1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
|
//===- Target/X86/X86LowerAMXType.cpp - -------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file Pass to transform <256 x i32> load/store
/// <256 x i32> is bitcasted to x86_amx on X86, and AMX instruction set only
/// provides simple operation on x86_amx. The basic elementwise operation
/// is not supported by AMX. Since x86_amx is bitcasted from vector <256 x i32>
/// and only AMX intrinsics can operate on the type, we need transform
/// load/store <256 x i32> instruction to AMX load/store. If the bitcast can
/// not be combined with load/store, we transform the bitcast to amx load/store
/// and <256 x i32> store/load.
///
/// If Front End not use O0 but the Mid/Back end use O0, (e.g. "Clang -O2 -S
/// -emit-llvm t.c" + "llc t.ll") we should make sure the amx data is volatile,
/// because that is necessary for AMX fast register allocation. (In Fast
/// registera allocation, register will be allocated before spill/reload, so
/// there is no additional register for amx to identify the step in spill.)
/// The volatileTileData() will handle this case.
/// e.g.
/// ----------------------------------------------------------
/// | def %td = ... |
/// | ... |
/// | "use %td" |
/// ----------------------------------------------------------
/// will transfer to -->
/// ----------------------------------------------------------
/// | def %td = ... |
/// | call void @llvm.x86.tilestored64.internal(mem, %td) |
/// | ... |
/// | %td2 = call x86_amx @llvm.x86.tileloadd64.internal(mem)|
/// | "use %td2" |
/// ----------------------------------------------------------
//
//===----------------------------------------------------------------------===//
//
#include "X86.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
#include "llvm/Transforms/Utils/Local.h"
#include <map>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "lower-amx-type"
static bool isAMXCast(Instruction *II) {
return match(II,
m_Intrinsic<Intrinsic::x86_cast_vector_to_tile>(m_Value())) ||
match(II, m_Intrinsic<Intrinsic::x86_cast_tile_to_vector>(m_Value()));
}
static AllocaInst *createAllocaInstAtEntry(IRBuilder<> &Builder, BasicBlock *BB,
Type *Ty) {
Function &F = *BB->getParent();
Module *M = BB->getModule();
const DataLayout &DL = M->getDataLayout();
LLVMContext &Ctx = Builder.getContext();
auto AllocaAlignment = DL.getPrefTypeAlign(Type::getX86_AMXTy(Ctx));
unsigned AllocaAS = DL.getAllocaAddrSpace();
AllocaInst *AllocaRes =
new AllocaInst(Ty, AllocaAS, "", &F.getEntryBlock().front());
AllocaRes->setAlignment(AllocaAlignment);
return AllocaRes;
}
static Instruction *getFirstNonAllocaInTheEntryBlock(Function &F) {
for (Instruction &I : F.getEntryBlock())
if (!isa<AllocaInst>(&I))
return &I;
llvm_unreachable("No terminator in the entry block!");
}
static std::pair<Value *, Value *> getShape(IntrinsicInst *II, unsigned OpNo) {
IRBuilder<> Builder(II);
Value *Row = nullptr, *Col = nullptr;
switch (II->getIntrinsicID()) {
default:
llvm_unreachable("Expect amx intrinsics");
case Intrinsic::x86_tileloadd64_internal:
case Intrinsic::x86_tileloaddt164_internal:
case Intrinsic::x86_tilestored64_internal: {
Row = II->getArgOperand(0);
Col = II->getArgOperand(1);
break;
}
// a * b + c
// The shape depends on which operand.
case Intrinsic::x86_tdpbssd_internal:
case Intrinsic::x86_tdpbsud_internal:
case Intrinsic::x86_tdpbusd_internal:
case Intrinsic::x86_tdpbuud_internal:
case Intrinsic::x86_tdpbf16ps_internal: {
switch (OpNo) {
case 3:
Row = II->getArgOperand(0);
Col = II->getArgOperand(1);
break;
case 4:
Row = II->getArgOperand(0);
Col = II->getArgOperand(2);
break;
case 5:
if (isa<ConstantInt>(II->getArgOperand(2)))
Row = Builder.getInt16(
(cast<ConstantInt>(II->getOperand(2))->getSExtValue()) / 4);
else if (isa<Instruction>(II->getArgOperand(2))) {
// When it is not a const value and it is not a function argument, we
// create Row after the definition of II->getOperand(2) instead of
// before II. For example, II is %118, we try to getshape for %117:
// %117 = call x86_amx @llvm.x86.cast.vector.to.tile.v256i32(<256 x
// i32> %115).
