         Opcode == AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64 ||
         Opcode == AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64;
}

static bool isXDL(const GCNSubtarget &ST, const MachineInstr &MI) {
  unsigned Opcode = MI.getOpcode();

  if (!SIInstrInfo::isMAI(MI) ||
      isDGEMM(Opcode) ||
      Opcode == AMDGPU::V_ACCVGPR_WRITE_B32_e64 ||
      Opcode == AMDGPU::V_ACCVGPR_READ_B32_e64)
    return false;

  return true;
}

static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII,
                                    const MachineInstr &MI) {
  if (TII.isAlwaysGDS(MI.getOpcode()))
    return true;

  switch (MI.getOpcode()) {
  case AMDGPU::S_SENDMSG:
  case AMDGPU::S_SENDMSGHALT:
  case AMDGPU::S_TTRACEDATA:
    return true;
  // These DS opcodes don't support GDS.
  case AMDGPU::DS_NOP:
  case AMDGPU::DS_PERMUTE_B32:
  case AMDGPU::DS_BPERMUTE_B32:
    return false;
  default:
    if (TII.isDS(MI.getOpcode())) {
      int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
                                           AMDGPU::OpName::gds);
      if (MI.getOperand(GDS).getImm())
        return true;
    }
    return false;
  }
}

static bool isPermlane(const MachineInstr &MI) {
  unsigned Opcode = MI.getOpcode();
  return Opcode == AMDGPU::V_PERMLANE16_B32_e64 ||
         Opcode == AMDGPU::V_PERMLANEX16_B32_e64;
}

static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) {
  const MachineOperand *RegOp = TII->getNamedOperand(RegInstr,
                                                     AMDGPU::OpName::simm16);
  return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_;
}

ScheduleHazardRecognizer::HazardType
GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
  MachineInstr *MI = SU->getInstr();
  // If we are not in "HazardRecognizerMode" and therefore not being run from
  // the scheduler, track possible stalls from hazards but don't insert noops.
  auto HazardType = IsHazardRecognizerMode ? NoopHazard : Hazard;

  if (MI->isBundle())
   return NoHazard;

  if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
    return HazardType;

  if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0)
    return HazardType;

  if (checkFPAtomicToDenormModeHazard(MI) > 0)
    return HazardType;

  if (ST.hasNoDataDepHazard())
    return NoHazard;

  // FIXME: Should flat be considered vmem?
  if ((SIInstrInfo::isVMEM(*MI) ||
       SIInstrInfo::isFLAT(*MI))
      && checkVMEMHazards(MI) > 0)
    return HazardType;

  if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0)
    return HazardType;

  if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
    return HazardType;

  if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
    return HazardType;

  if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0)
    return HazardType;

  if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) ||
       SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) ||
       SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0)
    return HazardType;

  if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0)
    return HazardType;

  if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0)
    return HazardType;

  if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0)
    return HazardType;

  if (ST.hasReadM0MovRelInterpHazard() &&
      (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) &&
      checkReadM0Hazards(MI) > 0)
    return HazardType;

  if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI) &&
      checkReadM0Hazards(MI) > 0)
    return HazardType;

  if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0)
    return HazardType;

  if ((SIInstrInfo::isVMEM(*MI) ||
       SIInstrInfo::isFLAT(*MI) ||
       SIInstrInfo::isDS(*MI)) && checkMAILdStHazards(MI) > 0)
    return HazardType;

  if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0)
    return HazardType;

  return NoHazard;
}

static void insertNoopsInBundle(MachineInstr *MI, const SIInstrInfo &TII,
                                unsigned Quantity) {
  while (Quantity > 0) {
    unsigned Arg = std::min(Quantity, 8u);
    Quantity -= Arg;
    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP))
        .addImm(Arg - 1);
  }
}

void GCNHazardRecognizer::processBundle() {
  MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator());
  MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end();
  // Check bundled MachineInstr's for hazards.
  for (; MI != E && MI->isInsideBundle(); ++MI) {
    CurrCycleInstr = &*MI;
    unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr);

    if (IsHazardRecognizerMode) {
      fixHazards(CurrCycleInstr);

      insertNoopsInBundle(CurrCycleInstr, TII, WaitStates);
    }

    // It’s unnecessary to track more than MaxLookAhead instructions. Since we
    // include the bundled MI directly after, only add a maximum of
    // (MaxLookAhead - 1) noops to EmittedInstrs.
    for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i)
      EmittedInstrs.push_front(nullptr);

    EmittedInstrs.push_front(CurrCycleInstr);
    EmittedInstrs.resize(MaxLookAhead);
  }
  CurrCycleInstr = nullptr;
}

unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
  IsHazardRecognizerMode = true;
  CurrCycleInstr = MI;
  unsigned W = PreEmitNoopsCommon(MI);
  fixHazards(MI);
  CurrCycleInstr = nullptr;
  return W;
}

unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) {
  if (MI->isBundle())
    return 0;

  int WaitStates = 0;

  if (SIInstrInfo::isSMRD(*MI))
    return std::max(WaitStates, checkSMRDHazards(MI));

  if (ST.hasNSAtoVMEMBug())
    WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI));

  WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI));

  if (ST.hasNoDataDepHazard())
    return WaitStates;

  if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI))
    WaitStates = std::max(WaitStates, checkVMEMHazards(MI));

  if (SIInstrInfo::isVALU(*MI))
    WaitStates = std::max(WaitStates, checkVALUHazards(MI));

  if (SIInstrInfo::isDPP(*MI))
    WaitStates = std::max(WaitStates, checkDPPHazards(MI));

  if (isDivFMas(MI->getOpcode()))
    WaitStates = std::max(WaitStates, checkDivFMasHazards(MI));

  if (isRWLane(MI->getOpcode()))
    WaitStates = std::max(WaitStates, checkRWLaneHazards(MI));

  if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) ||
       SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) ||
       SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0)
    WaitStates = std::max(WaitStates, checkMAIVALUHazards(MI));

  if (MI->isInlineAsm())
    return std::max(WaitStates, checkInlineAsmHazards(MI));

  if (isSGetReg(MI->getOpcode()))
    return std::max(WaitStates, checkGetRegHazards(MI));

  if (isSSetReg(MI->getOpcode()))
    return std::max(WaitStates, checkSetRegHazards(MI));

  if (isRFE(MI->getOpcode()))
    return std::max(WaitStates, checkRFEHazards(MI));

  if (ST.hasReadM0MovRelInterpHazard() && (TII.isVINTRP(*MI) ||
                                           isSMovRel(MI->getOpcode())))
    return std::max(WaitStates, checkReadM0Hazards(MI));

  if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI))
    return std::max(WaitStates, checkReadM0Hazards(MI));

  if (SIInstrInfo::isMAI(*MI))
    return std::max(WaitStates, checkMAIHazards(MI));

  if (SIInstrInfo::isVMEM(*MI) ||
      SIInstrInfo::isFLAT(*MI) ||
      SIInstrInfo::isDS(*MI))
    return std::max(WaitStates, checkMAILdStHazards(MI));

  return WaitStates;
}

void GCNHazardRecognizer::EmitNoop() {
  EmittedInstrs.push_front(nullptr);
}

void GCNHazardRecognizer::AdvanceCycle() {
  // When the scheduler detects a stall, it will call AdvanceCycle() without
  // emitting any instructions.
  if (!CurrCycleInstr) {
    EmittedInstrs.push_front(nullptr);
    return;
  }

  if (CurrCycleInstr->isBundle()) {
    processBundle();
    return;
  }

  unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr);
  if (!NumWaitStates) {
    CurrCycleInstr = nullptr;
    return;
  }

