1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
//===- MVELaneInterleaving.cpp - Inverleave for MVE instructions ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass interleaves around sext/zext/trunc instructions. MVE does not have
// a single sext/zext or trunc instruction that takes the bottom half of a
// vector and extends to a full width, like NEON has with MOVL. Instead it is
// expected that this happens through top/bottom instructions. So the MVE
// equivalent VMOVLT/B instructions take either the even or odd elements of the
// input and extend them to the larger type, producing a vector with half the
// number of elements each of double the bitwidth. As there is no simple
// instruction, we often have to turn sext/zext/trunc into a series of lane
// moves (or stack loads/stores, which we do not do yet).
//
// This pass takes vector code that starts at truncs, looks for interconnected
// blobs of operations that end with sext/zext (or constants/splats) of the
// form:
// %sa = sext v8i16 %a to v8i32
// %sb = sext v8i16 %b to v8i32
// %add = add v8i32 %sa, %sb
// %r = trunc %add to v8i16
// And adds shuffles to allow the use of VMOVL/VMOVN instrctions:
// %sha = shuffle v8i16 %a, undef, <0, 2, 4, 6, 1, 3, 5, 7>
// %sa = sext v8i16 %sha to v8i32
// %shb = shuffle v8i16 %b, undef, <0, 2, 4, 6, 1, 3, 5, 7>
// %sb = sext v8i16 %shb to v8i32
// %add = add v8i32 %sa, %sb
// %r = trunc %add to v8i16
// %shr = shuffle v8i16 %r, undef, <0, 4, 1, 5, 2, 6, 3, 7>
// Which can then be split and lowered to MVE instructions efficiently:
// %sa_b = VMOVLB.s16 %a
// %sa_t = VMOVLT.s16 %a
// %sb_b = VMOVLB.s16 %b
// %sb_t = VMOVLT.s16 %b
// %add_b = VADD.i32 %sa_b, %sb_b
// %add_t = VADD.i32 %sa_t, %sb_t
// %r = VMOVNT.i16 %add_b, %add_t
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMBaseInstrInfo.h"
#include "ARMSubtarget.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <cassert>
using namespace llvm;
#define DEBUG_TYPE "mve-laneinterleave"
cl::opt<bool> EnableInterleave(
"enable-mve-interleave", cl::Hidden, cl::init(true),
cl::desc("Enable interleave MVE vector operation lowering"));
namespace {
class MVELaneInterleaving : public FunctionPass {
public:
static char ID; // Pass identification, replacement for typeid
explicit MVELaneInterleaving() : FunctionPass(ID) {
initializeMVELaneInterleavingPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
StringRef getPassName() const override { return "MVE lane interleaving"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<TargetPassConfig>();
FunctionPass::getAnalysisUsage(AU);
}
};
} // end anonymous namespace
char MVELaneInterleaving::ID = 0;
INITIALIZE_PASS(MVELaneInterleaving, DEBUG_TYPE, "MVE lane interleaving", false,
false)
Pass *llvm::createMVELaneInterleavingPass() {
return new MVELaneInterleaving();
}
static bool isProfitableToInterleave(SmallSetVector<Instruction *, 4> &Exts,
SmallSetVector<Instruction *, 4> &Truncs) {
// This is not always beneficial to transform. Exts can be incorporated into
// loads, Truncs can be folded into stores.
// Truncs are usually the same number of instructions,
// VSTRH.32(A);VSTRH.32(B) vs VSTRH.16(VMOVNT A, B) with interleaving
// Exts are unfortunately more instructions in the general case:
// A=VLDRH.32; B=VLDRH.32;
// vs with interleaving:
// T=VLDRH.16; A=VMOVNB T; B=VMOVNT T
// But those VMOVL may be folded into a VMULL.