// %118 = call x86_amx @llvm.x86.tdpbf16ps.internal(i16
// %104, i16 %105, i16 %106, x86_amx %110, x86_amx %114, x86_amx
// %117).
// If we create %row = udiv i16 %106, 4 before %118(aka. II), then its
// definition is after its user(new tileload for %117).
// So, the best choice is to create %row right after the definition of
// %106.
Builder.SetInsertPoint(cast<Instruction>(II->getOperand(2)));
Row = Builder.CreateUDiv(II->getOperand(2), Builder.getInt16(4));
cast<Instruction>(Row)->moveAfter(cast<Instruction>(II->getOperand(2)));
} else {
// When it is not a const value and it is a function argument, we create
// Row at the entry bb.
IRBuilder<> NewBuilder(
getFirstNonAllocaInTheEntryBlock(*II->getFunction()));
Row = NewBuilder.CreateUDiv(II->getOperand(2), NewBuilder.getInt16(4));
}
Col = II->getArgOperand(1);
break;
}
break;
}
}
return std::make_pair(Row, Col);
}
namespace {
class X86LowerAMXType {
Function &Func;
// In AMX intrinsics we let Shape = {Row, Col}, but the
// RealCol = Col / ElementSize. We may use the RealCol
// as a new Row for other new created AMX intrinsics.
std::map<Value *, Value *> Col2Row;
public:
X86LowerAMXType(Function &F) : Func(F) {}
bool visit();
void combineLoadBitcast(LoadInst *LD, BitCastInst *Bitcast);
void combineBitcastStore(BitCastInst *Bitcast, StoreInst *ST);
bool transformBitcast(BitCastInst *Bitcast);
};
// %src = load <256 x i32>, <256 x i32>* %addr, align 64
// %2 = bitcast <256 x i32> %src to x86_amx
// -->
// %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
// i8* %addr, i64 %stride64)
void X86LowerAMXType::combineLoadBitcast(LoadInst *LD, BitCastInst *Bitcast) {
Value *Row = nullptr, *Col = nullptr;
Use &U = *(Bitcast->use_begin());
unsigned OpNo = U.getOperandNo();
auto *II = cast<IntrinsicInst>(U.getUser());
std::tie(Row, Col) = getShape(II, OpNo);
IRBuilder<> Builder(Bitcast);
// Use the maximun column as stride.
Value *Stride = Builder.getInt64(64);
Value *I8Ptr =
Builder.CreateBitCast(LD->getOperand(0), Builder.getInt8PtrTy());
std::array<Value *, 4> Args = {Row, Col, I8Ptr, Stride};
Value *NewInst =
Builder.CreateIntrinsic(Intrinsic::x86_tileloadd64_internal, None, Args);
Bitcast->replaceAllUsesWith(NewInst);
}
// %src = call x86_amx @llvm.x86.tileloadd64.internal(%row, %col, %addr,
// %stride);
// %13 = bitcast x86_amx %src to <256 x i32>
// store <256 x i32> %13, <256 x i32>* %addr, align 64
// -->
// call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
// %stride64, %13)
void X86LowerAMXType::combineBitcastStore(BitCastInst *Bitcast, StoreInst *ST) {
Value *Tile = Bitcast->getOperand(0);
auto *II = cast<IntrinsicInst>(Tile);
// Tile is output from AMX intrinsic. The first operand of the
// intrinsic is row, the second operand of the intrinsic is column.