  // Keep track of emitted instructions
  EmittedInstrs.push_front(CurrCycleInstr);

  // Add a nullptr for each additional wait state after the first.  Make sure
  // not to add more than getMaxLookAhead() items to the list, since we
  // truncate the list to that size right after this loop.
  for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
       i < e; ++i) {
    EmittedInstrs.push_front(nullptr);
  }

  // getMaxLookahead() is the largest number of wait states we will ever need
  // to insert, so there is no point in keeping track of more than that many
  // wait states.
  EmittedInstrs.resize(getMaxLookAhead());

  CurrCycleInstr = nullptr;
}

void GCNHazardRecognizer::RecedeCycle() {
  llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
}

//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//

typedef function_ref<bool(const MachineInstr &, int WaitStates)> IsExpiredFn;

// Returns a minimum wait states since \p I walking all predecessors.
// Only scans until \p IsExpired does not return true.
// Can only be run in a hazard recognizer mode.
static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,
                              const MachineBasicBlock *MBB,
                              MachineBasicBlock::const_reverse_instr_iterator I,
                              int WaitStates, IsExpiredFn IsExpired,
                              DenseSet<const MachineBasicBlock *> &Visited) {
  for (auto E = MBB->instr_rend(); I != E; ++I) {
    // Don't add WaitStates for parent BUNDLE instructions.
    if (I->isBundle())
      continue;

    if (IsHazard(*I))
      return WaitStates;

    if (I->isInlineAsm())
      continue;

    WaitStates += SIInstrInfo::getNumWaitStates(*I);

    if (IsExpired(*I, WaitStates))
      return std::numeric_limits<int>::max();
  }

  int MinWaitStates = std::numeric_limits<int>::max();
  for (MachineBasicBlock *Pred : MBB->predecessors()) {
    if (!Visited.insert(Pred).second)
      continue;

    int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(),
                               WaitStates, IsExpired, Visited);

    MinWaitStates = std::min(MinWaitStates, W);
  }

  return MinWaitStates;
}

static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,
                              const MachineInstr *MI, IsExpiredFn IsExpired) {
  DenseSet<const MachineBasicBlock *> Visited;
  return getWaitStatesSince(IsHazard, MI->getParent(),
                            std::next(MI->getReverseIterator()),
                            0, IsExpired, Visited);
}

int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) {
  if (IsHazardRecognizerMode) {
    auto IsExpiredFn = [Limit](const MachineInstr &, int WaitStates) {
      return WaitStates >= Limit;
    };
    return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn);
  }

  int WaitStates = 0;
  for (MachineInstr *MI : EmittedInstrs) {
    if (MI) {
      if (IsHazard(*MI))
        return WaitStates;

      if (MI->isInlineAsm())
        continue;
    }
    ++WaitStates;

    if (WaitStates >= Limit)
      break;
  }
  return std::numeric_limits<int>::max();
}

int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg,
                                               IsHazardFn IsHazardDef,
                                               int Limit) {
  const SIRegisterInfo *TRI = ST.getRegisterInfo();

  auto IsHazardFn = [IsHazardDef, TRI, Reg](const MachineInstr &MI) {
    return IsHazardDef(MI) && MI.modifiesRegister(Reg, TRI);
  };

  return getWaitStatesSince(IsHazardFn, Limit);
}

int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard,
                                                  int Limit) {
  auto IsHazardFn = [IsHazard](const MachineInstr &MI) {
    return isSSetReg(MI.getOpcode()) && IsHazard(MI);
  };

  return getWaitStatesSince(IsHazardFn, Limit);
}

//===----------------------------------------------------------------------===//
// No-op Hazard Detection
//===----------------------------------------------------------------------===//

static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV,
                        MCRegister Reg) {
  for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI)
    BV.set(*RUI);
}

static void addRegsToSet(const SIRegisterInfo &TRI,
                         iterator_range<MachineInstr::const_mop_iterator> Ops,
                         BitVector &Set) {
  for (const MachineOperand &Op : Ops) {
    if (Op.isReg())
      addRegUnits(TRI, Set, Op.getReg().asMCReg());
  }
}

void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) {
  // XXX: Do we need to worry about implicit operands
  addRegsToSet(TRI, MI.defs(), ClauseDefs);
  addRegsToSet(TRI, MI.uses(), ClauseUses);
}

static bool breaksSMEMSoftClause(MachineInstr *MI) {
  return !SIInstrInfo::isSMRD(*MI);
}

static bool breaksVMEMSoftClause(MachineInstr *MI) {
  return !SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI);
}

int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) {
  // SMEM soft clause are only present on VI+, and only matter if xnack is
  // enabled.
  if (!ST.isXNACKEnabled())
    return 0;

  bool IsSMRD = TII.isSMRD(*MEM);

  resetClause();

  // A soft-clause is any group of consecutive SMEM instructions.  The
  // instructions in this group may return out of order and/or may be
  // replayed (i.e. the same instruction issued more than once).
  //
  // In order to handle these situations correctly we need to make sure that
  // when a clause has more than one instruction, no instruction in the clause
  // writes to a register that is read by another instruction in the clause
  // (including itself). If we encounter this situaion, we need to break the
  // clause by inserting a non SMEM instruction.

  for (MachineInstr *MI : EmittedInstrs) {
    // When we hit a non-SMEM instruction then we have passed the start of the
    // clause and we can stop.
    if (!MI)
      break;

    if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI))
      break;

    addClauseInst(*MI);
  }

  if (ClauseDefs.none())
    return 0;

  // We need to make sure not to put loads and stores in the same clause if they
  // use the same address. For now, just start a new clause whenever we see a
  // store.
  if (MEM->mayStore())
    return 1;

  addClauseInst(*MEM);

  // If the set of defs and uses intersect then we cannot add this instruction
  // to the clause, so we have a hazard.
  return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0;
}

int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
  int WaitStatesNeeded = 0;