// But expensive extends/truncs are always good to remove. FPExts always
// involve extra VCVT's so are always considered to be beneficial to convert.
for (auto *E : Exts) {
if (isa<FPExtInst>(E) || !isa<LoadInst>(E->getOperand(0))) {
LLVM_DEBUG(dbgs() << "Beneficial due to " << *E << "\n");
return true;
}
}
for (auto *T : Truncs) {
if (T->hasOneUse() && !isa<StoreInst>(*T->user_begin())) {
LLVM_DEBUG(dbgs() << "Beneficial due to " << *T << "\n");
return true;
}
}
// Otherwise, we know we have a load(ext), see if any of the Extends are a
// vmull. This is a simple heuristic and certainly not perfect.
for (auto *E : Exts) {
if (!E->hasOneUse() ||
cast<Instruction>(*E->user_begin())->getOpcode() != Instruction::Mul) {
LLVM_DEBUG(dbgs() << "Not beneficial due to " << *E << "\n");
return false;
}
}
return true;
}
static bool tryInterleave(Instruction *Start,
SmallPtrSetImpl<Instruction *> &Visited) {
LLVM_DEBUG(dbgs() << "tryInterleave from " << *Start << "\n");
auto *VT = cast<FixedVectorType>(Start->getType());
if (!isa<Instruction>(Start->getOperand(0)))
return false;
// Look for connected operations starting from Ext's, terminating at Truncs.
std::vector<Instruction *> Worklist;
Worklist.push_back(Start);
Worklist.push_back(cast<Instruction>(Start->getOperand(0)));
SmallSetVector<Instruction *, 4> Truncs;
SmallSetVector<Instruction *, 4> Exts;
SmallSetVector<Use *, 4> OtherLeafs;
SmallSetVector<Instruction *, 4> Ops;
while (!Worklist.empty()) {
Instruction *I = Worklist.back();
Worklist.pop_back();
switch (I->getOpcode()) {
// Truncs
case Instruction::Trunc:
case Instruction::FPTrunc:
if (Truncs.count(I))
continue;
Truncs.insert(I);
Visited.insert(I);
break;
// Extend leafs
case Instruction::SExt:
case Instruction::ZExt:
case Instruction::FPExt:
if (Exts.count(I))
continue;
for (auto *Use : I->users())
Worklist.push_back(cast<Instruction>(Use));
Exts.insert(I);
break;
case Instruction::Call: {
IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
if (!II)
return false;
switch (II->getIntrinsicID()) {
case Intrinsic::abs:
case Intrinsic::smin:
case Intrinsic::smax:
case Intrinsic::umin:
case Intrinsic::umax:
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat:
case Intrinsic::uadd_sat:
case Intrinsic::usub_sat:
case Intrinsic::minnum:
case Intrinsic::maxnum:
case Intrinsic::fabs:
case Intrinsic::fma:
case Intrinsic::ceil:
case Intrinsic::floor:
case Intrinsic::rint:
case Intrinsic::round:
case Intrinsic::trunc:
break;
default:
return false;
}
LLVM_FALLTHROUGH; // Fall through to treating these like an operator below.
}
// Binary/tertiary ops
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::AShr:
case Instruction::LShr:
case Instruction::Shl:
case Instruction::ICmp:
case Instruction::FCmp:
case Instruction::FAdd:
case Instruction::FMul:
case Instruction::Select:
if (Ops.count(I))
continue;
Ops.insert(I);
for (Use &Op : I->operands()) {
if (!isa<FixedVectorType>(Op->getType()))
continue;
if (isa<Instruction>(Op))
Worklist.push_back(cast<Instruction>(&Op));
else
OtherLeafs.insert(&Op);
}
for (auto *Use : I->users())
Worklist.push_back(cast<Instruction>(Use));
break;
case Instruction::ShuffleVector:
// A shuffle of a splat is a splat.
if (cast<ShuffleVectorInst>(I)->isZeroEltSplat())
continue;
LLVM_FALLTHROUGH;
default:
LLVM_DEBUG(dbgs() << " Unhandled instruction: " << *I << "\n");
return false;
}
}
if (Exts.empty() && OtherLeafs.empty())
return false;
LLVM_DEBUG({
dbgs() << "Found group:\n Exts:";
for (auto *I : Exts)
dbgs() << " " << *I << "\n";
dbgs() << " Ops:";
for (auto *I : Ops)
dbgs() << " " << *I << "\n";
dbgs() << " OtherLeafs:";
for (auto *I : OtherLeafs)
dbgs() << " " << *I->get() << " of " << *I->getUser() << "\n";
dbgs() << "Truncs:";
for (auto *I : Truncs)
dbgs() << " " << *I << "\n";
});
assert(!Truncs.empty() && "Expected some truncs");
// Check types
unsigned NumElts = VT->getNumElements();
unsigned BaseElts = VT->getScalarSizeInBits() == 16
? 8
: (VT->getScalarSizeInBits() == 8 ? 16 : 0);
if (BaseElts == 0 || NumElts % BaseElts != 0) {
LLVM_DEBUG(dbgs() << " Type is unsupported\n");
return false;
}
if (Start->getOperand(0)->getType()->getScalarSizeInBits() !=
VT->getScalarSizeInBits() * 2) {
LLVM_DEBUG(dbgs() << " Type not double sized\n");
return false;
}
for (Instruction *I : Exts)
if (I->getOperand(0)->getType() != VT) {
LLVM_DEBUG(dbgs() << " Wrong type on " << *I << "\n");
return false;
}
for (Instruction *I : Truncs)
if (I->getType() != VT) {
LLVM_DEBUG(dbgs() << " Wrong type on " << *I << "\n");
return false;
}
// Check that it looks beneficial
if (!isProfitableToInterleave(Exts, Truncs))
return false;
// Create new shuffles around the extends / truncs / other leaves.