Value *Row = II->getOperand(0);
Value *Col = II->getOperand(1);
IRBuilder<> Builder(ST);
// Use the maximum column as stride. It must be the same with load
// stride.
Value *Stride = Builder.getInt64(64);
Value *I8Ptr =
Builder.CreateBitCast(ST->getOperand(1), Builder.getInt8PtrTy());
std::array<Value *, 5> Args = {Row, Col, I8Ptr, Stride, Tile};
Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
if (Bitcast->hasOneUse())
return;
// %13 = bitcast x86_amx %src to <256 x i32>
// store <256 x i32> %13, <256 x i32>* %addr, align 64
// %add = <256 x i32> %13, <256 x i32> %src2
// -->
// %13 = bitcast x86_amx %src to <256 x i32>
// call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
// %stride64, %13)
// %14 = load <256 x i32>, %addr
// %add = <256 x i32> %14, <256 x i32> %src2
Value *Vec = Builder.CreateLoad(Bitcast->getType(), ST->getOperand(1));
Bitcast->replaceAllUsesWith(Vec);
}
// transform bitcast to <store, load> instructions.
bool X86LowerAMXType::transformBitcast(BitCastInst *Bitcast) {
IRBuilder<> Builder(Bitcast);
AllocaInst *AllocaAddr;
Value *I8Ptr, *Stride;
auto *Src = Bitcast->getOperand(0);
auto Prepare = [&](Type *MemTy) {
AllocaAddr = createAllocaInstAtEntry(Builder, Bitcast->getParent(), MemTy);
I8Ptr = Builder.CreateBitCast(AllocaAddr, Builder.getInt8PtrTy());
Stride = Builder.getInt64(64);
};
if (Bitcast->getType()->isX86_AMXTy()) {
// %2 = bitcast <256 x i32> %src to x86_amx
// -->
// %addr = alloca <256 x i32>, align 64
// store <256 x i32> %src, <256 x i32>* %addr, align 64
// %addr2 = bitcast <256 x i32>* to i8*
// %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
// i8* %addr2,
// i64 64)
Use &U = *(Bitcast->use_begin());
unsigned OpNo = U.getOperandNo();
auto *II = dyn_cast<IntrinsicInst>(U.getUser());
if (!II)
return false; // May be bitcast from x86amx to <256 x i32>.
Prepare(Bitcast->getOperand(0)->getType());
Builder.CreateStore(Src, AllocaAddr);
// TODO we can pick an constant operand for the shape.
Value *Row = nullptr, *Col = nullptr;
std::tie(Row, Col) = getShape(II, OpNo);
std::array<Value *, 4> Args = {Row, Col, I8Ptr, Stride};
Value *NewInst = Builder.CreateIntrinsic(
Intrinsic::x86_tileloadd64_internal, None, Args);
Bitcast->replaceAllUsesWith(NewInst);
} else {
// %2 = bitcast x86_amx %src to <256 x i32>
// -->
// %addr = alloca <256 x i32>, align 64
// %addr2 = bitcast <256 x i32>* to i8*
// call void @llvm.x86.tilestored64.internal(i16 %row, i16 %col,
// i8* %addr2, i64 %stride)
// %2 = load <256 x i32>, <256 x i32>* %addr, align 64
auto *II = dyn_cast<IntrinsicInst>(Src);
if (!II)
return false; // May be bitcast from <256 x i32> to x86amx.
Prepare(Bitcast->getType());
Value *Row = II->getOperand(0);
Value *Col = II->getOperand(1);
std::array<Value *, 5> Args = {Row, Col, I8Ptr, Stride, Src};
Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
Value *NewInst = Builder.CreateLoad(Bitcast->getType(), AllocaAddr);
Bitcast->replaceAllUsesWith(NewInst);
}
return true;
}
bool X86LowerAMXType::visit() {
SmallVector<Instruction *, 8> DeadInsts;
Col2Row.clear();
for (BasicBlock *BB : post_order(&Func)) {
for (Instruction &Inst : llvm::make_early_inc_range(llvm::reverse(*BB))) {
auto *Bitcast = dyn_cast<BitCastInst>(&Inst);
if (!Bitcast)
continue;
Value *Src = Bitcast->getOperand(0);
if (Bitcast->getType()->isX86_AMXTy()) {
if (Bitcast->user_empty()) {
DeadInsts.push_back(Bitcast);
continue;
}
LoadInst *LD = dyn_cast<LoadInst>(Src);
if (!LD) {
if (transformBitcast(Bitcast))
DeadInsts.push_back(Bitcast);
continue;
}
// If load has mutli-user, duplicate a vector load.
