1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
|
//===-- VEISelLowering.cpp - VE DAG Lowering Implementation ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the interfaces that VE uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "VEISelLowering.h"
#include "MCTargetDesc/VEMCExpr.h"
#include "VECustomDAG.h"
#include "VEInstrBuilder.h"
#include "VEMachineFunctionInfo.h"
#include "VERegisterInfo.h"
#include "VETargetMachine.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
using namespace llvm;
#define DEBUG_TYPE "ve-lower"
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
#include "VEGenCallingConv.inc"
CCAssignFn *getReturnCC(CallingConv::ID CallConv) {
switch (CallConv) {
default:
return RetCC_VE_C;
case CallingConv::Fast:
return RetCC_VE_Fast;
}
}
CCAssignFn *getParamCC(CallingConv::ID CallConv, bool IsVarArg) {
if (IsVarArg)
return CC_VE2;
switch (CallConv) {
default:
return CC_VE_C;
case CallingConv::Fast:
return CC_VE_Fast;
}
}
bool VETargetLowering::CanLowerReturn(
CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
CCAssignFn *RetCC = getReturnCC(CallConv);
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC);
}
static const MVT AllVectorVTs[] = {MVT::v256i32, MVT::v512i32, MVT::v256i64,
MVT::v256f32, MVT::v512f32, MVT::v256f64};
static const MVT AllPackedVTs[] = {MVT::v512i32, MVT::v512f32};
void VETargetLowering::initRegisterClasses() {
// Set up the register classes.
addRegisterClass(MVT::i32, &VE::I32RegClass);
addRegisterClass(MVT::i64, &VE::I64RegClass);
addRegisterClass(MVT::f32, &VE::F32RegClass);
addRegisterClass(MVT::f64, &VE::I64RegClass);
addRegisterClass(MVT::f128, &VE::F128RegClass);
if (Subtarget->enableVPU()) {
for (MVT VecVT : AllVectorVTs)
addRegisterClass(VecVT, &VE::V64RegClass);
addRegisterClass(MVT::v256i1, &VE::VMRegClass);
addRegisterClass(MVT::v512i1, &VE::VM512RegClass);
}
}
void VETargetLowering::initSPUActions() {
const auto &TM = getTargetMachine();
/// Load & Store {
// VE doesn't have i1 sign extending load.
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
setTruncStoreAction(VT, MVT::i1, Expand);
}
// VE doesn't have floating point extload/truncstore, so expand them.
for (MVT FPVT : MVT::fp_valuetypes()) {
for (MVT OtherFPVT : MVT::fp_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, FPVT, OtherFPVT, Expand);
setTruncStoreAction(FPVT, OtherFPVT, Expand);
}
}
// VE doesn't have fp128 load/store, so expand them in custom lower.
setOperationAction(ISD::LOAD, MVT::f128, Custom);
setOperationAction(ISD::STORE, MVT::f128, Custom);
/// } Load & Store
// Custom legalize address nodes into LO/HI parts.
MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
setOperationAction(ISD::BlockAddress, PtrVT, Custom);
setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
setOperationAction(ISD::ConstantPool, PtrVT, Custom);
setOperationAction(ISD::JumpTable, PtrVT, Custom);
/// VAARG handling {
setOperationAction(ISD::VASTART, MVT::Other, Custom);
// VAARG needs to be lowered to access with 8 bytes alignment.
setOperationAction(ISD::VAARG, MVT::Other, Custom);
// Use the default implementation.
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
/// } VAARG handling
/// Stack {
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
// Use the default implementation.
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
/// } Stack
/// Branch {
// VE doesn't have BRCOND
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
// BR_JT is not implemented yet.
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
/// } Branch
/// Int Ops {
for (MVT IntVT : {MVT::i32, MVT::i64}) {
// VE has no REM or DIVREM operations.
setOperationAction(ISD::UREM, IntVT, Expand);
setOperationAction(ISD::SREM, IntVT, Expand);
setOperationAction(ISD::SDIVREM, IntVT, Expand);
setOperationAction(ISD::UDIVREM, IntVT, Expand);
// VE has no SHL_PARTS/SRA_PARTS/SRL_PARTS operations.
setOperationAction(ISD::SHL_PARTS, IntVT, Expand);
setOperationAction(ISD::SRA_PARTS, IntVT, Expand);
setOperationAction(ISD::SRL_PARTS, IntVT, Expand);
// VE has no MULHU/S or U/SMUL_LOHI operations.
// TODO: Use MPD instruction to implement SMUL_LOHI for i32 type.
setOperationAction(ISD::MULHU, IntVT, Expand);
setOperationAction(ISD::MULHS, IntVT, Expand);
setOperationAction(ISD::UMUL_LOHI, IntVT, Expand);
setOperationAction(ISD::SMUL_LOHI, IntVT, Expand);
// VE has no CTTZ, ROTL, ROTR operations.
setOperationAction(ISD::CTTZ, IntVT, Expand);
setOperationAction(ISD::ROTL, IntVT, Expand);
setOperationAction(ISD::ROTR, IntVT, Expand);
// VE has 64 bits instruction which works as i64 BSWAP operation. This
// instruction works fine as i32 BSWAP operation with an additional
// parameter. Use isel patterns to lower BSWAP.
setOperationAction(ISD::BSWAP, IntVT, Legal);
// VE has only 64 bits instructions which work as i64 BITREVERSE/CTLZ/CTPOP
// operations. Use isel patterns for i64, promote for i32.
LegalizeAction Act = (IntVT == MVT::i32) ? Promote : Legal;
setOperationAction(ISD::BITREVERSE, IntVT, Act);
setOperationAction(ISD::CTLZ, IntVT, Act);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, IntVT, Act);
setOperationAction(ISD::CTPOP, IntVT, Act);
// VE has only 64 bits instructions which work as i64 AND/OR/XOR operations.
// Use isel patterns for i64, promote for i32.
setOperationAction(ISD::AND, IntVT, Act);
setOperationAction(ISD::OR, IntVT, Act);
setOperationAction(ISD::XOR, IntVT, Act);
}
/// } Int Ops
/// Conversion {
// VE doesn't have instructions for fp<->uint, so expand them by llvm
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); // use i64
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); // use i64
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
// fp16 not supported
for (MVT FPVT : MVT::fp_valuetypes()) {
setOperationAction(ISD::FP16_TO_FP, FPVT, Expand);
setOperationAction(ISD::FP_TO_FP16, FPVT, Expand);
}
/// } Conversion
/// Floating-point Ops {
/// Note: Floating-point operations are fneg, fadd, fsub, fmul, fdiv, frem,
/// and fcmp.
// VE doesn't have following floating point operations.
for (MVT VT : MVT::fp_valuetypes()) {
setOperationAction(ISD::FNEG, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
}
// VE doesn't have fdiv of f128.
setOperationAction(ISD::FDIV, MVT::f128, Expand);
for (MVT FPVT : {MVT::f32, MVT::f64}) {
// f32 and f64 uses ConstantFP. f128 uses ConstantPool.
setOperationAction(ISD::ConstantFP, FPVT, Legal);
}
/// } Floating-point Ops
/// Floating-point math functions {
// VE doesn't have following floating point math functions.
for (MVT VT : MVT::fp_valuetypes()) {
setOperationAction(ISD::FABS, VT, Expand);
setOperationAction(ISD::FCOPYSIGN, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FSQRT, VT, Expand);
}
/// } Floating-point math functions
/// Atomic instructions {
setMaxAtomicSizeInBitsSupported(64);
setMinCmpXchgSizeInBits(32);
setSupportsUnalignedAtomics(false);
// Use custom inserter for ATOMIC_FENCE.
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
// Other atomic instructions.
for (MVT VT : MVT::integer_valuetypes()) {
// Support i8/i16 atomic swap.
setOperationAction(ISD::ATOMIC_SWAP, VT, Custom);
// FIXME: Support "atmam" instructions.
setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Expand);
// VE doesn't have follwing instructions.
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_CLR, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
}
/// } Atomic instructions
/// SJLJ instructions {
setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
if (TM.Options.ExceptionModel == ExceptionHandling::SjLj)
setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
/// } SJLJ instructions
// Intrinsic instructions
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
}
void VETargetLowering::initVPUActions() {
for (MVT LegalVecVT : AllVectorVTs) {
setOperationAction(ISD::BUILD_VECTOR, LegalVecVT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, LegalVecVT, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalVecVT, Legal);
// Translate all vector instructions with legal element types to VVP_*
// nodes.
// TODO We will custom-widen into VVP_* nodes in the future. While we are
// buildling the infrastructure for this, we only do this for legal vector
// VTs.
#define HANDLE_VP_TO_VVP(VP_OPC, VVP_NAME) \
setOperationAction(ISD::VP_OPC, LegalVecVT, Custom);
#define ADD_VVP_OP(VVP_NAME, ISD_NAME) \
setOperationAction(ISD::ISD_NAME, LegalVecVT, Custom);
#include "VVPNodes.def"
}
for (MVT LegalPackedVT : AllPackedVTs) {
setOperationAction(ISD::INSERT_VECTOR_ELT, LegalPackedVT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalPackedVT, Custom);
}
}
SDValue
VETargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
// CCValAssign - represent the assignment of the return value to locations.
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Analyze return values.
CCInfo.AnalyzeReturn(Outs, getReturnCC(CallConv));
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
assert(!VA.needsCustom() && "Unexpected custom lowering");
SDValue OutVal = OutVals[i];
// Integer return values must be sign or zero extended by the callee.
switch (VA.getLocInfo()) {
case CCValAssign::Full:
break;
case CCValAssign::SExt:
OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal);
break;
case CCValAssign::ZExt:
OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal);
break;
case CCValAssign::AExt:
OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal);
break;
case CCValAssign::BCvt: {
// Convert a float return value to i64 with padding.
// 63 31 0
// +------+------+
// | float| 0 |
// +------+------+
assert(VA.getLocVT() == MVT::i64);
assert(VA.getValVT() == MVT::f32);
SDValue Undef = SDValue(
DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0);
SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32);
OutVal = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
MVT::i64, Undef, OutVal, Sub_f32),
0);
break;
}
default:
llvm_unreachable("Unknown loc info!");
}
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag);
// Guarantee that all emitted copies are stuck together with flags.
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(VEISD::RET_FLAG, DL, MVT::Other, RetOps);
}
SDValue VETargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
// Get the base offset of the incoming arguments stack space.
unsigned ArgsBaseOffset = Subtarget->getRsaSize();
// Get the size of the preserved arguments area
unsigned ArgsPreserved = 64;
// Analyze arguments according to CC_VE.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
// Allocate the preserved area first.
CCInfo.AllocateStack(ArgsPreserved, Align(8));
// We already allocated the preserved area, so the stack offset computed
// by CC_VE would be correct now.
CCInfo.AnalyzeFormalArguments(Ins, getParamCC(CallConv, false));
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
assert(!VA.needsCustom() && "Unexpected custom lowering");
if (VA.isRegLoc()) {
// This argument is passed in a register.