  WaitStatesNeeded = checkSoftClauseHazards(SMRD);

  // This SMRD hazard only affects SI.
  if (!ST.hasSMRDReadVALUDefHazard())
    return WaitStatesNeeded;

  // A read of an SGPR by SMRD instruction requires 4 wait states when the
  // SGPR was written by a VALU instruction.
  int SmrdSgprWaitStates = 4;
  auto IsHazardDefFn = [this](const MachineInstr &MI) {
    return TII.isVALU(MI);
  };
  auto IsBufferHazardDefFn = [this](const MachineInstr &MI) {
    return TII.isSALU(MI);
  };

  bool IsBufferSMRD = TII.isBufferSMRD(*SMRD);

  for (const MachineOperand &Use : SMRD->uses()) {
    if (!Use.isReg())
      continue;
    int WaitStatesNeededForUse =
        SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
                                                   SmrdSgprWaitStates);
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);

    // This fixes what appears to be undocumented hardware behavior in SI where
    // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor
    // needs some number of nops in between. We don't know how many we need, but
    // let's use 4. This wasn't discovered before probably because the only
    // case when this happens is when we expand a 64-bit pointer into a full
    // descriptor and use s_buffer_load_dword instead of s_load_dword, which was
    // probably never encountered in the closed-source land.
    if (IsBufferSMRD) {
      int WaitStatesNeededForUse =
        SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(),
                                                   IsBufferHazardDefFn,
                                                   SmrdSgprWaitStates);
      WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
    }
  }

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
  if (!ST.hasVMEMReadSGPRVALUDefHazard())
    return 0;

  int WaitStatesNeeded = checkSoftClauseHazards(VMEM);

  // A read of an SGPR by a VMEM instruction requires 5 wait states when the
  // SGPR was written by a VALU Instruction.
  const int VmemSgprWaitStates = 5;
  auto IsHazardDefFn = [this](const MachineInstr &MI) {
    return TII.isVALU(MI);
  };
  for (const MachineOperand &Use : VMEM->uses()) {
    if (!Use.isReg() || TRI.isVectorRegister(MF.getRegInfo(), Use.getReg()))
      continue;

    int WaitStatesNeededForUse =
        VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
                                                   VmemSgprWaitStates);
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
  }
  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
  const SIRegisterInfo *TRI = ST.getRegisterInfo();
  const SIInstrInfo *TII = ST.getInstrInfo();

  // Check for DPP VGPR read after VALU VGPR write and EXEC write.
  int DppVgprWaitStates = 2;
  int DppExecWaitStates = 5;
  int WaitStatesNeeded = 0;
  auto IsHazardDefFn = [TII](const MachineInstr &MI) {
    return TII->isVALU(MI);
  };

  for (const MachineOperand &Use : DPP->uses()) {
    if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
      continue;
    int WaitStatesNeededForUse =
        DppVgprWaitStates - getWaitStatesSinceDef(
                                Use.getReg(),
                                [](const MachineInstr &) { return true; },
                                DppVgprWaitStates);
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
  }

  WaitStatesNeeded = std::max(
      WaitStatesNeeded,
      DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn,
                                                DppExecWaitStates));

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
  const SIInstrInfo *TII = ST.getInstrInfo();

  // v_div_fmas requires 4 wait states after a write to vcc from a VALU
  // instruction.
  const int DivFMasWaitStates = 4;
  auto IsHazardDefFn = [TII](const MachineInstr &MI) {
    return TII->isVALU(MI);
  };
  int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn,
                                               DivFMasWaitStates);

  return DivFMasWaitStates - WaitStatesNeeded;
}

int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) {
  const SIInstrInfo *TII = ST.getInstrInfo();
  unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr);

  const int GetRegWaitStates = 2;
  auto IsHazardFn = [TII, GetRegHWReg](const MachineInstr &MI) {
    return GetRegHWReg == getHWReg(TII, MI);
  };
  int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates);

  return GetRegWaitStates - WaitStatesNeeded;
}

int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) {
  const SIInstrInfo *TII = ST.getInstrInfo();
  unsigned HWReg = getHWReg(TII, *SetRegInstr);

  const int SetRegWaitStates = ST.getSetRegWaitStates();
  auto IsHazardFn = [TII, HWReg](const MachineInstr &MI) {
    return HWReg == getHWReg(TII, MI);
  };
  int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates);
  return SetRegWaitStates - WaitStatesNeeded;
}

int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) {
  if (!MI.mayStore())
    return -1;

  const SIInstrInfo *TII = ST.getInstrInfo();
  unsigned Opcode = MI.getOpcode();
  const MCInstrDesc &Desc = MI.getDesc();

  int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
  int VDataRCID = -1;
  if (VDataIdx != -1)
    VDataRCID = Desc.OpInfo[VDataIdx].RegClass;

  if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) {
    // There is no hazard if the instruction does not use vector regs
    // (like wbinvl1)
    if (VDataIdx == -1)
      return -1;
    // For MUBUF/MTBUF instructions this hazard only exists if the
    // instruction is not using a register in the soffset field.
    const MachineOperand *SOffset =
        TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
    // If we have no soffset operand, then assume this field has been
    // hardcoded to zero.
    if (AMDGPU::getRegBitWidth(VDataRCID) > 64 &&
        (!SOffset || !SOffset->isReg()))
      return VDataIdx;
  }

  // MIMG instructions create a hazard if they don't use a 256-bit T# and
  // the store size is greater than 8 bytes and they have more than two bits
  // of their dmask set.
  // All our MIMG definitions use a 256-bit T#, so we can skip checking for them.
  if (TII->isMIMG(MI)) {
    int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
    assert(SRsrcIdx != -1 &&
           AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256);
    (void)SRsrcIdx;
  }

  if (TII->isFLAT(MI)) {
    int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
    if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64)
      return DataIdx;
  }

  return -1;
}

int
GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def,
                                            const MachineRegisterInfo &MRI) {
  // Helper to check for the hazard where VMEM instructions that store more than
  // 8 bytes can have there store data over written by the next instruction.
  const SIRegisterInfo *TRI = ST.getRegisterInfo();

  const int VALUWaitStates = 1;
  int WaitStatesNeeded = 0;

  if (!TRI->isVectorRegister(MRI, Def.getReg()))
    return WaitStatesNeeded;
  Register Reg = Def.getReg();
  auto IsHazardFn = [this, Reg, TRI](const MachineInstr &MI) {
    int DataIdx = createsVALUHazard(MI);
    return DataIdx >= 0 &&
           TRI->regsOverlap(MI.getOperand(DataIdx).getReg(), Reg);
  };
  int WaitStatesNeededForDef =
    VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates);
  WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) {
  // This checks for the hazard where VMEM instructions that store more than
  // 8 bytes can have there store data over written by the next instruction.
  if (!ST.has12DWordStoreHazard())
    return 0;

  const MachineRegisterInfo &MRI = MF.getRegInfo();
  int WaitStatesNeeded = 0;

  for (const MachineOperand &Def : VALU->defs()) {
    WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI));
  }

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) {
  // This checks for hazards associated with inline asm statements.
  // Since inline asms can contain just about anything, we use this
  // to call/leverage other check*Hazard routines. Note that
  // this function doesn't attempt to address all possible inline asm
  // hazards (good luck), but is a collection of what has been
  // problematic thus far.

