1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
//==- X86IndirectThunks.cpp - Construct indirect call/jump thunks for x86 --=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Pass that injects an MI thunk that is used to lower indirect calls in a way
/// that prevents speculation on some x86 processors and can be used to mitigate
/// security vulnerabilities due to targeted speculative execution and side
/// channels such as CVE-2017-5715.
///
/// Currently supported thunks include:
/// - Retpoline -- A RET-implemented trampoline that lowers indirect calls
/// - LVI Thunk -- A CALL/JMP-implemented thunk that forces load serialization
/// before making an indirect call/jump
///
/// Note that the reason that this is implemented as a MachineFunctionPass and
/// not a ModulePass is that ModulePasses at this point in the LLVM X86 pipeline
/// serialize all transformations, which can consume lots of memory.
///
/// TODO(chandlerc): All of this code could use better comments and
/// documentation.
///
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/IndirectThunks.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
#define DEBUG_TYPE "x86-retpoline-thunks"
static const char RetpolineNamePrefix[] = "__llvm_retpoline_";
static const char R11RetpolineName[] = "__llvm_retpoline_r11";
static const char EAXRetpolineName[] = "__llvm_retpoline_eax";
static const char ECXRetpolineName[] = "__llvm_retpoline_ecx";
static const char EDXRetpolineName[] = "__llvm_retpoline_edx";
static const char EDIRetpolineName[] = "__llvm_retpoline_edi";
static const char LVIThunkNamePrefix[] = "__llvm_lvi_thunk_";
static const char R11LVIThunkName[] = "__llvm_lvi_thunk_r11";
namespace {
struct RetpolineThunkInserter : ThunkInserter<RetpolineThunkInserter> {
const char *getThunkPrefix() { return RetpolineNamePrefix; }
bool mayUseThunk(const MachineFunction &MF) {
const auto &STI = MF.getSubtarget<X86Subtarget>();
return (STI.useRetpolineIndirectCalls() ||
STI.useRetpolineIndirectBranches()) &&
!STI.useRetpolineExternalThunk();
}
void insertThunks(MachineModuleInfo &MMI);
void populateThunk(MachineFunction &MF);
};
struct LVIThunkInserter : ThunkInserter<LVIThunkInserter> {
const char *getThunkPrefix() { return LVIThunkNamePrefix; }
bool mayUseThunk(const MachineFunction &MF) {
return MF.getSubtarget<X86Subtarget>().useLVIControlFlowIntegrity();
}
void insertThunks(MachineModuleInfo &MMI) {
createThunkFunction(MMI, R11LVIThunkName);
}
void populateThunk(MachineFunction &MF) {
assert (MF.size() == 1);
MachineBasicBlock *Entry = &MF.front();
Entry->clear();
// This code mitigates LVI by replacing each indirect call/jump with a
// direct call/jump to a thunk that looks like:
// ```
// lfence
// jmpq *%r11
// ```
// This ensures that if the value in register %r11 was loaded from memory,
// then the value in %r11 is (architecturally) correct prior to the jump.
const TargetInstrInfo *TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
BuildMI(&MF.front(), DebugLoc(), TII->get(X86::LFENCE));
BuildMI(&MF.front(), DebugLoc(), TII->get(X86::JMP64r)).addReg(X86::R11);
MF.front().addLiveIn(X86::R11);
}
};
class X86IndirectThunks : public MachineFunctionPass {
public:
static char ID;
X86IndirectThunks() : MachineFunctionPass(ID) {}
StringRef getPassName() const override { return "X86 Indirect Thunks"; }
bool doInitialization(Module &M) override;
bool runOnMachineFunction(MachineFunction &MF) override;
private:
std::tuple<RetpolineThunkInserter, LVIThunkInserter> TIs;
// FIXME: When LLVM moves to C++17, these can become folds
template <typename... ThunkInserterT>
static void initTIs(Module &M,
std::tuple<ThunkInserterT...> &ThunkInserters) {
(void)std::initializer_list<int>{
(std::get<ThunkInserterT>(ThunkInserters).init(M), 0)...};
}
template <typename... ThunkInserterT>
static bool runTIs(MachineModuleInfo &MMI, MachineFunction &MF,
std::tuple<ThunkInserterT...> &ThunkInserters) {
bool Modified = false;
(void)std::initializer_list<int>{
Modified |= std::get<ThunkInserterT>(ThunkInserters).run(MMI, MF)...};
return Modified;
}
};
} // end anonymous namespace
void RetpolineThunkInserter::insertThunks(MachineModuleInfo &MMI) {
if (MMI.getTarget().getTargetTriple().getArch() == Triple::x86_64)
createThunkFunction(MMI, R11RetpolineName);
else
for (StringRef Name : {EAXRetpolineName, ECXRetpolineName, EDXRetpolineName,
EDIRetpolineName})
createThunkFunction(MMI, Name);
}
void RetpolineThunkInserter::populateThunk(MachineFunction &MF) {
bool Is64Bit = MF.getTarget().getTargetTriple().getArch() == Triple::x86_64;
Register ThunkReg;
if (Is64Bit) {
assert(MF.getName() == "__llvm_retpoline_r11" &&
"Should only have an r11 thunk on 64-bit targets");
// __llvm_retpoline_r11:
// callq .Lr11_call_target
// .Lr11_capture_spec:
// pause
// lfence
// jmp .Lr11_capture_spec
// .align 16
// .Lr11_call_target:
// movq %r11, (%rsp)
// retq
ThunkReg = X86::R11;
} else {
// For 32-bit targets we need to emit a collection of thunks for various
// possible scratch registers as well as a fallback that uses EDI, which is
// normally callee saved.