// All integer register arguments are promoted by the caller to i64.
// Create a virtual register for the promoted live-in value.
Register VReg =
MF.addLiveIn(VA.getLocReg(), getRegClassFor(VA.getLocVT()));
SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT());
// The caller promoted the argument, so insert an Assert?ext SDNode so we
// won't promote the value again in this function.
switch (VA.getLocInfo()) {
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg,
DAG.getValueType(VA.getValVT()));
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg,
DAG.getValueType(VA.getValVT()));
break;
case CCValAssign::BCvt: {
// Extract a float argument from i64 with padding.
// 63 31 0
// +------+------+
// | float| 0 |
// +------+------+
assert(VA.getLocVT() == MVT::i64);
assert(VA.getValVT() == MVT::f32);
SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32);
Arg = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
MVT::f32, Arg, Sub_f32),
0);
break;
}
default:
break;
}
// Truncate the register down to the argument type.
if (VA.isExtInLoc())
Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
InVals.push_back(Arg);
continue;
}
// The registers are exhausted. This argument was passed on the stack.
assert(VA.isMemLoc());
// The CC_VE_Full/Half functions compute stack offsets relative to the
// beginning of the arguments area at %fp + the size of reserved area.
unsigned Offset = VA.getLocMemOffset() + ArgsBaseOffset;
unsigned ValSize = VA.getValVT().getSizeInBits() / 8;
// Adjust offset for a float argument by adding 4 since the argument is
// stored in 8 bytes buffer with offset like below. LLVM generates
// 4 bytes load instruction, so need to adjust offset here. This
// adjustment is required in only LowerFormalArguments. In LowerCall,
// a float argument is converted to i64 first, and stored as 8 bytes
// data, which is required by ABI, so no need for adjustment.
// 0 4
// +------+------+
// | empty| float|
// +------+------+
if (VA.getValVT() == MVT::f32)
Offset += 4;
int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true);
InVals.push_back(
DAG.getLoad(VA.getValVT(), DL, Chain,
DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())),
MachinePointerInfo::getFixedStack(MF, FI)));
}
if (!IsVarArg)
return Chain;
// This function takes variable arguments, some of which may have been passed
// in registers %s0-%s8.
//
// The va_start intrinsic needs to know the offset to the first variable
// argument.
// TODO: need to calculate offset correctly once we support f128.
unsigned ArgOffset = ArgLocs.size() * 8;
VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>();
// Skip the reserved area at the top of stack.
FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgsBaseOffset);
return Chain;
}
// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
Register VETargetLowering::getRegisterByName(const char *RegName, LLT VT,
const MachineFunction &MF) const {
Register Reg = StringSwitch<Register>(RegName)
.Case("sp", VE::SX11) // Stack pointer
.Case("fp", VE::SX9) // Frame pointer
.Case("sl", VE::SX8) // Stack limit
.Case("lr", VE::SX10) // Link register
.Case("tp", VE::SX14) // Thread pointer
.Case("outer", VE::SX12) // Outer regiser
.Case("info", VE::SX17) // Info area register
.Case("got", VE::SX15) // Global offset table register
.Case("plt", VE::SX16) // Procedure linkage table register
.Default(0);
if (Reg)
return Reg;
report_fatal_error("Invalid register name global variable");
}
//===----------------------------------------------------------------------===//
// TargetLowering Implementation
//===----------------------------------------------------------------------===//
SDValue VETargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc DL = CLI.DL;
SDValue Chain = CLI.Chain;
auto PtrVT = getPointerTy(DAG.getDataLayout());
// VE target does not yet support tail call optimization.
CLI.IsTailCall = false;
// Get the base offset of the outgoing arguments stack space.
unsigned ArgsBaseOffset = Subtarget->getRsaSize();
// Get the size of the preserved arguments area
unsigned ArgsPreserved = 8 * 8u;
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
// Allocate the preserved area first.
CCInfo.AllocateStack(ArgsPreserved, Align(8));
// We already allocated the preserved area, so the stack offset computed
// by CC_VE would be correct now.
CCInfo.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, false));
// VE requires to use both register and stack for varargs or no-prototyped
// functions.
bool UseBoth = CLI.IsVarArg;
// Analyze operands again if it is required to store BOTH.
SmallVector<CCValAssign, 16> ArgLocs2;
CCState CCInfo2(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(),
ArgLocs2, *DAG.getContext());
if (UseBoth)
CCInfo2.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, true));
// Get the size of the outgoing arguments stack space requirement.
unsigned ArgsSize = CCInfo.getNextStackOffset();
// Keep stack frames 16-byte aligned.
ArgsSize = alignTo(ArgsSize, 16);
// Adjust the stack pointer to make room for the arguments.
// FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls
// with more than 6 arguments.
Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL);
// Collect the set of registers to pass to the function and their values.
// This will be emitted as a sequence of CopyToReg nodes glued to the call
// instruction.
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
// Collect chains from all the memory opeations that copy arguments to the
// stack. They must follow the stack pointer adjustment above and precede the
// call instruction itself.
SmallVector<SDValue, 8> MemOpChains;
// VE needs to get address of callee function in a register
// So, prepare to copy it to SX12 here.
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
SDValue Callee = CLI.Callee;
bool IsPICCall = isPositionIndependent();
// PC-relative references to external symbols should go through $stub.
// If so, we need to prepare GlobalBaseReg first.
const TargetMachine &TM = DAG.getTarget();
const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
const GlobalValue *GV = nullptr;
auto *CalleeG = dyn_cast<GlobalAddressSDNode>(Callee);
if (CalleeG)
GV = CalleeG->getGlobal();
bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
bool UsePlt = !Local;
MachineFunction &MF = DAG.getMachineFunction();
// Turn GlobalAddress/ExternalSymbol node into a value node
// containing the address of them here.
if (CalleeG) {
if (IsPICCall) {
if (UsePlt)
Subtarget->getInstrInfo()->getGlobalBaseReg(&MF);
Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee);
} else {
Callee =
makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG);
}
} else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
if (IsPICCall) {
if (UsePlt)
Subtarget->getInstrInfo()->getGlobalBaseReg(&MF);
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0);
Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee);
} else {
Callee =
makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG);
}
}
RegsToPass.push_back(std::make_pair(VE::SX12, Callee));
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = CLI.OutVals[i];
// Promote the value if needed.
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown location info!");
case CCValAssign::Full:
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::BCvt: {
// Convert a float argument to i64 with padding.
// 63 31 0
// +------+------+
// | float| 0 |
// +------+------+
assert(VA.getLocVT() == MVT::i64);
assert(VA.getValVT() == MVT::f32);
SDValue Undef = SDValue(
DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0);
SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32);
Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
MVT::i64, Undef, Arg, Sub_f32),
0);
break;
}
}
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
if (!UseBoth)
continue;
VA = ArgLocs2[i];
}
assert(VA.isMemLoc());
// Create a store off the stack pointer for this argument.
SDValue StackPtr = DAG.getRegister(VE::SX11, PtrVT);
// The argument area starts at %fp/%sp + the size of reserved area.
SDValue PtrOff =
DAG.getIntPtrConstant(VA.getLocMemOffset() + ArgsBaseOffset, DL);
PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
MemOpChains.push_back(
DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
}
// Emit all stores, make sure they occur before the call.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
// Build a sequence of CopyToReg nodes glued together with token chain and
// glue operands which copy the outgoing args into registers. The InGlue is
// necessary since all emitted instructions must be stuck together in order
// to pass the live physical registers.
SDValue InGlue;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
RegsToPass[i].second, InGlue);
InGlue = Chain.getValue(1);
}
// Build the operands for the call instruction itself.
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
const VERegisterInfo *TRI = Subtarget->getRegisterInfo();
const uint32_t *Mask =
TRI->getCallPreservedMask(DAG.getMachineFunction(), CLI.CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
// Make sure the CopyToReg nodes are glued to the call instruction which
// consumes the registers.
if (InGlue.getNode())
Ops.push_back(InGlue);
// Now the call itself.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(VEISD::CALL, DL, NodeTys, Ops);
InGlue = Chain.getValue(1);
// Revert the stack pointer immediately after the call.
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true),
DAG.getIntPtrConstant(0, DL, true), InGlue, DL);
InGlue = Chain.getValue(1);
// Now extract the return values. This is more or less the same as
// LowerFormalArguments.
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Set inreg flag manually for codegen generated library calls that
// return float.
if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB)
CLI.Ins[0].Flags.setInReg();
RVInfo.AnalyzeCallResult(CLI.Ins, getReturnCC(CLI.CallConv));
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(!VA.needsCustom() && "Unexpected custom lowering");
Register Reg = VA.getLocReg();
// When returning 'inreg {i32, i32 }', two consecutive i32 arguments can
// reside in the same register in the high and low bits. Reuse the
// CopyFromReg previous node to avoid duplicate copies.
SDValue RV;
if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1)))
if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg)
RV = Chain.getValue(0);
// But usually we'll create a new CopyFromReg for a different register.
if (!RV.getNode()) {
RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue);
Chain = RV.getValue(1);
InGlue = Chain.getValue(2);
}
// The callee promoted the return value, so insert an Assert?ext SDNode so
// we won't promote the value again in this function.
switch (VA.getLocInfo()) {
case CCValAssign::SExt:
RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV,
DAG.getValueType(VA.getValVT()));
break;
case CCValAssign::ZExt:
RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV,
DAG.getValueType(VA.getValVT()));
break;
case CCValAssign::BCvt: {
// Extract a float return value from i64 with padding.
// 63 31 0
// +------+------+
// | float| 0 |
// +------+------+
assert(VA.getLocVT() == MVT::i64);
assert(VA.getValVT() == MVT::f32);
SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32);
RV = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
MVT::f32, RV, Sub_f32),
0);
break;
}
default:
break;
}
// Truncate the register down to the return value type.
if (VA.isExtInLoc())
RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV);
InVals.push_back(RV);
}
return Chain;
}
bool VETargetLowering::isOffsetFoldingLegal(
const GlobalAddressSDNode *GA) const {
// VE uses 64 bit addressing, so we need multiple instructions to generate
// an address. Folding address with offset increases the number of
// instructions, so that we disable it here. Offsets will be folded in
// the DAG combine later if it worth to do so.
return false;
}
/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool VETargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
bool ForCodeSize) const {
return VT == MVT::f32 || VT == MVT::f64;
}
/// Determine if the target supports unaligned memory accesses.
