1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
|
//===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
/// branches to help accelerate DSP applications. These two extensions,
/// combined with a new form of predication called tail-predication, can be used
/// to provide implicit vector predication within a low-overhead loop.
/// This is implicit because the predicate of active/inactive lanes is
/// calculated by hardware, and thus does not need to be explicitly passed
/// to vector instructions. The instructions responsible for this are the
/// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the
/// the total number of data elements processed by the loop. The loop-end
/// LETP instruction is responsible for decrementing and setting the remaining
/// elements to be processed and generating the mask of active lanes.
///
/// The HardwareLoops pass inserts intrinsics identifying loops that the
/// backend will attempt to convert into a low-overhead loop. The vectorizer is
/// responsible for generating a vectorized loop in which the lanes are
/// predicated upon an get.active.lane.mask intrinsic. This pass looks at these
/// get.active.lane.mask intrinsic and attempts to convert them to VCTP
/// instructions. This will be picked up by the ARM Low-overhead loop pass later
/// in the backend, which performs the final transformation to a DLSTP or WLSTP
/// tail-predicated loop.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMSubtarget.h"
#include "ARMTargetTransformInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
using namespace llvm;
#define DEBUG_TYPE "mve-tail-predication"
#define DESC "Transform predicated vector loops to use MVE tail predication"
cl::opt<TailPredication::Mode> EnableTailPredication(
"tail-predication", cl::desc("MVE tail-predication pass options"),
cl::init(TailPredication::Enabled),
cl::values(clEnumValN(TailPredication::Disabled, "disabled",
"Don't tail-predicate loops"),
clEnumValN(TailPredication::EnabledNoReductions,
"enabled-no-reductions",
"Enable tail-predication, but not for reduction loops"),
clEnumValN(TailPredication::Enabled,
"enabled",
"Enable tail-predication, including reduction loops"),
clEnumValN(TailPredication::ForceEnabledNoReductions,
"force-enabled-no-reductions",
"Enable tail-predication, but not for reduction loops, "
"and force this which might be unsafe"),
clEnumValN(TailPredication::ForceEnabled,
"force-enabled",
"Enable tail-predication, including reduction loops, "
"and force this which might be unsafe")));
namespace {
class MVETailPredication : public LoopPass {
SmallVector<IntrinsicInst*, 4> MaskedInsts;
Loop *L = nullptr;
ScalarEvolution *SE = nullptr;
TargetTransformInfo *TTI = nullptr;
const ARMSubtarget *ST = nullptr;
public:
static char ID;
MVETailPredication() : LoopPass(ID) { }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<TargetPassConfig>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.setPreservesCFG();
}
bool runOnLoop(Loop *L, LPPassManager&) override;
private:
/// Perform the relevant checks on the loop and convert active lane masks if
/// possible.
bool TryConvertActiveLaneMask(Value *TripCount);
/// Perform several checks on the arguments of @llvm.get.active.lane.mask
/// intrinsic. E.g., check that the loop induction variable and the element
/// count are of the form we expect, and also perform overflow checks for
/// the new expressions that are created.
bool IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount);
/// Insert the intrinsic to represent the effect of tail predication.
void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *TripCount);
/// Rematerialize the iteration count in exit blocks, which enables
/// ARMLowOverheadLoops to better optimise away loop update statements inside
/// hardware-loops.
void RematerializeIterCount();
};
} // end namespace
bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
if (skipLoop(L) || !EnableTailPredication)
return false;
MaskedInsts.clear();
Function &F = *L->getHeader()->getParent();
auto &TPC = getAnalysis<TargetPassConfig>();
auto &TM = TPC.getTM<TargetMachine>();
ST = &TM.getSubtarget<ARMSubtarget>(F);
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
this->L = L;
// The MVE and LOB extensions are combined to enable tail-predication, but
// there's nothing preventing us from generating VCTP instructions for v8.1m.
if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n");
return false;
}
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader)
return false;
auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
for (auto &I : *BB) {
auto *Call = dyn_cast<IntrinsicInst>(&I);
if (!Call)
continue;
Intrinsic::ID ID = Call->getIntrinsicID();
if (ID == Intrinsic::start_loop_iterations ||
ID == Intrinsic::test_start_loop_iterations)
return cast<IntrinsicInst>(&I);
}
return nullptr;
};
// Look for the hardware loop intrinsic that sets the iteration count.