  // see checkVALUHazards()
  if (!ST.has12DWordStoreHazard())
    return 0;

  const MachineRegisterInfo &MRI = MF.getRegInfo();
  int WaitStatesNeeded = 0;

  for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands();
       I != E; ++I) {
    const MachineOperand &Op = IA->getOperand(I);
    if (Op.isReg() && Op.isDef()) {
      WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI));
    }
  }

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) {
  const SIInstrInfo *TII = ST.getInstrInfo();
  const SIRegisterInfo *TRI = ST.getRegisterInfo();
  const MachineRegisterInfo &MRI = MF.getRegInfo();

  const MachineOperand *LaneSelectOp =
      TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1);

  if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg()))
    return 0;

  Register LaneSelectReg = LaneSelectOp->getReg();
  auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVALU(MI); };

  const int RWLaneWaitStates = 4;
  int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn,
                                              RWLaneWaitStates);
  return RWLaneWaitStates - WaitStatesSince;
}

int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) {
  if (!ST.hasRFEHazards())
    return 0;

  const SIInstrInfo *TII = ST.getInstrInfo();

  const int RFEWaitStates = 1;

  auto IsHazardFn = [TII](const MachineInstr &MI) {
    return getHWReg(TII, MI) == AMDGPU::Hwreg::ID_TRAPSTS;
  };
  int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates);
  return RFEWaitStates - WaitStatesNeeded;
}

int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) {
  const SIInstrInfo *TII = ST.getInstrInfo();
  const int SMovRelWaitStates = 1;
  auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isSALU(MI); };
  return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn,
                                                   SMovRelWaitStates);
}

void GCNHazardRecognizer::fixHazards(MachineInstr *MI) {
  fixVMEMtoScalarWriteHazards(MI);
  fixVcmpxPermlaneHazards(MI);
  fixSMEMtoVectorWriteHazards(MI);
  fixVcmpxExecWARHazard(MI);
  fixLdsBranchVmemWARHazard(MI);
}

bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) {
  if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI))
    return false;

  const SIInstrInfo *TII = ST.getInstrInfo();
  auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVOPC(MI); };

  auto IsExpiredFn = [](const MachineInstr &MI, int) {
    unsigned Opc = MI.getOpcode();
    return SIInstrInfo::isVALU(MI) && Opc != AMDGPU::V_NOP_e32 &&
           Opc != AMDGPU::V_NOP_e64 && Opc != AMDGPU::V_NOP_sdwa;
  };

  if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
      std::numeric_limits<int>::max())
    return false;

  // V_NOP will be discarded by SQ.
  // Use V_MOB_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE*
  // which is always a VGPR and available.
  auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
  Register Reg = Src0->getReg();
  bool IsUndef = Src0->isUndef();
  BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
          TII->get(AMDGPU::V_MOV_B32_e32))
    .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0))
    .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill);

  return true;
}

bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) {
  if (!ST.hasVMEMtoScalarWriteHazard())
    return false;

  if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI))
    return false;

  if (MI->getNumDefs() == 0)
    return false;

  const SIRegisterInfo *TRI = ST.getRegisterInfo();

  auto IsHazardFn = [TRI, MI](const MachineInstr &I) {
    if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isDS(I) &&
        !SIInstrInfo::isFLAT(I))
      return false;

    for (const MachineOperand &Def : MI->defs()) {
      const MachineOperand *Op =
          I.findRegisterUseOperand(Def.getReg(), false, TRI);
      if (!Op)
        continue;
      return true;
    }
    return false;
  };

  auto IsExpiredFn = [](const MachineInstr &MI, int) {
    return SIInstrInfo::isVALU(MI) ||
           (MI.getOpcode() == AMDGPU::S_WAITCNT &&
            !MI.getOperand(0).getImm()) ||
           (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
            MI.getOperand(0).getImm() == 0xffe3);
  };

  if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
      std::numeric_limits<int>::max())
    return false;

  const SIInstrInfo *TII = ST.getInstrInfo();
  BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
          TII->get(AMDGPU::S_WAITCNT_DEPCTR))
      .addImm(0xffe3);
  return true;
}

bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) {
  if (!ST.hasSMEMtoVectorWriteHazard())
    return false;

  if (!SIInstrInfo::isVALU(*MI))
    return false;

  unsigned SDSTName;
  switch (MI->getOpcode()) {
  case AMDGPU::V_READLANE_B32:
  case AMDGPU::V_READFIRSTLANE_B32:
    SDSTName = AMDGPU::OpName::vdst;
    break;
  default:
    SDSTName = AMDGPU::OpName::sdst;
    break;
  }

  const SIInstrInfo *TII = ST.getInstrInfo();
  const SIRegisterInfo *TRI = ST.getRegisterInfo();
  const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU());
  const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName);
  if (!SDST) {
    for (const auto &MO : MI->implicit_operands()) {
      if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) {
        SDST = &MO;
        break;
      }
    }
  }

  if (!SDST)
    return false;

  const Register SDSTReg = SDST->getReg();
  auto IsHazardFn = [SDSTReg, TRI](const MachineInstr &I) {
    return SIInstrInfo::isSMRD(I) && I.readsRegister(SDSTReg, TRI);
  };

  auto IsExpiredFn = [TII, IV](const MachineInstr &MI, int) {
    if (TII->isSALU(MI)) {
      switch (MI.getOpcode()) {
      case AMDGPU::S_SETVSKIP:
      case AMDGPU::S_VERSION:
      case AMDGPU::S_WAITCNT_VSCNT:
      case AMDGPU::S_WAITCNT_VMCNT:
      case AMDGPU::S_WAITCNT_EXPCNT:
        // These instructions cannot not mitigate the hazard.
        return false;
      case AMDGPU::S_WAITCNT_LGKMCNT:
        // Reducing lgkmcnt count to 0 always mitigates the hazard.
        return (MI.getOperand(1).getImm() == 0) &&
               (MI.getOperand(0).getReg() == AMDGPU::SGPR_NULL);
      case AMDGPU::S_WAITCNT: {
        const int64_t Imm = MI.getOperand(0).getImm();
        AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm);
        return (Decoded.LgkmCnt == 0);
      }
      default:
        // SOPP instructions cannot mitigate the hazard.
        if (TII->isSOPP(MI))
          return false;
        // At this point the SALU can be assumed to mitigate the hazard
        // because either:
        // (a) it is independent of the at risk SMEM (breaking chain),
        // or
        // (b) it is dependent on the SMEM, in which case an appropriate
        //     s_waitcnt lgkmcnt _must_ exist between it and the at risk
        //     SMEM instruction.
        return true;
      }
    }
    return false;
  };

  if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
      std::numeric_limits<int>::max())
    return false;

  BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
          TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL)
      .addImm(0);
  return true;
}

bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) {
  if (!ST.hasVcmpxExecWARHazard() || !SIInstrInfo::isVALU(*MI))
    return false;

  const SIRegisterInfo *TRI = ST.getRegisterInfo();
  if (!MI->modifiesRegister(AMDGPU::EXEC, TRI))
    return false;

  auto IsHazardFn = [TRI](const MachineInstr &I) {
    if (SIInstrInfo::isVALU(I))
      return false;
    return I.readsRegister(AMDGPU::EXEC, TRI);
  };

  const SIInstrInfo *TII = ST.getInstrInfo();
  auto IsExpiredFn = [TII, TRI](const MachineInstr &MI, int) {
    if (SIInstrInfo::isVALU(MI)) {
      if (TII->getNamedOperand(MI, AMDGPU::OpName::sdst))
        return true;
      for (auto MO : MI.implicit_operands())
        if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg())))
          return true;
    }
    if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
        (MI.getOperand(0).getImm() & 0xfffe) == 0xfffe)
      return true;
    return false;
  };

  if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
      std::numeric_limits<int>::max())
    return false;

  BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
          TII->get(AMDGPU::S_WAITCNT_DEPCTR))
    .addImm(0xfffe);
  return true;
}

static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF,
                                                 const GCNSubtarget &ST) {
  if (!ST.hasLdsBranchVmemWARHazard())
    return false;

  // Check if the necessary condition for the hazard is met: both LDS and VMEM
  // instructions need to appear in the same function.
  bool HasLds = false;
  bool HasVmem = false;
  for (auto &MBB : MF) {
    for (auto &MI : MBB) {
      HasLds |= SIInstrInfo::isDS(MI);
      HasVmem |=
          SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI);
      if (HasLds && HasVmem)
        return true;
    }
  }
  return false;
}

bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) {
  if (!RunLdsBranchVmemWARHazardFixup)
    return false;

  assert(ST.hasLdsBranchVmemWARHazard());

  auto IsHazardInst = [](const MachineInstr &MI) {
    if (SIInstrInfo::isDS(MI))
      return 1;
    if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI))
      return 2;
    return 0;
  };

  auto InstType = IsHazardInst(*MI);
  if (!InstType)
    return false;

  auto IsExpiredFn = [&IsHazardInst](const MachineInstr &I, int) {
    return IsHazardInst(I) || (I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
                               I.getOperand(0).getReg() == AMDGPU::SGPR_NULL &&
                               !I.getOperand(1).getImm());
  };

  auto IsHazardFn = [InstType, &IsHazardInst](const MachineInstr &I) {
    if (!I.isBranch())
      return false;

    auto IsHazardFn = [InstType, IsHazardInst](const MachineInstr &I) {
      auto InstType2 = IsHazardInst(I);
      return InstType2 && InstType != InstType2;
    };

    auto IsExpiredFn = [InstType, &IsHazardInst](const MachineInstr &I, int) {
      auto InstType2 = IsHazardInst(I);
      if (InstType == InstType2)
        return true;

      return I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
             I.getOperand(0).getReg() == AMDGPU::SGPR_NULL &&
             !I.getOperand(1).getImm();
    };

    return ::getWaitStatesSince(IsHazardFn, &I, IsExpiredFn) !=
           std::numeric_limits<int>::max();
  };

  if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
      std::numeric_limits<int>::max())
    return false;

  const SIInstrInfo *TII = ST.getInstrInfo();
  BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
          TII->get(AMDGPU::S_WAITCNT_VSCNT))
    .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
    .addImm(0);

  return true;
}

int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) {
  int NSAtoVMEMWaitStates = 1;

  if (!ST.hasNSAtoVMEMBug())
    return 0;

  if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI))
    return 0;

  const SIInstrInfo *TII = ST.getInstrInfo();
  const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset);
  if (!Offset || (Offset->getImm() & 6) == 0)
    return 0;

  auto IsHazardFn = [TII](const MachineInstr &I) {
    if (!SIInstrInfo::isMIMG(I))
      return false;
    const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I.getOpcode());
    return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA &&
           TII->getInstSizeInBytes(I) >= 16;
  };

  return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1);
}

int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) {
  int FPAtomicToDenormModeWaitStates = 3;

  if (MI->getOpcode() != AMDGPU::S_DENORM_MODE)
    return 0;

  auto IsHazardFn = [](const MachineInstr &I) {
    if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I))
      return false;
    return SIInstrInfo::isFPAtomic(I);
  };

  auto IsExpiredFn = [](const MachineInstr &MI, int WaitStates) {
    if (WaitStates >= 3 || SIInstrInfo::isVALU(MI))
      return true;

    switch (MI.getOpcode()) {
    case AMDGPU::S_WAITCNT:
    case AMDGPU::S_WAITCNT_VSCNT:
    case AMDGPU::S_WAITCNT_VMCNT:
    case AMDGPU::S_WAITCNT_EXPCNT:
    case AMDGPU::S_WAITCNT_LGKMCNT:
    case AMDGPU::S_WAIT_IDLE:
      return true;
    default:
      break;
    }

    return false;
  };

  return FPAtomicToDenormModeWaitStates -
         ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn);
}

int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) {
  assert(SIInstrInfo::isMAI(*MI));

  return ST.hasGFX90AInsts() ? checkMAIHazards90A(MI) : checkMAIHazards908(MI);
}

int GCNHazardRecognizer::checkMAIHazards908(MachineInstr *MI) {
  int WaitStatesNeeded = 0;
  unsigned Opc = MI->getOpcode();

  auto IsVALUFn = [](const MachineInstr &MI) {
    return SIInstrInfo::isVALU(MI);
  };

  if (Opc != AMDGPU::V_ACCVGPR_READ_B32_e64) { // MFMA or v_accvgpr_write
    const int LegacyVALUWritesVGPRWaitStates = 2;
    const int VALUWritesExecWaitStates = 4;
    const int MaxWaitStates = 4;

    int WaitStatesNeededForUse = VALUWritesExecWaitStates -
      getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates);
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);