///
/// This function returns true if the target allows unaligned memory accesses
/// of the specified type in the given address space. If true, it also returns
/// whether the unaligned memory access is "fast" in the last argument by
/// reference. This is used, for example, in situations where an array
/// copy/move/set is converted to a sequence of store operations. Its use
/// helps to ensure that such replacements don't generate code that causes an
/// alignment error (trap) on the target machine.
bool VETargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
unsigned AddrSpace,
Align A,
MachineMemOperand::Flags,
bool *Fast) const {
if (Fast) {
// It's fast anytime on VE
*Fast = true;
}
return true;
}
VETargetLowering::VETargetLowering(const TargetMachine &TM,
const VESubtarget &STI)
: TargetLowering(TM), Subtarget(&STI) {
// Instructions which use registers as conditionals examine all the
// bits (as does the pseudo SELECT_CC expansion). I don't think it
// matters much whether it's ZeroOrOneBooleanContent, or
// ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the
// former.
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrOneBooleanContent);
initRegisterClasses();
initSPUActions();
initVPUActions();
setStackPointerRegisterToSaveRestore(VE::SX11);
// We have target-specific dag combine patterns for the following nodes:
setTargetDAGCombine(ISD::TRUNCATE);
// Set function alignment to 16 bytes
setMinFunctionAlignment(Align(16));
// VE stores all argument by 8 bytes alignment
setMinStackArgumentAlignment(Align(8));
computeRegisterProperties(Subtarget->getRegisterInfo());
}
const char *VETargetLowering::getTargetNodeName(unsigned Opcode) const {
#define TARGET_NODE_CASE(NAME) \
case VEISD::NAME: \
return "VEISD::" #NAME;
switch ((VEISD::NodeType)Opcode) {
case VEISD::FIRST_NUMBER:
break;
TARGET_NODE_CASE(CALL)
TARGET_NODE_CASE(EH_SJLJ_LONGJMP)
TARGET_NODE_CASE(EH_SJLJ_SETJMP)
TARGET_NODE_CASE(EH_SJLJ_SETUP_DISPATCH)
TARGET_NODE_CASE(GETFUNPLT)
TARGET_NODE_CASE(GETSTACKTOP)
TARGET_NODE_CASE(GETTLSADDR)
TARGET_NODE_CASE(GLOBAL_BASE_REG)
TARGET_NODE_CASE(Hi)
TARGET_NODE_CASE(Lo)
TARGET_NODE_CASE(MEMBARRIER)
TARGET_NODE_CASE(RET_FLAG)
TARGET_NODE_CASE(TS1AM)
TARGET_NODE_CASE(VEC_BROADCAST)
TARGET_NODE_CASE(REPL_I32)
TARGET_NODE_CASE(REPL_F32)
// Register the VVP_* SDNodes.
#define ADD_VVP_OP(VVP_NAME, ...) TARGET_NODE_CASE(VVP_NAME)
#include "VVPNodes.def"
}
#undef TARGET_NODE_CASE
return nullptr;
}
EVT VETargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
EVT VT) const {
return MVT::i32;
}
// Convert to a target node and set target flags.
SDValue VETargetLowering::withTargetFlags(SDValue Op, unsigned TF,
SelectionDAG &DAG) const {
if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
return DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA),
GA->getValueType(0), GA->getOffset(), TF);
if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op))
return DAG.getTargetBlockAddress(BA->getBlockAddress(), Op.getValueType(),
0, TF);
if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op))
return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0),
CP->getAlign(), CP->getOffset(), TF);
if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op))
return DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0),
TF);
if (const JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op))
return DAG.getTargetJumpTable(JT->getIndex(), JT->getValueType(0), TF);
llvm_unreachable("Unhandled address SDNode");
}
// Split Op into high and low parts according to HiTF and LoTF.
// Return an ADD node combining the parts.
SDValue VETargetLowering::makeHiLoPair(SDValue Op, unsigned HiTF, unsigned LoTF,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue Hi = DAG.getNode(VEISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG));
SDValue Lo = DAG.getNode(VEISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG));
return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
}
// Build SDNodes for producing an address from a GlobalAddress, ConstantPool,
// or ExternalSymbol SDNode.
SDValue VETargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT PtrVT = Op.getValueType();
// Handle PIC mode first. VE needs a got load for every variable!
if (isPositionIndependent()) {
auto GlobalN = dyn_cast<GlobalAddressSDNode>(Op);
if (isa<ConstantPoolSDNode>(Op) || isa<JumpTableSDNode>(Op) ||
(GlobalN && GlobalN->getGlobal()->hasLocalLinkage())) {
// Create following instructions for local linkage PIC code.
// lea %reg, label@gotoff_lo
// and %reg, %reg, (32)0
// lea.sl %reg, label@gotoff_hi(%reg, %got)
SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32,
VEMCExpr::VK_VE_GOTOFF_LO32, DAG);
SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT);
return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo);
}
// Create following instructions for not local linkage PIC code.
// lea %reg, label@got_lo
// and %reg, %reg, (32)0
// lea.sl %reg, label@got_hi(%reg)
// ld %reg, (%reg, %got)
SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOT_HI32,
VEMCExpr::VK_VE_GOT_LO32, DAG);
SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT);
SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo);
return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), AbsAddr,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
}
// This is one of the absolute code models.
switch (getTargetMachine().getCodeModel()) {
default:
llvm_unreachable("Unsupported absolute code model");
case CodeModel::Small:
case CodeModel::Medium:
case CodeModel::Large:
// abs64.
return makeHiLoPair(Op, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG);
}
}
/// Custom Lower {
// The mappings for emitLeading/TrailingFence for VE is designed by following
// http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
Instruction *VETargetLowering::emitLeadingFence(IRBuilderBase &Builder,
Instruction *Inst,
AtomicOrdering Ord) const {
switch (Ord) {
case AtomicOrdering::NotAtomic:
case AtomicOrdering::Unordered:
llvm_unreachable("Invalid fence: unordered/non-atomic");
case AtomicOrdering::Monotonic:
case AtomicOrdering::Acquire:
return nullptr; // Nothing to do
case AtomicOrdering::Release:
case AtomicOrdering::AcquireRelease:
return Builder.CreateFence(AtomicOrdering::Release);
case AtomicOrdering::SequentiallyConsistent:
if (!Inst->hasAtomicStore())
return nullptr; // Nothing to do
return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent);
}
llvm_unreachable("Unknown fence ordering in emitLeadingFence");
}
Instruction *VETargetLowering::emitTrailingFence(IRBuilderBase &Builder,
Instruction *Inst,
AtomicOrdering Ord) const {
switch (Ord) {
case AtomicOrdering::NotAtomic:
case AtomicOrdering::Unordered:
llvm_unreachable("Invalid fence: unordered/not-atomic");
case AtomicOrdering::Monotonic:
case AtomicOrdering::Release:
return nullptr; // Nothing to do
case AtomicOrdering::Acquire:
case AtomicOrdering::AcquireRelease:
return Builder.CreateFence(AtomicOrdering::Acquire);
case AtomicOrdering::SequentiallyConsistent:
return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent);
}
llvm_unreachable("Unknown fence ordering in emitTrailingFence");
}
SDValue VETargetLowering::lowerATOMIC_FENCE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
// VE uses Release consistency, so need a fence instruction if it is a
// cross-thread fence.
if (FenceSSID == SyncScope::System) {
switch (FenceOrdering) {
case AtomicOrdering::NotAtomic:
case AtomicOrdering::Unordered:
case AtomicOrdering::Monotonic:
// No need to generate fencem instruction here.
break;
case AtomicOrdering::Acquire:
// Generate "fencem 2" as acquire fence.
return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other,
DAG.getTargetConstant(2, DL, MVT::i32),
Op.getOperand(0)),
0);
case AtomicOrdering::Release:
// Generate "fencem 1" as release fence.
return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other,
DAG.getTargetConstant(1, DL, MVT::i32),
Op.getOperand(0)),
0);
case AtomicOrdering::AcquireRelease:
case AtomicOrdering::SequentiallyConsistent:
// Generate "fencem 3" as acq_rel and seq_cst fence.
// FIXME: "fencem 3" doesn't wait for for PCIe deveices accesses,
// so seq_cst may require more instruction for them.
return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other,
DAG.getTargetConstant(3, DL, MVT::i32),
Op.getOperand(0)),
0);
}
}
// MEMBARRIER is a compiler barrier; it codegens to a no-op.
return DAG.getNode(VEISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
}
TargetLowering::AtomicExpansionKind
VETargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
// We have TS1AM implementation for i8/i16/i32/i64, so use it.
if (AI->getOperation() == AtomicRMWInst::Xchg) {
return AtomicExpansionKind::None;
}
// FIXME: Support "ATMAM" instruction for LOAD_ADD/SUB/AND/OR.
// Otherwise, expand it using compare and exchange instruction to not call
// __sync_fetch_and_* functions.
return AtomicExpansionKind::CmpXChg;
}
static SDValue prepareTS1AM(SDValue Op, SelectionDAG &DAG, SDValue &Flag,
SDValue &Bits) {
SDLoc DL(Op);
AtomicSDNode *N = cast<AtomicSDNode>(Op);
SDValue Ptr = N->getOperand(1);
SDValue Val = N->getOperand(2);
EVT PtrVT = Ptr.getValueType();
bool Byte = N->getMemoryVT() == MVT::i8;
// Remainder = AND Ptr, 3
// Flag = 1 << Remainder ; If Byte is true (1 byte swap flag)
// Flag = 3 << Remainder ; If Byte is false (2 bytes swap flag)
// Bits = Remainder << 3
// NewVal = Val << Bits
SDValue Const3 = DAG.getConstant(3, DL, PtrVT);
SDValue Remainder = DAG.getNode(ISD::AND, DL, PtrVT, {Ptr, Const3});
SDValue Mask = Byte ? DAG.getConstant(1, DL, MVT::i32)
: DAG.getConstant(3, DL, MVT::i32);
Flag = DAG.getNode(ISD::SHL, DL, MVT::i32, {Mask, Remainder});
Bits = DAG.getNode(ISD::SHL, DL, PtrVT, {Remainder, Const3});
return DAG.getNode(ISD::SHL, DL, Val.getValueType(), {Val, Bits});
}
static SDValue finalizeTS1AM(SDValue Op, SelectionDAG &DAG, SDValue Data,
SDValue Bits) {
SDLoc DL(Op);
EVT VT = Data.getValueType();
bool Byte = cast<AtomicSDNode>(Op)->getMemoryVT() == MVT::i8;
// NewData = Data >> Bits
// Result = NewData & 0xff ; If Byte is true (1 byte)
// Result = NewData & 0xffff ; If Byte is false (2 bytes)
SDValue NewData = DAG.getNode(ISD::SRL, DL, VT, Data, Bits);
return DAG.getNode(ISD::AND, DL, VT,
{NewData, DAG.getConstant(Byte ? 0xff : 0xffff, DL, VT)});
}
SDValue VETargetLowering::lowerATOMIC_SWAP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
AtomicSDNode *N = cast<AtomicSDNode>(Op);
if (N->getMemoryVT() == MVT::i8) {
// For i8, use "ts1am"
// Input:
// ATOMIC_SWAP Ptr, Val, Order
//
// Output:
// Remainder = AND Ptr, 3
// Flag = 1 << Remainder ; 1 byte swap flag for TS1AM inst.