// %src = load <256 x i32>, <256 x i32>* %addr, align 64
// %2 = bitcast <256 x i32> %src to x86_amx
// %add = add <256 x i32> %src, <256 x i32> %src2
// -->
// %src = load <256 x i32>, <256 x i32>* %addr, align 64
// %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
// i8* %addr, i64 %stride64)
// %add = add <256 x i32> %src, <256 x i32> %src2
// If load has one user, the load will be eliminated in DAG ISel.
// %src = load <256 x i32>, <256 x i32>* %addr, align 64
// %2 = bitcast <256 x i32> %src to x86_amx
// -->
// %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
// i8* %addr, i64 %stride64)
combineLoadBitcast(LD, Bitcast);
DeadInsts.push_back(Bitcast);
if (LD->hasOneUse())
DeadInsts.push_back(LD);
} else if (Src->getType()->isX86_AMXTy()) {
if (Bitcast->user_empty()) {
DeadInsts.push_back(Bitcast);
continue;
}
StoreInst *ST = nullptr;
for (Use &U : Bitcast->uses()) {
ST = dyn_cast<StoreInst>(U.getUser());
if (ST)
break;
}
if (!ST) {
if (transformBitcast(Bitcast))
DeadInsts.push_back(Bitcast);
continue;
}
// If bitcast (%13) has one use, combine bitcast and store to amx store.
// %src = call x86_amx @llvm.x86.tileloadd64.internal(%row, %col, %addr,
// %stride);
// %13 = bitcast x86_amx %src to <256 x i32>
// store <256 x i32> %13, <256 x i32>* %addr, align 64
// -->
// call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
// %stride64, %13)
//
// If bitcast (%13) has multi-use, transform as below.
// %13 = bitcast x86_amx %src to <256 x i32>
// store <256 x i32> %13, <256 x i32>* %addr, align 64
// %add = <256 x i32> %13, <256 x i32> %src2
// -->
// %13 = bitcast x86_amx %src to <256 x i32>
// call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
// %stride64, %13)
// %14 = load <256 x i32>, %addr
// %add = <256 x i32> %14, <256 x i32> %src2
//
combineBitcastStore(Bitcast, ST);
// Delete user first.
DeadInsts.push_back(ST);
DeadInsts.push_back(Bitcast);
}
}
}
bool C = !DeadInsts.empty();
for (auto *Inst : DeadInsts)
Inst->eraseFromParent();
return C;
}
} // anonymous namespace
static Value *getAllocaPos(BasicBlock *BB) {
Module *M = BB->getModule();
Function *F = BB->getParent();
IRBuilder<> Builder(&F->getEntryBlock().front());
const DataLayout &DL = M->getDataLayout();
unsigned AllocaAS = DL.getAllocaAddrSpace();
Type *V256I32Ty = VectorType::get(Builder.getInt32Ty(), 256, false);
AllocaInst *AllocaRes =
new AllocaInst(V256I32Ty, AllocaAS, "", &F->getEntryBlock().front());
BasicBlock::iterator Iter = AllocaRes->getIterator();
++Iter;
Builder.SetInsertPoint(&*Iter);
Value *I8Ptr = Builder.CreateBitCast(AllocaRes, Builder.getInt8PtrTy());
return I8Ptr;
}
static Instruction *createTileStore(Instruction *TileDef, Value *Ptr) {
assert(TileDef->getType()->isX86_AMXTy() && "Not define tile!");
auto *II = cast<IntrinsicInst>(TileDef);
assert(II && "Not tile intrinsic!");
Value *Row = II->getOperand(0);
Value *Col = II->getOperand(1);
BasicBlock *BB = TileDef->getParent();
BasicBlock::iterator Iter = TileDef->getIterator();
IRBuilder<> Builder(BB, ++Iter);
Value *Stride = Builder.getInt64(64);
std::array<Value *, 5> Args = {Row, Col, Ptr, Stride, TileDef};
Instruction *TileStore =
Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
return TileStore;
}
static void replaceWithTileLoad(Use &U, Value *Ptr, bool IsPHI = false) {
Value *V = U.get();
assert(V->getType()->isX86_AMXTy() && "Not define tile!");
// Get tile shape.