    if (WaitStatesNeeded < MaxWaitStates) {
      for (const MachineOperand &Use : MI->explicit_uses()) {
        const int MaxWaitStates = 2;

        if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
          continue;

        int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates -
          getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates);
        WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);

        if (WaitStatesNeeded == MaxWaitStates)
          break;
      }
    }
  }

  auto IsMFMAFn = [](const MachineInstr &MI) {
    return SIInstrInfo::isMAI(MI) &&
           MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 &&
           MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64;
  };

  for (const MachineOperand &Op : MI->explicit_operands()) {
    if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg()))
      continue;

    if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
      continue;

    const int MFMAWritesAGPROverlappedSrcABWaitStates = 4;
    const int MFMAWritesAGPROverlappedSrcCWaitStates = 2;
    const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4;
    const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10;
    const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18;
    const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1;
    const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7;
    const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15;
    const int MaxWaitStates = 18;
    Register Reg = Op.getReg();
    unsigned HazardDefLatency = 0;

    auto IsOverlappedMFMAFn = [Reg, &IsMFMAFn, &HazardDefLatency,
                               this](const MachineInstr &MI) {
      if (!IsMFMAFn(MI))
        return false;
      Register DstReg = MI.getOperand(0).getReg();
      if (DstReg == Reg)
        return false;
      HazardDefLatency =
          std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI));
      return TRI.regsOverlap(DstReg, Reg);
    };

    int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn,
                                                   MaxWaitStates);
    int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates;
    int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
    int OpNo = MI->getOperandNo(&Op);
    if (OpNo == SrcCIdx) {
      NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates;
    } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) {
      switch (HazardDefLatency) {
      case 2:  NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates;
               break;
      case 8:  NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates;
               break;
      case 16: LLVM_FALLTHROUGH;
      default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates;
               break;
      }
    } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) {
      switch (HazardDefLatency) {
      case 2:  NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates;
               break;
      case 8:  NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates;
               break;
      case 16: LLVM_FALLTHROUGH;
      default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates;
               break;
      }
    }

    int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);

    if (WaitStatesNeeded == MaxWaitStates)
      return WaitStatesNeeded; // Early exit.

    auto IsAccVgprWriteFn = [Reg, this](const MachineInstr &MI) {
      if (MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
        return false;
      Register DstReg = MI.getOperand(0).getReg();
      return TRI.regsOverlap(Reg, DstReg);
    };

    const int AccVGPRWriteMFMAReadSrcCWaitStates = 1;
    const int AccVGPRWriteMFMAReadSrcABWaitStates = 3;
    const int AccVGPRWriteAccVgprReadWaitStates = 3;
    NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates;
    if (OpNo == SrcCIdx)
      NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates;
    else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64)
      NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates;

    WaitStatesNeededForUse = NeedWaitStates -
      getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates);
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);

    if (WaitStatesNeeded == MaxWaitStates)
      return WaitStatesNeeded; // Early exit.
  }

  if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) {
    const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0;
    const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5;
    const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13;
    const int MaxWaitStates = 13;
    Register DstReg = MI->getOperand(0).getReg();
    unsigned HazardDefLatency = 0;

    auto IsSrcCMFMAFn = [DstReg, &IsMFMAFn, &HazardDefLatency,
                         this](const MachineInstr &MI) {
      if (!IsMFMAFn(MI))
        return false;
      Register Reg = TII.getNamedOperand(MI, AMDGPU::OpName::src2)->getReg();
      HazardDefLatency =
          std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI));
      return TRI.regsOverlap(Reg, DstReg);
    };

    int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates);
    int NeedWaitStates;
    switch (HazardDefLatency) {
    case 2:  NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates;
             break;
    case 8:  NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates;
             break;
    case 16: LLVM_FALLTHROUGH;
    default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates;
             break;
    }

    int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince;
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
  }

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkMAIHazards90A(MachineInstr *MI) {
  int WaitStatesNeeded = 0;
  unsigned Opc = MI->getOpcode();

  auto IsMFMAFn = [](const MachineInstr &MI) {
    return SIInstrInfo::isMAI(MI) &&
           MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 &&
           MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64;
  };

  auto IsLegacyVALUFn = [&IsMFMAFn](const MachineInstr &MI) {
    return SIInstrInfo::isVALU(MI) && !IsMFMAFn(MI);
  };

  auto IsLegacyVALUNotDotFn = [&IsMFMAFn](const MachineInstr &MI) {
    return SIInstrInfo::isVALU(MI) && !IsMFMAFn(MI) && !SIInstrInfo::isDOT(MI);
  };

  if (!IsMFMAFn(*MI))
    return WaitStatesNeeded;

  const int VALUWritesExecWaitStates = 4;
  int WaitStatesNeededForUse = VALUWritesExecWaitStates -
    getWaitStatesSinceDef(AMDGPU::EXEC, IsLegacyVALUFn,
                          VALUWritesExecWaitStates);
  WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);

  int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);

  // Loop for both DGEMM and S/HGEMM 2nd instruction.
  for (const MachineOperand &Use : MI->explicit_uses()) {
    const int LegacyVALUNotDotWritesVGPRWaitStates = 2;
    const int SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates = 2;
    const int SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates = 8;
    const int SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates = 16;
    const int SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates = 3;
    const int SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates = 9;
    const int SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates = 17;
    const int DMFMA16x16WritesVGPROverlappedSrcCWaitStates = 9;
    const int DMFMA4x4WritesVGPROverlappedSrcCWaitStates = 4;
    const int SMFMA4x4WritesVGPROverlappedSrcABWaitStates = 5;
    const int SMFMA16x16WritesVGPROverlappedSrcABWaitStates = 11;
    const int SMFMA32x32WritesVGPROverlappedSrcABWaitStates = 19;
    const int DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates = 6;
    const int DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates = 11;
    const int DMFMA4x4WritesVGPRFullSrcCWaitStates = 4;
    const int MaxWaitStates = 19;

    if (!Use.isReg())
      continue;
    Register Reg = Use.getReg();
    bool FullReg;
    const MachineInstr *MI1;

    auto IsOverlappedMFMAFn = [Reg, &IsMFMAFn, &FullReg, &MI1,
                               this](const MachineInstr &MI) {
      if (!IsMFMAFn(MI))
        return false;
      Register DstReg = MI.getOperand(0).getReg();
      FullReg = (DstReg == Reg);
      MI1 = &MI;
      return TRI.regsOverlap(DstReg, Reg);
    };