IntrinsicInst *Setup = FindLoopIterations(Preheader);
// The test.set iteration could live in the pre-preheader.
if (!Setup) {
if (!Preheader->getSinglePredecessor())
return false;
Setup = FindLoopIterations(Preheader->getSinglePredecessor());
if (!Setup)
return false;
}
LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n");
bool Changed = TryConvertActiveLaneMask(Setup->getArgOperand(0));
return Changed;
}
// The active lane intrinsic has this form:
//
// @llvm.get.active.lane.mask(IV, TC)
//
// Here we perform checks that this intrinsic behaves as expected,
// which means:
//
// 1) Check that the TripCount (TC) belongs to this loop (originally).
// 2) The element count (TC) needs to be sufficiently large that the decrement
// of element counter doesn't overflow, which means that we need to prove:
// ceil(ElementCount / VectorWidth) >= TripCount
// by rounding up ElementCount up:
// ((ElementCount + (VectorWidth - 1)) / VectorWidth
// and evaluate if expression isKnownNonNegative:
// (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
// 3) The IV must be an induction phi with an increment equal to the
// vector width.
bool MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask,
Value *TripCount) {
bool ForceTailPredication =
EnableTailPredication == TailPredication::ForceEnabledNoReductions ||
EnableTailPredication == TailPredication::ForceEnabled;
Value *ElemCount = ActiveLaneMask->getOperand(1);
bool Changed = false;
if (!L->makeLoopInvariant(ElemCount, Changed))
return false;
auto *EC= SE->getSCEV(ElemCount);
auto *TC = SE->getSCEV(TripCount);
int VectorWidth =
cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements();
if (VectorWidth != 2 && VectorWidth != 4 && VectorWidth != 8 &&
VectorWidth != 16)
return false;
ConstantInt *ConstElemCount = nullptr;
// 1) Smoke tests that the original scalar loop TripCount (TC) belongs to
// this loop. The scalar tripcount corresponds the number of elements
// processed by the loop, so we will refer to that from this point on.
if (!SE->isLoopInvariant(EC, L)) {
LLVM_DEBUG(dbgs() << "ARM TP: element count must be loop invariant.\n");
return false;
}
if ((ConstElemCount = dyn_cast<ConstantInt>(ElemCount))) {
ConstantInt *TC = dyn_cast<ConstantInt>(TripCount);
if (!TC) {
LLVM_DEBUG(dbgs() << "ARM TP: Constant tripcount expected in "
"set.loop.iterations\n");
return false;
}
// Calculate 2 tripcount values and check that they are consistent with
// each other. The TripCount for a predicated vector loop body is
// ceil(ElementCount/Width), or floor((ElementCount+Width-1)/Width) as we
// work it out here.
uint64_t TC1 = TC->getZExtValue();
uint64_t TC2 =
(ConstElemCount->getZExtValue() + VectorWidth - 1) / VectorWidth;
// If the tripcount values are inconsistent, we can't insert the VCTP and
// trigger tail-predication; keep the intrinsic as a get.active.lane.mask
// and legalize this.
if (TC1 != TC2) {
LLVM_DEBUG(dbgs() << "ARM TP: inconsistent constant tripcount values: "
<< TC1 << " from set.loop.iterations, and "
<< TC2 << " from get.active.lane.mask\n");
return false;
}
} else if (!ForceTailPredication) {
// 2) We need to prove that the sub expression that we create in the
// tail-predicated loop body, which calculates the remaining elements to be
// processed, is non-negative, i.e. it doesn't overflow:
//
// ((ElementCount + VectorWidth - 1) / VectorWidth) - TripCount >= 0
//
// This is true if:
//
// TripCount == (ElementCount + VectorWidth - 1) / VectorWidth
//
// which what we will be using here.
//
auto *VW = SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth));
// ElementCount + (VW-1):
auto *ECPlusVWMinus1 = SE->getAddExpr(EC,
SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1)));
// Ceil = ElementCount + (VW-1) / VW
auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1, VW);
// Prevent unused variable warnings with TC
(void)TC;
LLVM_DEBUG(
dbgs() << "ARM TP: Analysing overflow behaviour for:\n";
dbgs() << "ARM TP: - TripCount = "; TC->dump();
dbgs() << "ARM TP: - ElemCount = "; EC->dump();
dbgs() << "ARM TP: - VecWidth = " << VectorWidth << "\n";
dbgs() << "ARM TP: - (ElemCount+VW-1) / VW = "; Ceil->dump();
);
// As an example, almost all the tripcount expressions (produced by the
// vectoriser) look like this:
//
// TC = ((-4 + (4 * ((3 + %N) /u 4))<nuw>) /u 4)
//
// and "ElementCount + (VW-1) / VW":
//
// Ceil = ((3 + %N) /u 4)
//
// Check for equality of TC and Ceil by calculating SCEV expression
// TC - Ceil and test it for zero.