IntrinsicInst *II = nullptr;
if (IsPHI) {
Value *PhiOp = dyn_cast<PHINode>(V)->getIncomingValue(0);
II = cast<IntrinsicInst>(PhiOp);
} else {
II = cast<IntrinsicInst>(V);
}
Value *Row = II->getOperand(0);
Value *Col = II->getOperand(1);
Instruction *UserI = dyn_cast<Instruction>(U.getUser());
IRBuilder<> Builder(UserI);
Value *Stride = Builder.getInt64(64);
std::array<Value *, 4> Args = {Row, Col, Ptr, Stride};
Value *TileLoad =
Builder.CreateIntrinsic(Intrinsic::x86_tileloadd64_internal, None, Args);
UserI->replaceUsesOfWith(V, TileLoad);
}
static bool isIncomingOfPHI(Instruction *I) {
for (Use &U : I->uses()) {
User *V = U.getUser();
if (isa<PHINode>(V))
return true;
}
return false;
}
// Let all AMX tile data become volatile data, shorten the life range
// of each tile register before fast register allocation.
namespace {
class X86VolatileTileData {
Function &F;
public:
X86VolatileTileData(Function &Func) : F(Func) {}
Value *updatePhiIncomings(BasicBlock *BB,
SmallVector<Instruction *, 2> &Incomings);
void replacePhiDefWithLoad(Instruction *PHI, Value *StorePtr);
bool volatileTileData();
void volatileTilePHI(PHINode *Inst);
void volatileTileNonPHI(Instruction *I);
};
Value *X86VolatileTileData::updatePhiIncomings(
BasicBlock *BB, SmallVector<Instruction *, 2> &Incomings) {
Value *I8Ptr = getAllocaPos(BB);
for (auto *I : Incomings) {
User *Store = createTileStore(I, I8Ptr);
// All its uses (except phi) should load from stored mem.
for (Use &U : I->uses()) {
User *V = U.getUser();
if (isa<PHINode>(V) || V == Store)
continue;
replaceWithTileLoad(U, I8Ptr);
}
}
return I8Ptr;
}
void X86VolatileTileData::replacePhiDefWithLoad(Instruction *PHI,
Value *StorePtr) {
for (Use &U : PHI->uses())
replaceWithTileLoad(U, StorePtr, true);
PHI->eraseFromParent();
}
// Smilar with volatileTileNonPHI, this function only handle PHI Nodes
// and their related AMX intrinsics.
// 1) PHI Def should change to tileload.
// 2) PHI Incoming Values should tilestored in just after their def.
// 3) The mem of these tileload and tilestores should be same.
// e.g.
// ------------------------------------------------------
// bb_dom:
// ...
// br i1 %bool.cond, label %if.else, label %if.then
//
// if.then:
// def %t0 = ...
// ...
// use %t0
// ...
// br label %if.end
//
// if.else:
// def %t1 = ...
// br label %if.end
//
// if.end:
// %td = phi x86_amx [ %t1, %if.else ], [ %t0, %if.then ]
// ...
// use %td
// ------------------------------------------------------
// -->
// ------------------------------------------------------
// bb_entry:
// %mem = alloca <256 x i32>, align 1024 *
// ...
// bb_dom:
// ...