    WaitStatesNeededForUse = LegacyVALUNotDotWritesVGPRWaitStates -
      getWaitStatesSinceDef(Reg, IsLegacyVALUNotDotFn, MaxWaitStates);
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);

    int NumWaitStates =
        getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, MaxWaitStates);
    if (NumWaitStates == std::numeric_limits<int>::max())
      continue;

    int OpNo = MI->getOperandNo(&Use);
    unsigned Opc1 = MI1->getOpcode();
    int NeedWaitStates = 0;
    if (OpNo == SrcCIdx) {
      if (!isDGEMM(Opc) && isDGEMM(Opc1)) {
        NeedWaitStates = 0;
      } else if (FullReg) {
        if ((Opc == AMDGPU::V_MFMA_F64_4X4X4F64_e64 ||
             Opc == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64) &&
            (Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_e64 ||
             Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64))
          NeedWaitStates = DMFMA4x4WritesVGPRFullSrcCWaitStates;
      } else {
        switch (Opc1) {
        case AMDGPU::V_MFMA_F64_16X16X4F64_e64:
        case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64:
        case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64:
        case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64:
          if (!isXDL(ST, *MI))
            NeedWaitStates = DMFMA16x16WritesVGPROverlappedSrcCWaitStates;
          break;
        case AMDGPU::V_MFMA_F64_4X4X4F64_e64:
        case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64:
          if (!isXDL(ST, *MI))
            NeedWaitStates = DMFMA4x4WritesVGPROverlappedSrcCWaitStates;
          break;
        default:
          switch (TSchedModel.computeInstrLatency(MI1)) {
          case 2:
            NeedWaitStates = isDGEMM(Opc)
              ? SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates
              : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates;
            break;
          case 8:
            NeedWaitStates = isDGEMM(Opc)
              ? SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates
              : SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates;
            break;
          case 16: LLVM_FALLTHROUGH;
          default:
            NeedWaitStates = isDGEMM(Opc)
              ? SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates
              : SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates;
          }
        }
      }
    } else {
      switch (Opc1) {
      case AMDGPU::V_MFMA_F64_16X16X4F64_e64:
      case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64:
      case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64:
      case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64:
        NeedWaitStates = DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates;
        break;
      case AMDGPU::V_MFMA_F64_4X4X4F64_e64:
      case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64:
        NeedWaitStates = DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates;
        break;
      default:
        switch (TSchedModel.computeInstrLatency(MI1)) {
        case 2:
          NeedWaitStates = SMFMA4x4WritesVGPROverlappedSrcABWaitStates;
          break;
        case 8:
          NeedWaitStates = SMFMA16x16WritesVGPROverlappedSrcABWaitStates;
          break;
        case 16: LLVM_FALLTHROUGH;
        default:
          NeedWaitStates = SMFMA32x32WritesVGPROverlappedSrcABWaitStates;
        }
      }
    }
    if (WaitStatesNeeded >= NeedWaitStates)
      continue;

    WaitStatesNeededForUse = NeedWaitStates - NumWaitStates;
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);

    if (WaitStatesNeeded == MaxWaitStates)
      break;
  }

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) {
  // On gfx90a+ relevant hazards are checked in checkMAIVALUHazards()
  if (!ST.hasMAIInsts() || ST.hasGFX90AInsts())
    return 0;

  int WaitStatesNeeded = 0;

  auto IsAccVgprReadFn = [](const MachineInstr &MI) {
    return MI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64;
  };

  for (const MachineOperand &Op : MI->explicit_uses()) {
    if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg()))
      continue;

    Register Reg = Op.getReg();

    const int AccVgprReadLdStWaitStates = 2;
    const int VALUWriteAccVgprRdWrLdStDepVALUWaitStates = 1;
    const int MaxWaitStates = 2;

    int WaitStatesNeededForUse = AccVgprReadLdStWaitStates -
      getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates);
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);

    if (WaitStatesNeeded == MaxWaitStates)
      return WaitStatesNeeded; // Early exit.

    auto IsVALUAccVgprRdWrCheckFn = [Reg, this](const MachineInstr &MI) {
      if (MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64 &&
          MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
        return false;
      auto IsVALUFn = [](const MachineInstr &MI) {
        return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMAI(MI);
      };
      return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) <
             std::numeric_limits<int>::max();
    };

    WaitStatesNeededForUse = VALUWriteAccVgprRdWrLdStDepVALUWaitStates -
      getWaitStatesSince(IsVALUAccVgprRdWrCheckFn, MaxWaitStates);
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
  }

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkMAIVALUHazards(MachineInstr *MI) {
  if (!ST.hasGFX90AInsts())
    return 0;

  auto IsMFMAFn = [](const MachineInstr &MI) -> bool {
    return SIInstrInfo::isMAI(MI) &&
           MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 &&
           MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64;
  };

  auto IsDGEMMFn = [](const MachineInstr &MI) -> bool {
    return isDGEMM(MI.getOpcode());
  };

  // This is checked in checkMAIHazards90A()
  if (IsMFMAFn(*MI))
    return 0;

  int WaitStatesNeeded = 0;

  bool IsMemOrExport = SIInstrInfo::isVMEM(*MI) ||
                       SIInstrInfo::isFLAT(*MI) ||
                       SIInstrInfo::isDS(*MI) ||
                       SIInstrInfo::isEXP(*MI);
  bool IsVALU = SIInstrInfo::isVALU(*MI);

  const MachineInstr *MFMA = nullptr;
  unsigned Reg;
  auto IsMFMAWriteFn = [&Reg, &IsMFMAFn, &MFMA, this](const MachineInstr &MI) {
    if (!IsMFMAFn(MI) || !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg))
      return false;
    MFMA = &MI;
    return true;
  };

  const MachineInstr *DOT = nullptr;
  auto IsDotWriteFn = [&Reg, &DOT, this](const MachineInstr &MI) {
    if (!SIInstrInfo::isDOT(MI) ||
        !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg))
      return false;
    DOT = &MI;
    return true;
  };

  int SrcCIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
                                           AMDGPU::OpName::src2);

  if (IsMemOrExport || IsVALU) {
    const int SMFMA4x4WriteVgprVALUMemExpReadWaitStates = 5;
    const int SMFMA16x16WriteVgprVALUMemExpReadWaitStates = 11;
    const int SMFMA32x32WriteVgprVALUMemExpReadWaitStates = 19;
    const int DMFMA4x4WriteVgprMemExpReadWaitStates = 9;
    const int DMFMA16x16WriteVgprMemExpReadWaitStates = 18;
    const int DMFMA4x4WriteVgprVALUReadWaitStates = 6;
    const int DMFMA16x16WriteVgprVALUReadWaitStates = 11;
    const int DotWriteSameDotReadSrcAB = 3;
    const int DotWriteDifferentVALURead = 3;
    const int MaxWaitStates = 19;

    for (const MachineOperand &Use : MI->explicit_uses()) {
      if (!Use.isReg())
        continue;
      Reg = Use.getReg();