//
const SCEV *Sub =
SE->getMinusSCEV(SE->getBackedgeTakenCount(L),
SE->getUDivExpr(SE->getAddExpr(SE->getMulExpr(Ceil, VW),
SE->getNegativeSCEV(VW)),
VW));
// Use context sensitive facts about the path to the loop to refine. This
// comes up as the backedge taken count can incorporate context sensitive
// reasoning, and our RHS just above doesn't.
Sub = SE->applyLoopGuards(Sub, L);
if (!Sub->isZero()) {
LLVM_DEBUG(dbgs() << "ARM TP: possible overflow in sub expression.\n");
return false;
}
}
// 3) Find out if IV is an induction phi. Note that we can't use Loop
// helpers here to get the induction variable, because the hardware loop is
// no longer in loopsimplify form, and also the hwloop intrinsic uses a
// different counter. Using SCEV, we check that the induction is of the
// form i = i + 4, where the increment must be equal to the VectorWidth.
auto *IV = ActiveLaneMask->getOperand(0);
auto *IVExpr = SE->getSCEV(IV);
auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr);
if (!AddExpr) {
LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump());
return false;
}
// Check that this AddRec is associated with this loop.
if (AddExpr->getLoop() != L) {
LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n");
return false;
}
auto *Base = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
if (!Base || !Base->isZero()) {
LLVM_DEBUG(dbgs() << "ARM TP: induction base is not 0\n");
return false;
}
auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1));
if (!Step) {
LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: ";
AddExpr->getOperand(1)->dump());
return false;
}
auto StepValue = Step->getValue()->getSExtValue();
if (VectorWidth == StepValue)
return true;
LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue
<< " doesn't match vector width " << VectorWidth << "\n");
return false;
}
void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask,
Value *TripCount) {
IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
Module *M = L->getHeader()->getModule();
Type *Ty = IntegerType::get(M->getContext(), 32);
unsigned VectorWidth =
cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements();
// Insert a phi to count the number of elements processed by the loop.
Builder.SetInsertPoint(L->getHeader()->getFirstNonPHI());
PHINode *Processed = Builder.CreatePHI(Ty, 2);
Processed->addIncoming(ActiveLaneMask->getOperand(1), L->getLoopPreheader());
// Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and
// thus represent the effect of tail predication.
Builder.SetInsertPoint(ActiveLaneMask);
ConstantInt *Factor = ConstantInt::get(cast<IntegerType>(Ty), VectorWidth);
Intrinsic::ID VCTPID;
switch (VectorWidth) {
default:
llvm_unreachable("unexpected number of lanes");
case 2: VCTPID = Intrinsic::arm_mve_vctp64; break;
case 4: VCTPID = Intrinsic::arm_mve_vctp32; break;
case 8: VCTPID = Intrinsic::arm_mve_vctp16; break;
case 16: VCTPID = Intrinsic::arm_mve_vctp8; break;
}
Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
Value *VCTPCall = Builder.CreateCall(VCTP, Processed);
ActiveLaneMask->replaceAllUsesWith(VCTPCall);
// Add the incoming value to the new phi.
// TODO: This add likely already exists in the loop.
Value *Remaining = Builder.CreateSub(Processed, Factor);
Processed->addIncoming(Remaining, L->getLoopLatch());
LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: "
<< *Processed << "\n"
<< "ARM TP: Inserted VCTP: " << *VCTPCall << "\n");
}
bool MVETailPredication::TryConvertActiveLaneMask(Value *TripCount) {
SmallVector<IntrinsicInst *, 4> ActiveLaneMasks;
for (auto *BB : L->getBlocks())
for (auto &I : *BB)
if (auto *Int = dyn_cast<IntrinsicInst>(&I))
if (Int->getIntrinsicID() == Intrinsic::get_active_lane_mask)
ActiveLaneMasks.push_back(Int);
if (ActiveLaneMasks.empty())
return false;
LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n");
for (auto *ActiveLaneMask : ActiveLaneMasks) {
LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: "
<< *ActiveLaneMask << "\n");
if (!IsSafeActiveMask(ActiveLaneMask, TripCount)) {
LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n");
return false;
}
LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP.\n");
InsertVCTPIntrinsic(ActiveLaneMask, TripCount);
}
// Remove dead instructions and now dead phis.
for (auto *II : ActiveLaneMasks)
RecursivelyDeleteTriviallyDeadInstructions(II);
for (auto I : L->blocks())
DeleteDeadPHIs(I);
return true;
}
Pass *llvm::createMVETailPredicationPass() {
return new MVETailPredication();
}
char MVETailPredication::ID = 0;
INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)
|