IRBuilder<> Builder(Start);
SmallVector<int, 16> LeafMask;
SmallVector<int, 16> TruncMask;
// LeafMask : 0, 2, 4, 6, 1, 3, 5, 7 8, 10, 12, 14, 9, 11, 13, 15
// TruncMask: 0, 4, 1, 5, 2, 6, 3, 7 8, 12, 9, 13, 10, 14, 11, 15
for (unsigned Base = 0; Base < NumElts; Base += BaseElts) {
for (unsigned i = 0; i < BaseElts / 2; i++)
LeafMask.push_back(Base + i * 2);
for (unsigned i = 0; i < BaseElts / 2; i++)
LeafMask.push_back(Base + i * 2 + 1);
}
for (unsigned Base = 0; Base < NumElts; Base += BaseElts) {
for (unsigned i = 0; i < BaseElts / 2; i++) {
TruncMask.push_back(Base + i);
TruncMask.push_back(Base + i + BaseElts / 2);
}
}
for (Instruction *I : Exts) {
LLVM_DEBUG(dbgs() << "Replacing ext " << *I << "\n");
Builder.SetInsertPoint(I);
Value *Shuffle = Builder.CreateShuffleVector(I->getOperand(0), LeafMask);
bool FPext = isa<FPExtInst>(I);
bool Sext = isa<SExtInst>(I);
Value *Ext = FPext ? Builder.CreateFPExt(Shuffle, I->getType())
: Sext ? Builder.CreateSExt(Shuffle, I->getType())
: Builder.CreateZExt(Shuffle, I->getType());
I->replaceAllUsesWith(Ext);
LLVM_DEBUG(dbgs() << " with " << *Shuffle << "\n");
}
for (Use *I : OtherLeafs) {
LLVM_DEBUG(dbgs() << "Replacing leaf " << *I << "\n");
Builder.SetInsertPoint(cast<Instruction>(I->getUser()));
Value *Shuffle = Builder.CreateShuffleVector(I->get(), LeafMask);
I->getUser()->setOperand(I->getOperandNo(), Shuffle);
LLVM_DEBUG(dbgs() << " with " << *Shuffle << "\n");
}
for (Instruction *I : Truncs) {
LLVM_DEBUG(dbgs() << "Replacing trunc " << *I << "\n");
Builder.SetInsertPoint(I->getParent(), ++I->getIterator());
Value *Shuf = Builder.CreateShuffleVector(I, TruncMask);
I->replaceAllUsesWith(Shuf);
cast<Instruction>(Shuf)->setOperand(0, I);
LLVM_DEBUG(dbgs() << " with " << *Shuf << "\n");
}
return true;
}
bool MVELaneInterleaving::runOnFunction(Function &F) {
if (!EnableInterleave)
return false;
auto &TPC = getAnalysis<TargetPassConfig>();
auto &TM = TPC.getTM<TargetMachine>();
auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
if (!ST->hasMVEIntegerOps())
return false;
bool Changed = false;
SmallPtrSet<Instruction *, 16> Visited;
for (Instruction &I : reverse(instructions(F))) {
if (I.getType()->isVectorTy() &&
(isa<TruncInst>(I) || isa<FPTruncInst>(I)) && !Visited.count(&I))
Changed |= tryInterleave(&I, Visited);
}
return Changed;
}
|