// Bits = Remainder << 3
// NewVal = Val << Bits
//
// Aligned = AND Ptr, -4
// Data = TS1AM Aligned, Flag, NewVal
//
// NewData = Data >> Bits
// Result = NewData & 0xff ; 1 byte result
SDValue Flag;
SDValue Bits;
SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits);
SDValue Ptr = N->getOperand(1);
SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(),
{Ptr, DAG.getConstant(-4, DL, MVT::i64)});
SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(),
DAG.getVTList(Op.getNode()->getValueType(0),
Op.getNode()->getValueType(1)),
{N->getChain(), Aligned, Flag, NewVal},
N->getMemOperand());
SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits);
SDValue Chain = TS1AM.getValue(1);
return DAG.getMergeValues({Result, Chain}, DL);
}
if (N->getMemoryVT() == MVT::i16) {
// For i16, use "ts1am"
SDValue Flag;
SDValue Bits;
SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits);
SDValue Ptr = N->getOperand(1);
SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(),
{Ptr, DAG.getConstant(-4, DL, MVT::i64)});
SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(),
DAG.getVTList(Op.getNode()->getValueType(0),
Op.getNode()->getValueType(1)),
{N->getChain(), Aligned, Flag, NewVal},
N->getMemOperand());
SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits);
SDValue Chain = TS1AM.getValue(1);
return DAG.getMergeValues({Result, Chain}, DL);
}
// Otherwise, let llvm legalize it.
return Op;
}
SDValue VETargetLowering::lowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
return makeAddress(Op, DAG);
}
SDValue VETargetLowering::lowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
return makeAddress(Op, DAG);
}
SDValue VETargetLowering::lowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
return makeAddress(Op, DAG);
}
SDValue
VETargetLowering::lowerToTLSGeneralDynamicModel(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
// Generate the following code:
// t1: ch,glue = callseq_start t0, 0, 0
// t2: i64,ch,glue = VEISD::GETTLSADDR t1, label, t1:1
// t3: ch,glue = callseq_end t2, 0, 0, t2:2
// t4: i64,ch,glue = CopyFromReg t3, Register:i64 $sx0, t3:1
SDValue Label = withTargetFlags(Op, 0, DAG);
EVT PtrVT = Op.getValueType();
// Lowering the machine isd will make sure everything is in the right
// location.
SDValue Chain = DAG.getEntryNode();
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask(
DAG.getMachineFunction(), CallingConv::C);
Chain = DAG.getCALLSEQ_START(Chain, 64, 0, DL);
SDValue Args[] = {Chain, Label, DAG.getRegisterMask(Mask), Chain.getValue(1)};
Chain = DAG.getNode(VEISD::GETTLSADDR, DL, NodeTys, Args);
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(64, DL, true),
DAG.getIntPtrConstant(0, DL, true),
Chain.getValue(1), DL);
Chain = DAG.getCopyFromReg(Chain, DL, VE::SX0, PtrVT, Chain.getValue(1));
// GETTLSADDR will be codegen'ed as call. Inform MFI that function has calls.
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setHasCalls(true);
// Also generate code to prepare a GOT register if it is PIC.
if (isPositionIndependent()) {
MachineFunction &MF = DAG.getMachineFunction();
Subtarget->getInstrInfo()->getGlobalBaseReg(&MF);
}
return Chain;
}
SDValue VETargetLowering::lowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
// The current implementation of nld (2.26) doesn't allow local exec model
// code described in VE-tls_v1.1.pdf (*1) as its input. Instead, we always
// generate the general dynamic model code sequence.
//
// *1: https://www.nec.com/en/global/prod/hpc/aurora/document/VE-tls_v1.1.pdf
return lowerToTLSGeneralDynamicModel(Op, DAG);
}
SDValue VETargetLowering::lowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
return makeAddress(Op, DAG);
}
// Lower a f128 load into two f64 loads.
static SDValue lowerLoadF128(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode());
assert(LdNode && LdNode->getOffset().isUndef() && "Unexpected node type");
unsigned Alignment = LdNode->getAlign().value();
if (Alignment > 8)
Alignment = 8;
SDValue Lo64 =
DAG.getLoad(MVT::f64, DL, LdNode->getChain(), LdNode->getBasePtr(),
LdNode->getPointerInfo(), Alignment,
LdNode->isVolatile() ? MachineMemOperand::MOVolatile
: MachineMemOperand::MONone);
EVT AddrVT = LdNode->getBasePtr().getValueType();
SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, LdNode->getBasePtr(),
DAG.getConstant(8, DL, AddrVT));
SDValue Hi64 =
DAG.getLoad(MVT::f64, DL, LdNode->getChain(), HiPtr,
LdNode->getPointerInfo(), Alignment,
LdNode->isVolatile() ? MachineMemOperand::MOVolatile
: MachineMemOperand::MONone);
SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32);
SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32);
// VE stores Hi64 to 8(addr) and Lo64 to 0(addr)
SDNode *InFP128 =
DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f128);
InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128,
SDValue(InFP128, 0), Hi64, SubRegEven);
InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128,
SDValue(InFP128, 0), Lo64, SubRegOdd);
SDValue OutChains[2] = {SDValue(Lo64.getNode(), 1),
SDValue(Hi64.getNode(), 1)};
SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
SDValue Ops[2] = {SDValue(InFP128, 0), OutChain};
return DAG.getMergeValues(Ops, DL);
}
SDValue VETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode());
SDValue BasePtr = LdNode->getBasePtr();
if (isa<FrameIndexSDNode>(BasePtr.getNode())) {
// Do not expand store instruction with frame index here because of
// dependency problems. We expand it later in eliminateFrameIndex().
return Op;
}
EVT MemVT = LdNode->getMemoryVT();
if (MemVT == MVT::f128)
return lowerLoadF128(Op, DAG);
return Op;
}
// Lower a f128 store into two f64 stores.
static SDValue lowerStoreF128(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode());
assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type");
SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32);
SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32);
SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64,
StNode->getValue(), SubRegEven);
SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64,
StNode->getValue(), SubRegOdd);
unsigned Alignment = StNode->getAlign().value();
if (Alignment > 8)
Alignment = 8;
// VE stores Hi64 to 8(addr) and Lo64 to 0(addr)
SDValue OutChains[2];
OutChains[0] =
DAG.getStore(StNode->getChain(), DL, SDValue(Lo64, 0),
StNode->getBasePtr(), MachinePointerInfo(), Alignment,
StNode->isVolatile() ? MachineMemOperand::MOVolatile
: MachineMemOperand::MONone);
EVT AddrVT = StNode->getBasePtr().getValueType();
SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, StNode->getBasePtr(),
DAG.getConstant(8, DL, AddrVT));
OutChains[1] =
DAG.getStore(StNode->getChain(), DL, SDValue(Hi64, 0), HiPtr,
MachinePointerInfo(), Alignment,
StNode->isVolatile() ? MachineMemOperand::MOVolatile
: MachineMemOperand::MONone);
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
}
SDValue VETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode());
assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type");
SDValue BasePtr = StNode->getBasePtr();
if (isa<FrameIndexSDNode>(BasePtr.getNode())) {
// Do not expand store instruction with frame index here because of
// dependency problems. We expand it later in eliminateFrameIndex().
return Op;
}
EVT MemVT = StNode->getMemoryVT();
if (MemVT == MVT::f128)
return lowerStoreF128(Op, DAG);
// Otherwise, ask llvm to expand it.
return SDValue();
}
SDValue VETargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>();
auto PtrVT = getPointerTy(DAG.getDataLayout());
// Need frame address to find the address of VarArgsFrameIndex.
MF.getFrameInfo().setFrameAddressIsTaken(true);
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
SDLoc DL(Op);
SDValue Offset =
DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(VE::SX9, PtrVT),
DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL));
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1),
MachinePointerInfo(SV));
}
SDValue VETargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
SDNode *Node = Op.getNode();
EVT VT = Node->getValueType(0);
SDValue InChain = Node->getOperand(0);
SDValue VAListPtr = Node->getOperand(1);
EVT PtrVT = VAListPtr.getValueType();
const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
SDLoc DL(Node);
SDValue VAList =
DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV));
SDValue Chain = VAList.getValue(1);
SDValue NextPtr;
if (VT == MVT::f128) {
// VE f128 values must be stored with 16 bytes alignment. We doesn't
// know the actual alignment of VAList, so we take alignment of it
// dyanmically.
int Align = 16;
VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
DAG.getConstant(Align - 1, DL, PtrVT));
VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
DAG.getConstant(-Align, DL, PtrVT));
// Increment the pointer, VAList, by 16 to the next vaarg.
NextPtr =
DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(16, DL));
} else if (VT == MVT::f32) {
// float --> need special handling like below.
// 0 4
// +------+------+
// | empty| float|
// +------+------+
// Increment the pointer, VAList, by 8 to the next vaarg.
NextPtr =
DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL));
// Then, adjust VAList.
unsigned InternalOffset = 4;
VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
DAG.getConstant(InternalOffset, DL, PtrVT));
} else {
// Increment the pointer, VAList, by 8 to the next vaarg.
NextPtr =
DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL));
}
// Store the incremented VAList to the legalized pointer.
InChain = DAG.getStore(Chain, DL, NextPtr, VAListPtr, MachinePointerInfo(SV));
// Load the actual argument out of the pointer VAList.
// We can't count on greater alignment than the word size.
return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(),
std::min(PtrVT.getSizeInBits(), VT.getSizeInBits()) / 8);
}
SDValue VETargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
// Generate following code.
// (void)__llvm_grow_stack(size);
// ret = GETSTACKTOP; // pseudo instruction
SDLoc DL(Op);
// Get the inputs.
SDNode *Node = Op.getNode();
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
MaybeAlign Alignment(Op.getConstantOperandVal(2));
EVT VT = Node->getValueType(0);
// Chain the dynamic stack allocation so that it doesn't modify the stack
// pointer when other instructions are using the stack.
Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
Align StackAlign = TFI.getStackAlign();
bool NeedsAlign = Alignment.valueOrOne() > StackAlign;
// Prepare arguments
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Size;
Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
Args.push_back(Entry);
if (NeedsAlign) {
Entry.Node = DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT);
Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
Args.push_back(Entry);
}
Type *RetTy = Type::getVoidTy(*DAG.getContext());
EVT PtrVT = Op.getValueType();
SDValue Callee;
if (NeedsAlign) {
Callee = DAG.getTargetExternalSymbol("__ve_grow_stack_align", PtrVT, 0);
} else {
Callee = DAG.getTargetExternalSymbol("__ve_grow_stack", PtrVT, 0);
}
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(DL)
.setChain(Chain)
.setCallee(CallingConv::PreserveAll, RetTy, Callee, std::move(Args))
.setDiscardResult(true);
std::pair<SDValue, SDValue> pair = LowerCallTo(CLI);
Chain = pair.second;
SDValue Result = DAG.getNode(VEISD::GETSTACKTOP, DL, VT, Chain);
if (NeedsAlign) {
Result = DAG.getNode(ISD::ADD, DL, VT, Result,
DAG.getConstant((Alignment->value() - 1ULL), DL, VT));
Result = DAG.getNode(ISD::AND, DL, VT, Result,
DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT));
}
// Chain = Result.getValue(1);
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true),
DAG.getIntPtrConstant(0, DL, true), SDValue(), DL);
SDValue Ops[2] = {Result, Chain};
return DAG.getMergeValues(Ops, DL);
}
SDValue VETargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
return DAG.getNode(VEISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0),
Op.getOperand(1));
}
SDValue VETargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
return DAG.getNode(VEISD::EH_SJLJ_SETJMP, DL,
DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
Op.getOperand(1));
}
SDValue VETargetLowering::lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
return DAG.getNode(VEISD::EH_SJLJ_SETUP_DISPATCH, DL, MVT::Other,
Op.getOperand(0));
}
static SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG,
const VETargetLowering &TLI,
const VESubtarget *Subtarget) {
SDLoc DL(Op);
MachineFunction &MF = DAG.getMachineFunction();
EVT PtrVT = TLI.getPointerTy(MF.getDataLayout());
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setFrameAddressIsTaken(true);
unsigned Depth = Op.getConstantOperandVal(0);
const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo();
Register FrameReg = RegInfo->getFrameRegister(MF);
SDValue FrameAddr =
DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, PtrVT);
while (Depth--)
FrameAddr = DAG.getLoad(Op.getValueType(), DL, DAG.getEntryNode(),
FrameAddr, MachinePointerInfo());
return FrameAddr;
}
static SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG,
const VETargetLowering &TLI,
const VESubtarget *Subtarget) {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setReturnAddressIsTaken(true);
if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
SDValue FrameAddr = lowerFRAMEADDR(Op, DAG, TLI, Subtarget);
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue Offset = DAG.getConstant(8, DL, VT);
return DAG.getLoad(VT, DL, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
MachinePointerInfo());
}
SDValue VETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
switch (IntNo) {
default: // Don't custom lower most intrinsics.
return SDValue();
case Intrinsic::eh_sjlj_lsda: {
MachineFunction &MF = DAG.getMachineFunction();
MVT VT = Op.getSimpleValueType();
const VETargetMachine *TM =
static_cast<const VETargetMachine *>(&DAG.getTarget());
// Create GCC_except_tableXX string. The real symbol for that will be
// generated in EHStreamer::emitExceptionTable() later. So, we just
// borrow it's name here.
TM->getStrList()->push_back(std::string(
(Twine("GCC_except_table") + Twine(MF.getFunctionNumber())).str()));
SDValue Addr =
DAG.getTargetExternalSymbol(TM->getStrList()->back().c_str(), VT, 0);
if (isPositionIndependent()) {
Addr = makeHiLoPair(Addr, VEMCExpr::VK_VE_GOTOFF_HI32,
VEMCExpr::VK_VE_GOTOFF_LO32, DAG);
SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, VT);
return DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Addr);
}
return makeHiLoPair(Addr, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG);
}
}
}
static bool getUniqueInsertion(SDNode *N, unsigned &UniqueIdx) {
if (!isa<BuildVectorSDNode>(N))
return false;
const auto *BVN = cast<BuildVectorSDNode>(N);
// Find first non-undef insertion.
unsigned Idx;
for (Idx = 0; Idx < BVN->getNumOperands(); ++Idx) {
auto ElemV = BVN->getOperand(Idx);
if (!ElemV->isUndef())
break;
}
// Catch the (hypothetical) all-undef case.
if (Idx == BVN->getNumOperands())
return false;
// Remember insertion.
UniqueIdx = Idx++;
// Verify that all other insertions are undef.
for (; Idx < BVN->getNumOperands(); ++Idx) {
auto ElemV = BVN->getOperand(Idx);
if (!ElemV->isUndef())
return false;
}
return true;
}
static SDValue getSplatValue(SDNode *N) {
if (auto *BuildVec = dyn_cast<BuildVectorSDNode>(N)) {
return BuildVec->getSplatValue();
}
return SDValue();
}
SDValue VETargetLowering::lowerBUILD_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
VECustomDAG CDAG(DAG, Op);
MVT ResultVT = Op.getSimpleValueType();
// If there is just one element, expand to INSERT_VECTOR_ELT.
unsigned UniqueIdx;
if (getUniqueInsertion(Op.getNode(), UniqueIdx)) {
SDValue AccuV = CDAG.getUNDEF(Op.getValueType());
auto ElemV = Op->getOperand(UniqueIdx);
SDValue IdxV = CDAG.getConstant(UniqueIdx, MVT::i64);
return CDAG.getNode(ISD::INSERT_VECTOR_ELT, ResultVT, {AccuV, ElemV, IdxV});
}
// Else emit a broadcast.
if (SDValue ScalarV = getSplatValue(Op.getNode())) {
unsigned NumEls = ResultVT.getVectorNumElements();
// TODO: Legalize packed-mode AVL.
// For now, cap the AVL at 256.
auto CappedLength = std::min<unsigned>(256, NumEls);
auto AVL = CDAG.getConstant(CappedLength, MVT::i32);
return CDAG.getBroadcast(ResultVT, Op.getOperand(0), AVL);
}
// Expand
return SDValue();
}
SDValue VETargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
unsigned Opcode = Op.getOpcode();
if (ISD::isVPOpcode(Opcode))
return lowerToVVP(Op, DAG);
switch (Opcode) {
default:
llvm_unreachable("Should not custom lower this!");
case ISD::ATOMIC_FENCE:
return lowerATOMIC_FENCE(Op, DAG);
case ISD::ATOMIC_SWAP:
return lowerATOMIC_SWAP(Op, DAG);
case ISD::BlockAddress:
return lowerBlockAddress(Op, DAG);
case ISD::ConstantPool:
return lowerConstantPool(Op, DAG);
case ISD::DYNAMIC_STACKALLOC:
return lowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::EH_SJLJ_LONGJMP:
return lowerEH_SJLJ_LONGJMP(Op, DAG);
case ISD::EH_SJLJ_SETJMP:
return lowerEH_SJLJ_SETJMP(Op, DAG);
case ISD::EH_SJLJ_SETUP_DISPATCH:
return lowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
case ISD::FRAMEADDR:
return lowerFRAMEADDR(Op, DAG, *this, Subtarget);
case ISD::GlobalAddress:
return lowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress:
return lowerGlobalTLSAddress(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN:
return lowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::JumpTable:
return lowerJumpTable(Op, DAG);
case ISD::LOAD:
return lowerLOAD(Op, DAG);
case ISD::RETURNADDR:
return lowerRETURNADDR(Op, DAG, *this, Subtarget);
case ISD::BUILD_VECTOR:
return lowerBUILD_VECTOR(Op, DAG);
case ISD::STORE:
return lowerSTORE(Op, DAG);
case ISD::VASTART:
return lowerVASTART(Op, DAG);
case ISD::VAARG:
return lowerVAARG(Op, DAG);
case ISD::INSERT_VECTOR_ELT:
return lowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT:
return lowerEXTRACT_VECTOR_ELT(Op, DAG);
#define ADD_VVP_OP(VVP_NAME, ISD_NAME) case ISD::ISD_NAME:
#include "VVPNodes.def"
return lowerToVVP(Op, DAG);
}
}
/// } Custom Lower
void VETargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
switch (N->getOpcode()) {
case ISD::ATOMIC_SWAP:
// Let LLVM expand atomic swap instruction through LowerOperation.
return;
default:
LLVM_DEBUG(N->dumpr(&DAG));
llvm_unreachable("Do not know how to custom type legalize this operation!");
}
}
/// JumpTable for VE.
///
/// VE cannot generate relocatable symbol in jump table. VE cannot
/// generate expressions using symbols in both text segment and data
/// segment like below.
/// .4byte .LBB0_2-.LJTI0_0
/// So, we generate offset from the top of function like below as
/// a custom label.
/// .4byte .LBB0_2-<function name>
unsigned VETargetLowering::getJumpTableEncoding() const {
// Use custom label for PIC.
if (isPositionIndependent())
return MachineJumpTableInfo::EK_Custom32;
// Otherwise, use the normal jump table encoding heuristics.
return TargetLowering::getJumpTableEncoding();
}
const MCExpr *VETargetLowering::LowerCustomJumpTableEntry(
const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
unsigned Uid, MCContext &Ctx) const {
assert(isPositionIndependent());
// Generate custom label for PIC like below.
// .4bytes .LBB0_2-<function name>
const auto *Value = MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
MCSymbol *Sym = Ctx.getOrCreateSymbol(MBB->getParent()->getName().data());
const auto *Base = MCSymbolRefExpr::create(Sym, Ctx);
return MCBinaryExpr::createSub(Value, Base, Ctx);
}
SDValue VETargetLowering::getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const {
assert(isPositionIndependent());
SDLoc DL(Table);
Function *Function = &DAG.getMachineFunction().getFunction();
assert(Function != nullptr);
auto PtrTy = getPointerTy(DAG.getDataLayout(), Function->getAddressSpace());
// In the jump table, we have following values in PIC mode.
// .4bytes .LBB0_2-<function name>
// We need to add this value and the address of this function to generate
// .LBB0_2 label correctly under PIC mode. So, we want to generate following
// instructions:
// lea %reg, fun@gotoff_lo
// and %reg, %reg, (32)0
// lea.sl %reg, fun@gotoff_hi(%reg, %got)
// In order to do so, we need to genarate correctly marked DAG node using
// makeHiLoPair.
SDValue Op = DAG.getGlobalAddress(Function, DL, PtrTy);
SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32,
VEMCExpr::VK_VE_GOTOFF_LO32, DAG);
SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrTy);
return DAG.getNode(ISD::ADD, DL, PtrTy, GlobalBase, HiLo);
}
Register VETargetLowering::prepareMBB(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
MachineBasicBlock *TargetBB,
const DebugLoc &DL) const {
MachineFunction *MF = MBB.getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
const VEInstrInfo *TII = Subtarget->getInstrInfo();
const TargetRegisterClass *RC = &VE::I64RegClass;
Register Tmp1 = MRI.createVirtualRegister(RC);
Register Tmp2 = MRI.createVirtualRegister(RC);
Register Result = MRI.createVirtualRegister(RC);
if (isPositionIndependent()) {
// Create following instructions for local linkage PIC code.
// lea %Tmp1, TargetBB@gotoff_lo
// and %Tmp2, %Tmp1, (32)0
// lea.sl %Result, TargetBB@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT
BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1)
.addImm(0)
.addImm(0)
.addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_LO32);
BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2)
.addReg(Tmp1, getKillRegState(true))
.addImm(M0(32));
BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result)
.addReg(VE::SX15)
.addReg(Tmp2, getKillRegState(true))
.addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_HI32);
} else {
// Create following instructions for non-PIC code.