      DOT = nullptr;
      int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn,
                                                     MaxWaitStates);
      if (DOT) {
        int NeedWaitStates = 0;
        if (DOT->getOpcode() == MI->getOpcode()) {
          if (&Use - &MI->getOperand(0) != SrcCIdx)
            NeedWaitStates = DotWriteSameDotReadSrcAB;
        } else {
          NeedWaitStates = DotWriteDifferentVALURead;
        }

        int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
        WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
      }

      MFMA = nullptr;
      WaitStatesSinceDef =
          getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates);
      if (!MFMA)
        continue;

      unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA);
      int NeedWaitStates = MaxWaitStates;
      switch (HazardDefLatency) {
      case 2:
        NeedWaitStates = SMFMA4x4WriteVgprVALUMemExpReadWaitStates;
        break;
      case 4:
        assert(isDGEMM(MFMA->getOpcode()));
        NeedWaitStates =
            IsMemOrExport ? DMFMA4x4WriteVgprMemExpReadWaitStates
                          : DMFMA4x4WriteVgprVALUReadWaitStates;
        break;
      case 8:
        NeedWaitStates = SMFMA16x16WriteVgprVALUMemExpReadWaitStates;
        break;
      case 16: LLVM_FALLTHROUGH;
      default:
        NeedWaitStates =
          isDGEMM(MFMA->getOpcode())
            ? IsMemOrExport ? DMFMA16x16WriteVgprMemExpReadWaitStates
                            : DMFMA16x16WriteVgprVALUReadWaitStates
            : SMFMA32x32WriteVgprVALUMemExpReadWaitStates;
        break;
      }

      int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
      WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);

      if (WaitStatesNeeded == MaxWaitStates)
        break;
    }
  }

  unsigned Opc = MI->getOpcode();
  const int DMFMAToFMA64WaitStates = 2;
  if ((Opc == AMDGPU::V_FMA_F64_e64 ||
       Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64 ||
       Opc == AMDGPU::V_FMAC_F64_dpp) &&
      WaitStatesNeeded < DMFMAToFMA64WaitStates) {
    int WaitStatesNeededForUse = DMFMAToFMA64WaitStates -
      getWaitStatesSince(IsDGEMMFn, DMFMAToFMA64WaitStates);
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
  }

  if (!IsVALU && !IsMemOrExport)
    return WaitStatesNeeded;

  for (const MachineOperand &Def : MI->defs()) {
    const int SMFMA4x4WriteVgprVALUWawWaitStates = 5;
    const int SMFMA16x16WriteVgprVALUWawWaitStates = 11;
    const int SMFMA32x32WriteVgprVALUWawWaitStates = 19;
    const int SMFMA4x4ReadVgprVALUWarWaitStates = 1;
    const int SMFMA16x16ReadVgprVALUWarWaitStates = 7;
    const int SMFMA32x32ReadVgprVALUWarWaitStates = 15;
    const int DMFMA4x4WriteVgprVALUWriteWaitStates = 6;
    const int DMFMA16x16WriteVgprVALUWriteWaitStates = 11;
    const int DotWriteDifferentVALUWrite = 3;
    const int MaxWaitStates = 19;
    const int MaxWarWaitStates = 15;

    Reg = Def.getReg();

    DOT = nullptr;
    int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn,
                                                   MaxWaitStates);
    if (DOT && DOT->getOpcode() != MI->getOpcode())
      WaitStatesNeeded = std::max(WaitStatesNeeded, DotWriteDifferentVALUWrite -
                                                    WaitStatesSinceDef);

    MFMA = nullptr;
    WaitStatesSinceDef =
        getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates);
    if (MFMA) {
      int NeedWaitStates = MaxWaitStates;
      switch (TSchedModel.computeInstrLatency(MFMA)) {
      case 2:
        NeedWaitStates = SMFMA4x4WriteVgprVALUWawWaitStates;
        break;
      case 4:
        assert(isDGEMM(MFMA->getOpcode()));
        NeedWaitStates = DMFMA4x4WriteVgprVALUWriteWaitStates;
        break;
      case 8:
        NeedWaitStates = SMFMA16x16WriteVgprVALUWawWaitStates;
        break;
      case 16: LLVM_FALLTHROUGH;
      default:
        NeedWaitStates = isDGEMM(MFMA->getOpcode())
                   ? DMFMA16x16WriteVgprVALUWriteWaitStates
                   : SMFMA32x32WriteVgprVALUWawWaitStates;
        break;
      }

      int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
      WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);

      if (WaitStatesNeeded == MaxWaitStates)
        break;
    }

    auto IsSMFMAReadAsCFn = [&Reg, &IsMFMAFn, &MFMA,
                             this](const MachineInstr &MI) {
      if (!IsMFMAFn(MI) || isDGEMM(MI.getOpcode()) ||
          !MI.readsRegister(Reg, &TRI))
        return false;

      const MachineOperand *SrcC =
          TII.getNamedOperand(MI, AMDGPU::OpName::src2);
      assert(SrcC);
      if (!SrcC->isReg() || !TRI.regsOverlap(SrcC->getReg(), Reg))
        return false;

      MFMA = &MI;
      return true;
    };

    MFMA = nullptr;
    int WaitStatesSinceUse = getWaitStatesSince(IsSMFMAReadAsCFn,
                                                MaxWarWaitStates);
    if (!MFMA)
      continue;

    unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA);
    int NeedWaitStates = MaxWaitStates;
    switch (HazardDefLatency) {
    case 2:  NeedWaitStates = SMFMA4x4ReadVgprVALUWarWaitStates;
             break;
    case 8:  NeedWaitStates = SMFMA16x16ReadVgprVALUWarWaitStates;
             break;
    case 16: LLVM_FALLTHROUGH;
    default: NeedWaitStates = SMFMA32x32ReadVgprVALUWarWaitStates;
             break;
    }

    int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceUse;
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
  }

  return WaitStatesNeeded;
}

bool GCNHazardRecognizer::ShouldPreferAnother(SUnit *SU) {
  if (!SU->isInstr())
    return false;

  const MachineInstr *MAI = nullptr;
  auto IsMFMAFn = [&MAI](const MachineInstr &MI) {
    MAI = nullptr;
    if (SIInstrInfo::isMAI(MI) &&
        MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 &&
        MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64)
      MAI = &MI;
    return MAI != nullptr;
  };

  MachineInstr *MI = SU->getInstr();
  if (IsMFMAFn(*MI)) {
    int W = getWaitStatesSince(IsMFMAFn, 16);
    if (MAI)
      return W < (int)TSchedModel.computeInstrLatency(MAI);
  }

  return false;
}