// __llvm_retpoline_eax:
// calll .Leax_call_target
// .Leax_capture_spec:
// pause
// jmp .Leax_capture_spec
// .align 16
// .Leax_call_target:
// movl %eax, (%esp) # Clobber return addr
// retl
//
// __llvm_retpoline_ecx:
// ... # Same setup
// movl %ecx, (%esp)
// retl
//
// __llvm_retpoline_edx:
// ... # Same setup
// movl %edx, (%esp)
// retl
//
// __llvm_retpoline_edi:
// ... # Same setup
// movl %edi, (%esp)
// retl
if (MF.getName() == EAXRetpolineName)
ThunkReg = X86::EAX;
else if (MF.getName() == ECXRetpolineName)
ThunkReg = X86::ECX;
else if (MF.getName() == EDXRetpolineName)
ThunkReg = X86::EDX;
else if (MF.getName() == EDIRetpolineName)
ThunkReg = X86::EDI;
else
llvm_unreachable("Invalid thunk name on x86-32!");
}
const TargetInstrInfo *TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
assert (MF.size() == 1);
MachineBasicBlock *Entry = &MF.front();
Entry->clear();
MachineBasicBlock *CaptureSpec =
MF.CreateMachineBasicBlock(Entry->getBasicBlock());
MachineBasicBlock *CallTarget =
MF.CreateMachineBasicBlock(Entry->getBasicBlock());
MCSymbol *TargetSym = MF.getContext().createTempSymbol();
MF.push_back(CaptureSpec);
MF.push_back(CallTarget);
const unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
const unsigned RetOpc = Is64Bit ? X86::RET64 : X86::RET32;
Entry->addLiveIn(ThunkReg);
BuildMI(Entry, DebugLoc(), TII->get(CallOpc)).addSym(TargetSym);
// The MIR verifier thinks that the CALL in the entry block will fall through
// to CaptureSpec, so mark it as the successor. Technically, CaptureTarget is
// the successor, but the MIR verifier doesn't know how to cope with that.
Entry->addSuccessor(CaptureSpec);
// In the capture loop for speculation, we want to stop the processor from
// speculating as fast as possible. On Intel processors, the PAUSE instruction
// will block speculation without consuming any execution resources. On AMD
// processors, the PAUSE instruction is (essentially) a nop, so we also use an
// LFENCE instruction which they have advised will stop speculation as well
// with minimal resource utilization. We still end the capture with a jump to
// form an infinite loop to fully guarantee that no matter what implementation
// of the x86 ISA, speculating this code path never escapes.
BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::PAUSE));
BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::LFENCE));
BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::JMP_1)).addMBB(CaptureSpec);
CaptureSpec->setHasAddressTaken();
CaptureSpec->addSuccessor(CaptureSpec);
CallTarget->addLiveIn(ThunkReg);
CallTarget->setHasAddressTaken();
CallTarget->setAlignment(Align(16));
// Insert return address clobber
const unsigned MovOpc = Is64Bit ? X86::MOV64mr : X86::MOV32mr;
const Register SPReg = Is64Bit ? X86::RSP : X86::ESP;
addRegOffset(BuildMI(CallTarget, DebugLoc(), TII->get(MovOpc)), SPReg, false,
0)
.addReg(ThunkReg);
CallTarget->back().setPreInstrSymbol(MF, TargetSym);
BuildMI(CallTarget, DebugLoc(), TII->get(RetOpc));
}
FunctionPass *llvm::createX86IndirectThunksPass() {
return new X86IndirectThunks();
}
char X86IndirectThunks::ID = 0;
bool X86IndirectThunks::doInitialization(Module &M) {
initTIs(M, TIs);
return false;
}
bool X86IndirectThunks::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << getPassName() << '\n');
auto &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
return runTIs(MMI, MF, TIs);
}
|