// lea %Tmp1, TargetBB@lo
// and %Tmp2, %Tmp1, (32)0
// lea.sl %Result, TargetBB@hi(%Tmp2)
BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1)
.addImm(0)
.addImm(0)
.addMBB(TargetBB, VEMCExpr::VK_VE_LO32);
BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2)
.addReg(Tmp1, getKillRegState(true))
.addImm(M0(32));
BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result)
.addReg(Tmp2, getKillRegState(true))
.addImm(0)
.addMBB(TargetBB, VEMCExpr::VK_VE_HI32);
}
return Result;
}
Register VETargetLowering::prepareSymbol(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
StringRef Symbol, const DebugLoc &DL,
bool IsLocal = false,
bool IsCall = false) const {
MachineFunction *MF = MBB.getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
const VEInstrInfo *TII = Subtarget->getInstrInfo();
const TargetRegisterClass *RC = &VE::I64RegClass;
Register Result = MRI.createVirtualRegister(RC);
if (isPositionIndependent()) {
if (IsCall && !IsLocal) {
// Create following instructions for non-local linkage PIC code function
// calls. These instructions uses IC and magic number -24, so we expand
// them in VEAsmPrinter.cpp from GETFUNPLT pseudo instruction.
// lea %Reg, Symbol@plt_lo(-24)
// and %Reg, %Reg, (32)0
// sic %s16
// lea.sl %Result, Symbol@plt_hi(%Reg, %s16) ; %s16 is PLT
BuildMI(MBB, I, DL, TII->get(VE::GETFUNPLT), Result)
.addExternalSymbol("abort");
} else if (IsLocal) {
Register Tmp1 = MRI.createVirtualRegister(RC);
Register Tmp2 = MRI.createVirtualRegister(RC);
// Create following instructions for local linkage PIC code.
// lea %Tmp1, Symbol@gotoff_lo
// and %Tmp2, %Tmp1, (32)0
// lea.sl %Result, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT
BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1)
.addImm(0)
.addImm(0)
.addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_LO32);
BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2)
.addReg(Tmp1, getKillRegState(true))
.addImm(M0(32));
BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result)
.addReg(VE::SX15)
.addReg(Tmp2, getKillRegState(true))
.addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_HI32);
} else {
Register Tmp1 = MRI.createVirtualRegister(RC);
Register Tmp2 = MRI.createVirtualRegister(RC);
// Create following instructions for not local linkage PIC code.
// lea %Tmp1, Symbol@got_lo
// and %Tmp2, %Tmp1, (32)0
// lea.sl %Tmp3, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT
// ld %Result, 0(%Tmp3)
Register Tmp3 = MRI.createVirtualRegister(RC);
BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1)
.addImm(0)
.addImm(0)
.addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_LO32);
BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2)
.addReg(Tmp1, getKillRegState(true))
.addImm(M0(32));
BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Tmp3)
.addReg(VE::SX15)
.addReg(Tmp2, getKillRegState(true))
.addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_HI32);
BuildMI(MBB, I, DL, TII->get(VE::LDrii), Result)
.addReg(Tmp3, getKillRegState(true))
.addImm(0)
.addImm(0);
}
} else {
Register Tmp1 = MRI.createVirtualRegister(RC);
Register Tmp2 = MRI.createVirtualRegister(RC);
// Create following instructions for non-PIC code.
// lea %Tmp1, Symbol@lo
// and %Tmp2, %Tmp1, (32)0
// lea.sl %Result, Symbol@hi(%Tmp2)
BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1)
.addImm(0)
.addImm(0)
.addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_LO32);
BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2)
.addReg(Tmp1, getKillRegState(true))
.addImm(M0(32));
BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result)
.addReg(Tmp2, getKillRegState(true))
.addImm(0)
.addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_HI32);
}
return Result;
}
void VETargetLowering::setupEntryBlockForSjLj(MachineInstr &MI,
MachineBasicBlock *MBB,
MachineBasicBlock *DispatchBB,
int FI, int Offset) const {
DebugLoc DL = MI.getDebugLoc();
const VEInstrInfo *TII = Subtarget->getInstrInfo();
Register LabelReg =
prepareMBB(*MBB, MachineBasicBlock::iterator(MI), DispatchBB, DL);
// Store an address of DispatchBB to a given jmpbuf[1] where has next IC
// referenced by longjmp (throw) later.
MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii));
addFrameReference(MIB, FI, Offset); // jmpbuf[1]
MIB.addReg(LabelReg, getKillRegState(true));
}
MachineBasicBlock *
VETargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
MachineRegisterInfo &MRI = MF->getRegInfo();
const BasicBlock *BB = MBB->getBasicBlock();
MachineFunction::iterator I = ++MBB->getIterator();
// Memory Reference.
SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(),
MI.memoperands_end());
Register BufReg = MI.getOperand(1).getReg();
Register DstReg;
DstReg = MI.getOperand(0).getReg();
const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
(void)TRI;
Register MainDestReg = MRI.createVirtualRegister(RC);
Register RestoreDestReg = MRI.createVirtualRegister(RC);
// For `v = call @llvm.eh.sjlj.setjmp(buf)`, we generate following
// instructions. SP/FP must be saved in jmpbuf before `llvm.eh.sjlj.setjmp`.
//
// ThisMBB:
// buf[3] = %s17 iff %s17 is used as BP
// buf[1] = RestoreMBB as IC after longjmp
// # SjLjSetup RestoreMBB
//
// MainMBB:
// v_main = 0
//
// SinkMBB:
// v = phi(v_main, MainMBB, v_restore, RestoreMBB)
// ...
//
// RestoreMBB:
// %s17 = buf[3] = iff %s17 is used as BP
// v_restore = 1
// goto SinkMBB
MachineBasicBlock *ThisMBB = MBB;
MachineBasicBlock *MainMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *SinkMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *RestoreMBB = MF->CreateMachineBasicBlock(BB);
MF->insert(I, MainMBB);
MF->insert(I, SinkMBB);
MF->push_back(RestoreMBB);
RestoreMBB->setHasAddressTaken();
// Transfer the remainder of BB and its successor edges to SinkMBB.
SinkMBB->splice(SinkMBB->begin(), MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
SinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
// ThisMBB:
Register LabelReg =
prepareMBB(*MBB, MachineBasicBlock::iterator(MI), RestoreMBB, DL);
// Store BP in buf[3] iff this function is using BP.
const VEFrameLowering *TFI = Subtarget->getFrameLowering();
if (TFI->hasBP(*MF)) {
MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii));
MIB.addReg(BufReg);
MIB.addImm(0);
MIB.addImm(24);
MIB.addReg(VE::SX17);
MIB.setMemRefs(MMOs);
}
// Store IP in buf[1].
MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii));
MIB.add(MI.getOperand(1)); // we can preserve the kill flags here.
MIB.addImm(0);
MIB.addImm(8);
MIB.addReg(LabelReg, getKillRegState(true));
MIB.setMemRefs(MMOs);
// SP/FP are already stored in jmpbuf before `llvm.eh.sjlj.setjmp`.
// Insert setup.
MIB =
BuildMI(*ThisMBB, MI, DL, TII->get(VE::EH_SjLj_Setup)).addMBB(RestoreMBB);
const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo();
MIB.addRegMask(RegInfo->getNoPreservedMask());
ThisMBB->addSuccessor(MainMBB);
ThisMBB->addSuccessor(RestoreMBB);
// MainMBB:
BuildMI(MainMBB, DL, TII->get(VE::LEAzii), MainDestReg)
.addImm(0)
.addImm(0)
.addImm(0);
MainMBB->addSuccessor(SinkMBB);
// SinkMBB:
BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII->get(VE::PHI), DstReg)
.addReg(MainDestReg)
.addMBB(MainMBB)
.addReg(RestoreDestReg)
.addMBB(RestoreMBB);
// RestoreMBB:
// Restore BP from buf[3] iff this function is using BP. The address of
// buf is in SX10.
// FIXME: Better to not use SX10 here
if (TFI->hasBP(*MF)) {
MachineInstrBuilder MIB =
BuildMI(RestoreMBB, DL, TII->get(VE::LDrii), VE::SX17);
MIB.addReg(VE::SX10);
MIB.addImm(0);
MIB.addImm(24);
MIB.setMemRefs(MMOs);
}
BuildMI(RestoreMBB, DL, TII->get(VE::LEAzii), RestoreDestReg)
.addImm(0)
.addImm(0)
.addImm(1);
BuildMI(RestoreMBB, DL, TII->get(VE::BRCFLa_t)).addMBB(SinkMBB);
RestoreMBB->addSuccessor(SinkMBB);
MI.eraseFromParent();
return SinkMBB;
}
MachineBasicBlock *
VETargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineRegisterInfo &MRI = MF->getRegInfo();
// Memory Reference.
SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(),
MI.memoperands_end());
Register BufReg = MI.getOperand(0).getReg();
Register Tmp = MRI.createVirtualRegister(&VE::I64RegClass);
// Since FP is only updated here but NOT referenced, it's treated as GPR.
Register FP = VE::SX9;
Register SP = VE::SX11;
MachineInstrBuilder MIB;
MachineBasicBlock *ThisMBB = MBB;
// For `call @llvm.eh.sjlj.longjmp(buf)`, we generate following instructions.
//
// ThisMBB:
// %fp = load buf[0]
// %jmp = load buf[1]
// %s10 = buf ; Store an address of buf to SX10 for RestoreMBB
// %sp = load buf[2] ; generated by llvm.eh.sjlj.setjmp.
// jmp %jmp
// Reload FP.
MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), FP);
MIB.addReg(BufReg);
MIB.addImm(0);
MIB.addImm(0);
MIB.setMemRefs(MMOs);
// Reload IP.
MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), Tmp);
MIB.addReg(BufReg);
MIB.addImm(0);
MIB.addImm(8);
MIB.setMemRefs(MMOs);
// Copy BufReg to SX10 for later use in setjmp.
// FIXME: Better to not use SX10 here
BuildMI(*ThisMBB, MI, DL, TII->get(VE::ORri), VE::SX10)
.addReg(BufReg)
.addImm(0);
// Reload SP.
MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), SP);
MIB.add(MI.getOperand(0)); // we can preserve the kill flags here.
MIB.addImm(0);
MIB.addImm(16);
MIB.setMemRefs(MMOs);
// Jump.
BuildMI(*ThisMBB, MI, DL, TII->get(VE::BCFLari_t))
.addReg(Tmp, getKillRegState(true))
.addImm(0);
MI.eraseFromParent();
return ThisMBB;
}
MachineBasicBlock *
VETargetLowering::emitSjLjDispatchBlock(MachineInstr &MI,
MachineBasicBlock *BB) const {
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = BB->getParent();
MachineFrameInfo &MFI = MF->getFrameInfo();
MachineRegisterInfo &MRI = MF->getRegInfo();
const VEInstrInfo *TII = Subtarget->getInstrInfo();
int FI = MFI.getFunctionContextIndex();
// Get a mapping of the call site numbers to all of the landing pads they're
// associated with.
DenseMap<unsigned, SmallVector<MachineBasicBlock *, 2>> CallSiteNumToLPad;
unsigned MaxCSNum = 0;
for (auto &MBB : *MF) {
if (!MBB.isEHPad())
continue;
MCSymbol *Sym = nullptr;
for (const auto &MI : MBB) {
if (MI.isDebugInstr())
continue;
assert(MI.isEHLabel() && "expected EH_LABEL");
Sym = MI.getOperand(0).getMCSymbol();
break;
}
if (!MF->hasCallSiteLandingPad(Sym))
continue;
for (unsigned CSI : MF->getCallSiteLandingPad(Sym)) {
CallSiteNumToLPad[CSI].push_back(&MBB);
MaxCSNum = std::max(MaxCSNum, CSI);
}
}
// Get an ordered list of the machine basic blocks for the jump table.
std::vector<MachineBasicBlock *> LPadList;
SmallPtrSet<MachineBasicBlock *, 32> InvokeBBs;
LPadList.reserve(CallSiteNumToLPad.size());
for (unsigned CSI = 1; CSI <= MaxCSNum; ++CSI) {
for (auto &LP : CallSiteNumToLPad[CSI]) {
LPadList.push_back(LP);
InvokeBBs.insert(LP->pred_begin(), LP->pred_end());
}
}
assert(!LPadList.empty() &&
"No landing pad destinations for the dispatch jump table!");
// The %fn_context is allocated like below (from --print-after=sjljehprepare):
// %fn_context = alloca { i8*, i64, [4 x i64], i8*, i8*, [5 x i8*] }
//
// This `[5 x i8*]` is jmpbuf, so jmpbuf[1] is FI+72.
// First `i64` is callsite, so callsite is FI+8.
static const int OffsetIC = 72;
static const int OffsetCS = 8;
// Create the MBBs for the dispatch code like following:
//
// ThisMBB:
// Prepare DispatchBB address and store it to buf[1].
// ...
//
// DispatchBB:
// %s15 = GETGOT iff isPositionIndependent
// %callsite = load callsite
// brgt.l.t #size of callsites, %callsite, DispContBB
//
// TrapBB:
// Call abort.
//
// DispContBB:
// %breg = address of jump table
// %pc = load and calculate next pc from %breg and %callsite
// jmp %pc
// Shove the dispatch's address into the return slot in the function context.
MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
DispatchBB->setIsEHPad(true);
// Trap BB will causes trap like `assert(0)`.
MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
DispatchBB->addSuccessor(TrapBB);
MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
DispatchBB->addSuccessor(DispContBB);
// Insert MBBs.
MF->push_back(DispatchBB);
MF->push_back(DispContBB);
MF->push_back(TrapBB);
// Insert code to call abort in the TrapBB.
Register Abort = prepareSymbol(*TrapBB, TrapBB->end(), "abort", DL,
/* Local */ false, /* Call */ true);
BuildMI(TrapBB, DL, TII->get(VE::BSICrii), VE::SX10)
.addReg(Abort, getKillRegState(true))
.addImm(0)
.addImm(0);
// Insert code into the entry block that creates and registers the function
// context.
setupEntryBlockForSjLj(MI, BB, DispatchBB, FI, OffsetIC);
// Create the jump table and associated information
unsigned JTE = getJumpTableEncoding();
MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(JTE);
unsigned MJTI = JTI->createJumpTableIndex(LPadList);
const VERegisterInfo &RI = TII->getRegisterInfo();
// Add a register mask with no preserved registers. This results in all
// registers being marked as clobbered.
BuildMI(DispatchBB, DL, TII->get(VE::NOP))
.addRegMask(RI.getNoPreservedMask());
if (isPositionIndependent()) {
// Force to generate GETGOT, since current implementation doesn't store GOT
// register.
BuildMI(DispatchBB, DL, TII->get(VE::GETGOT), VE::SX15);
}
// IReg is used as an index in a memory operand and therefore can't be SP
const TargetRegisterClass *RC = &VE::I64RegClass;
Register IReg = MRI.createVirtualRegister(RC);
addFrameReference(BuildMI(DispatchBB, DL, TII->get(VE::LDLZXrii), IReg), FI,
OffsetCS);
if (LPadList.size() < 64) {
BuildMI(DispatchBB, DL, TII->get(VE::BRCFLir_t))
.addImm(VECC::CC_ILE)
.addImm(LPadList.size())
.addReg(IReg)
.addMBB(TrapBB);
} else {
assert(LPadList.size() <= 0x7FFFFFFF && "Too large Landing Pad!");
Register TmpReg = MRI.createVirtualRegister(RC);
BuildMI(DispatchBB, DL, TII->get(VE::LEAzii), TmpReg)
.addImm(0)
.addImm(0)
.addImm(LPadList.size());
BuildMI(DispatchBB, DL, TII->get(VE::BRCFLrr_t))
.addImm(VECC::CC_ILE)
.addReg(TmpReg, getKillRegState(true))
.addReg(IReg)
.addMBB(TrapBB);
}
Register BReg = MRI.createVirtualRegister(RC);
Register Tmp1 = MRI.createVirtualRegister(RC);
Register Tmp2 = MRI.createVirtualRegister(RC);
if (isPositionIndependent()) {
// Create following instructions for local linkage PIC code.
// lea %Tmp1, .LJTI0_0@gotoff_lo
// and %Tmp2, %Tmp1, (32)0
// lea.sl %BReg, .LJTI0_0@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT
BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1)
.addImm(0)
.addImm(0)
.addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_LO32);
BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2)
.addReg(Tmp1, getKillRegState(true))
.addImm(M0(32));
BuildMI(DispContBB, DL, TII->get(VE::LEASLrri), BReg)
.addReg(VE::SX15)
.addReg(Tmp2, getKillRegState(true))
.addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_HI32);
} else {
// Create following instructions for non-PIC code.
// lea %Tmp1, .LJTI0_0@lo
// and %Tmp2, %Tmp1, (32)0
// lea.sl %BReg, .LJTI0_0@hi(%Tmp2)
BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1)
.addImm(0)
.addImm(0)
.addJumpTableIndex(MJTI, VEMCExpr::VK_VE_LO32);
BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2)
.addReg(Tmp1, getKillRegState(true))
.addImm(M0(32));
BuildMI(DispContBB, DL, TII->get(VE::LEASLrii), BReg)
.addReg(Tmp2, getKillRegState(true))
.addImm(0)
.addJumpTableIndex(MJTI, VEMCExpr::VK_VE_HI32);
}
switch (JTE) {
case MachineJumpTableInfo::EK_BlockAddress: {
// Generate simple block address code for no-PIC model.
// sll %Tmp1, %IReg, 3
// lds %TReg, 0(%Tmp1, %BReg)
// bcfla %TReg
Register TReg = MRI.createVirtualRegister(RC);
Register Tmp1 = MRI.createVirtualRegister(RC);
BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1)
.addReg(IReg, getKillRegState(true))
.addImm(3);
BuildMI(DispContBB, DL, TII->get(VE::LDrri), TReg)
.addReg(BReg, getKillRegState(true))
.addReg(Tmp1, getKillRegState(true))
.addImm(0);
BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t))
.addReg(TReg, getKillRegState(true))
.addImm(0);
break;
}
case MachineJumpTableInfo::EK_Custom32: {
// Generate block address code using differences from the function pointer
// for PIC model.
// sll %Tmp1, %IReg, 2
// ldl.zx %OReg, 0(%Tmp1, %BReg)
// Prepare function address in BReg2.
// adds.l %TReg, %BReg2, %OReg
// bcfla %TReg
assert(isPositionIndependent());
Register OReg = MRI.createVirtualRegister(RC);
Register TReg = MRI.createVirtualRegister(RC);
Register Tmp1 = MRI.createVirtualRegister(RC);
BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1)
.addReg(IReg, getKillRegState(true))
.addImm(2);
BuildMI(DispContBB, DL, TII->get(VE::LDLZXrri), OReg)
.addReg(BReg, getKillRegState(true))
.addReg(Tmp1, getKillRegState(true))
.addImm(0);
Register BReg2 =
prepareSymbol(*DispContBB, DispContBB->end(),
DispContBB->getParent()->getName(), DL, /* Local */ true);
BuildMI(DispContBB, DL, TII->get(VE::ADDSLrr), TReg)
.addReg(OReg, getKillRegState(true))
.addReg(BReg2, getKillRegState(true));
BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t))
.addReg(TReg, getKillRegState(true))
.addImm(0);
break;
}
default:
llvm_unreachable("Unexpected jump table encoding");
}
// Add the jump table entries as successors to the MBB.
SmallPtrSet<MachineBasicBlock *, 8> SeenMBBs;
for (auto &LP : LPadList)
if (SeenMBBs.insert(LP).second)
DispContBB->addSuccessor(LP);
// N.B. the order the invoke BBs are processed in doesn't matter here.
SmallVector<MachineBasicBlock *, 64> MBBLPads;
const MCPhysReg *SavedRegs = MF->getRegInfo().getCalleeSavedRegs();
for (MachineBasicBlock *MBB : InvokeBBs) {
// Remove the landing pad successor from the invoke block and replace it
// with the new dispatch block.
// Keep a copy of Successors since it's modified inside the loop.
SmallVector<MachineBasicBlock *, 8> Successors(MBB->succ_rbegin(),
MBB->succ_rend());
// FIXME: Avoid quadratic complexity.
for (auto MBBS : Successors) {
if (MBBS->isEHPad()) {
MBB->removeSuccessor(MBBS);
MBBLPads.push_back(MBBS);
}
}
MBB->addSuccessor(DispatchBB);
// Find the invoke call and mark all of the callee-saved registers as
// 'implicit defined' so that they're spilled. This prevents code from
// moving instructions to before the EH block, where they will never be
// executed.
for (auto &II : reverse(*MBB)) {
if (!II.isCall())
continue;
DenseMap<Register, bool> DefRegs;
for (auto &MOp : II.operands())
if (MOp.isReg())
DefRegs[MOp.getReg()] = true;
MachineInstrBuilder MIB(*MF, &II);
for (unsigned RI = 0; SavedRegs[RI]; ++RI) {
Register Reg = SavedRegs[RI];
if (!DefRegs[Reg])
MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
}
break;
}
}
// Mark all former landing pads as non-landing pads. The dispatch is the only
// landing pad now.
for (auto &LP : MBBLPads)
LP->setIsEHPad(false);
// The instruction is gone now.
MI.eraseFromParent();
return BB;
}
MachineBasicBlock *
VETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *BB) const {
switch (MI.getOpcode()) {
default:
llvm_unreachable("Unknown Custom Instruction!");
case VE::EH_SjLj_LongJmp:
return emitEHSjLjLongJmp(MI, BB);
case VE::EH_SjLj_SetJmp:
return emitEHSjLjSetJmp(MI, BB);
case VE::EH_SjLj_Setup_Dispatch:
return emitSjLjDispatchBlock(MI, BB);
}
}
static bool isI32Insn(const SDNode *User, const SDNode *N) {
switch (User->getOpcode()) {
default:
return false;
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::SDIV:
case ISD::UDIV:
case ISD::SETCC:
case ISD::SMIN:
case ISD::SMAX:
case ISD::SHL:
case ISD::SRA:
case ISD::BSWAP:
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
case ISD::BR_CC:
case ISD::BITCAST:
case ISD::ATOMIC_CMP_SWAP:
case ISD::ATOMIC_SWAP:
return true;
case ISD::SRL:
if (N->getOperand(0).getOpcode() != ISD::SRL)
return true;
// (srl (trunc (srl ...))) may be optimized by combining srl, so
// doesn't optimize trunc now.
return false;
case ISD::SELECT_CC:
if (User->getOperand(2).getNode() != N &&
User->getOperand(3).getNode() != N)
return true;
LLVM_FALLTHROUGH;
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::SELECT:
case ISD::CopyToReg:
// Check all use of selections, bit operations, and copies. If all of them
// are safe, optimize truncate to extract_subreg.
for (const SDNode *U : User->uses()) {
switch (U->getOpcode()) {
default:
// If the use is an instruction which treats the source operand as i32,
// it is safe to avoid truncate here.
if (isI32Insn(U, N))
continue;
break;
case ISD::ANY_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND: {
// Special optimizations to the combination of ext and trunc.
// (ext ... (select ... (trunc ...))) is safe to avoid truncate here
// since this truncate instruction clears higher 32 bits which is filled
// by one of ext instructions later.
assert(N->getValueType(0) == MVT::i32 &&
"find truncate to not i32 integer");
if (User->getOpcode() == ISD::SELECT_CC ||
User->getOpcode() == ISD::SELECT)
continue;
break;
}
}
return false;
}
return true;
}
}
// Optimize TRUNCATE in DAG combining. Optimizing it in CUSTOM lower is
// sometime too early. Optimizing it in DAG pattern matching in VEInstrInfo.td
// is sometime too late. So, doing it at here.
SDValue VETargetLowering::combineTRUNCATE(SDNode *N,
DAGCombinerInfo &DCI) const {
assert(N->getOpcode() == ISD::TRUNCATE &&
"Should be called with a TRUNCATE node");
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
EVT VT = N->getValueType(0);
// We prefer to do this when all types are legal.
if (!DCI.isAfterLegalizeDAG())
return SDValue();
// Skip combine TRUNCATE atm if the operand of TRUNCATE might be a constant.
if (N->getOperand(0)->getOpcode() == ISD::SELECT_CC &&
isa<ConstantSDNode>(N->getOperand(0)->getOperand(0)) &&
isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
return SDValue();
// Check all use of this TRUNCATE.
for (const SDNode *User : N->uses()) {
// Make sure that we're not going to replace TRUNCATE for non i32
// instructions.
//
// FIXME: Although we could sometimes handle this, and it does occur in
// practice that one of the condition inputs to the select is also one of
// the outputs, we currently can't deal with this.
if (isI32Insn(User, N))
continue;
return SDValue();
}
SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32);
return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, VT,
N->getOperand(0), SubI32),
0);
}
SDValue VETargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
switch (N->getOpcode()) {
default:
break;
case ISD::TRUNCATE:
return combineTRUNCATE(N, DCI);
}
return SDValue();
}
//===----------------------------------------------------------------------===//
// VE Inline Assembly Support
//===----------------------------------------------------------------------===//
VETargetLowering::ConstraintType
VETargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default:
break;
case 'v': // vector registers
return C_RegisterClass;
}
}
return TargetLowering::getConstraintType(Constraint);
}
std::pair<unsigned, const TargetRegisterClass *>
VETargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint,
MVT VT) const {
const TargetRegisterClass *RC = nullptr;
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default:
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
case 'r':
RC = &VE::I64RegClass;
break;
case 'v':
RC = &VE::V64RegClass;
break;
}
return std::make_pair(0U, RC);
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
//===----------------------------------------------------------------------===//
// VE Target Optimization Support
//===----------------------------------------------------------------------===//
unsigned VETargetLowering::getMinimumJumpTableEntries() const {
// Specify 8 for PIC model to relieve the impact of PIC load instructions.
if (isJumpTableRelative())
return 8;
return TargetLowering::getMinimumJumpTableEntries();
}
bool VETargetLowering::hasAndNot(SDValue Y) const {
EVT VT = Y.getValueType();
// VE doesn't have vector and not instruction.
if (VT.isVector())
return false;
// VE allows different immediate values for X and Y where ~X & Y.
// Only simm7 works for X, and only mimm works for Y on VE. However, this
// function is used to check whether an immediate value is OK for and-not
// instruction as both X and Y. Generating additional instruction to
// retrieve an immediate value is no good since the purpose of this
// function is to convert a series of 3 instructions to another series of
// 3 instructions with better parallelism. Therefore, we return false
// for all immediate values now.
// FIXME: Change hasAndNot function to have two operands to make it work
// correctly with Aurora VE.
if (isa<ConstantSDNode>(Y))
return false;
// It's ok for generic registers.
return true;
}
SDValue VETargetLowering::lowerToVVP(SDValue Op, SelectionDAG &DAG) const {
// Can we represent this as a VVP node.
const unsigned Opcode = Op->getOpcode();
auto VVPOpcodeOpt = getVVPOpcode(Opcode);
if (!VVPOpcodeOpt.hasValue())
return SDValue();
unsigned VVPOpcode = VVPOpcodeOpt.getValue();
const bool FromVP = ISD::isVPOpcode(Opcode);
// The representative and legalized vector type of this operation.
VECustomDAG CDAG(DAG, Op);
MVT MaskVT = MVT::v256i1; // TODO: packed mode.
EVT OpVecVT = Op.getValueType();
EVT LegalVecVT = getTypeToTransformTo(*DAG.getContext(), OpVecVT);
SDValue AVL;
SDValue Mask;
if (FromVP) {
// All upstream VP SDNodes always have a mask and avl.
auto MaskIdx = ISD::getVPMaskIdx(Opcode).getValue();
auto AVLIdx = ISD::getVPExplicitVectorLengthIdx(Opcode).getValue();
Mask = Op->getOperand(MaskIdx);
AVL = Op->getOperand(AVLIdx);
} else {
// Materialize the VL parameter.
AVL = CDAG.getConstant(OpVecVT.getVectorNumElements(), MVT::i32);
SDValue ConstTrue = CDAG.getConstant(1, MVT::i32);
Mask = CDAG.getBroadcast(MaskVT, ConstTrue, AVL);
}
if (isVVPBinaryOp(VVPOpcode)) {
assert(LegalVecVT.isSimple());
return CDAG.getNode(VVPOpcode, LegalVecVT,
{Op->getOperand(0), Op->getOperand(1), Mask, AVL});
}
if (VVPOpcode == VEISD::VVP_SELECT) {
auto Mask = Op->getOperand(0);
auto OnTrue = Op->getOperand(1);
auto OnFalse = Op->getOperand(2);
return CDAG.getNode(VVPOpcode, LegalVecVT, {OnTrue, OnFalse, Mask, AVL});
}
llvm_unreachable("lowerToVVP called for unexpected SDNode.");
}
SDValue VETargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
MVT VT = Op.getOperand(0).getSimpleValueType();
// Special treatment for packed V64 types.
assert(VT == MVT::v512i32 || VT == MVT::v512f32);
(void)VT;
// Example of codes:
// %packed_v = extractelt %vr, %idx / 2
// %v = %packed_v >> (%idx % 2 * 32)
// %res = %v & 0xffffffff
SDValue Vec = Op.getOperand(0);
SDValue Idx = Op.getOperand(1);
SDLoc DL(Op);
SDValue Result = Op;
if (false /* Idx->isConstant() */) {
// TODO: optimized implementation using constant values
} else {
SDValue Const1 = DAG.getConstant(1, DL, MVT::i64);
SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1});
SDValue PackedElt =
SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0);
SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1});
SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1});
SDValue Const5 = DAG.getConstant(5, DL, MVT::i64);
Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5});
PackedElt = DAG.getNode(ISD::SRL, DL, MVT::i64, {PackedElt, Shift});
SDValue Mask = DAG.getConstant(0xFFFFFFFFL, DL, MVT::i64);
PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask});
SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32);
Result = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
MVT::i32, PackedElt, SubI32),
0);
if (Op.getSimpleValueType() == MVT::f32) {
Result = DAG.getBitcast(MVT::f32, Result);
} else {
assert(Op.getSimpleValueType() == MVT::i32);
}
}
return Result;
}
SDValue VETargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
MVT VT = Op.getOperand(0).getSimpleValueType();
// Special treatment for packed V64 types.
assert(VT == MVT::v512i32 || VT == MVT::v512f32);
(void)VT;
// The v512i32 and v512f32 starts from upper bits (0..31). This "upper
// bits" required `val << 32` from C implementation's point of view.
//
// Example of codes:
// %packed_elt = extractelt %vr, (%idx >> 1)
// %shift = ((%idx & 1) ^ 1) << 5
// %packed_elt &= 0xffffffff00000000 >> shift
// %packed_elt |= (zext %val) << shift
// %vr = insertelt %vr, %packed_elt, (%idx >> 1)
SDLoc DL(Op);
SDValue Vec = Op.getOperand(0);
SDValue Val = Op.getOperand(1);
SDValue Idx = Op.getOperand(2);
if (Idx.getSimpleValueType() == MVT::i32)
Idx = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Idx);
if (Val.getSimpleValueType() == MVT::f32)
Val = DAG.getBitcast(MVT::i32, Val);
assert(Val.getSimpleValueType() == MVT::i32);
Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
SDValue Result = Op;
if (false /* Idx->isConstant()*/) {
// TODO: optimized implementation using constant values
} else {
SDValue Const1 = DAG.getConstant(1, DL, MVT::i64);
SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1});
SDValue PackedElt =
SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0);
SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1});
SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1});
SDValue Const5 = DAG.getConstant(5, DL, MVT::i64);
Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5});
SDValue Mask = DAG.getConstant(0xFFFFFFFF00000000L, DL, MVT::i64);
Mask = DAG.getNode(ISD::SRL, DL, MVT::i64, {Mask, Shift});
PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask});
Val = DAG.getNode(ISD::SHL, DL, MVT::i64, {Val, Shift});
PackedElt = DAG.getNode(ISD::OR, DL, MVT::i64, {PackedElt, Val});
Result =
SDValue(DAG.getMachineNode(VE::LSVrr_v, DL, Vec.getSimpleValueType(),
{HalfIdx, PackedElt, Vec}),
0);
}
return Result;
}
|