// br i1 %bool.cond, label %if.else, label %if.then
//
// if.then:
// def %t0 = ...
// call void @llvm.x86.tilestored64.internal(mem, %t0) *
// ...
// %t0` = call x86_amx @llvm.x86.tileloadd64.internal(mem)*
// use %t0` *
// ...
// br label %if.end
//
// if.else:
// def %t1 = ...
// call void @llvm.x86.tilestored64.internal(mem, %t1) *
// br label %if.end
//
// if.end:
// ...
// %td = call x86_amx @llvm.x86.tileloadd64.internal(mem) *
// use %td
// ------------------------------------------------------
void X86VolatileTileData::volatileTilePHI(PHINode *PHI) {
BasicBlock *BB = PHI->getParent();
SmallVector<Instruction *, 2> Incomings;
for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) {
Value *Op = PHI->getIncomingValue(I);
Instruction *Inst = dyn_cast<Instruction>(Op);
assert(Inst && "We shouldn't fold AMX instrution!");
Incomings.push_back(Inst);
}
Value *StorePtr = updatePhiIncomings(BB, Incomings);
replacePhiDefWithLoad(PHI, StorePtr);
}
// Store the defined tile and load it before use.
// All its users are not PHI.
// e.g.
// ------------------------------------------------------
// def %td = ...
// ...
// "use %td"
// ------------------------------------------------------
// -->
// ------------------------------------------------------
// def %td = ...
// call void @llvm.x86.tilestored64.internal(mem, %td)
// ...
// %td2 = call x86_amx @llvm.x86.tileloadd64.internal(mem)
// "use %td2"
// ------------------------------------------------------
void X86VolatileTileData::volatileTileNonPHI(Instruction *I) {
BasicBlock *BB = I->getParent();
Value *I8Ptr = getAllocaPos(BB);
User *Store = createTileStore(I, I8Ptr);
// All its uses should load from stored mem.
for (Use &U : I->uses()) {
User *V = U.getUser();
assert(!isa<PHINode>(V) && "PHI Nodes should be excluded!");
if (V != Store)
replaceWithTileLoad(U, I8Ptr);
}
}
// Volatile Tile Model:
// 1) All the uses of tile data comes from tileload in time.
// 2) All the defs of tile data tilestore into mem immediately.
// For example:
// --------------------------------------------------------------------------
// %t1 = call x86_amx @llvm.x86.tileloadd64.internal(m, k, ...) key
// %t2 = call x86_amx @llvm.x86.tileloadd64.internal(k, n, ...)
// %t3 = call x86_amx @llvm.x86.tileloadd64.internal(m, n, ...) amx
// %td = tail call x86_amx @llvm.x86.tdpbssd.internal(m, n, k, t1, t2, t3)
// call void @llvm.x86.tilestored64.internal(... td) area
// --------------------------------------------------------------------------
// 3) No terminator, call or other amx instructions in the key amx area.
bool X86VolatileTileData::volatileTileData() {
bool Changed = false;
for (BasicBlock &BB : F) {
SmallVector<Instruction *, 2> PHIInsts;
SmallVector<Instruction *, 8> AMXDefInsts;
for (Instruction &I : BB) {
if (!I.getType()->isX86_AMXTy())
continue;
if (isa<PHINode>(&I))
PHIInsts.push_back(&I);
else
AMXDefInsts.push_back(&I);
}
// First we "volatile" the non-phi related amx intrinsics.
for (Instruction *I : AMXDefInsts) {
if (isIncomingOfPHI(I))
continue;
volatileTileNonPHI(I);
Changed = true;
}
for (Instruction *I : PHIInsts) {
volatileTilePHI(dyn_cast<PHINode>(I));
Changed = true;
}
}
return Changed;
}
} // anonymous namespace
namespace {
class X86LowerAMXCast {
Function &Func;
public:
X86LowerAMXCast(Function &F) : Func(F) {}
bool combineAMXcast(TargetLibraryInfo *TLI);
bool transformAMXCast(IntrinsicInst *AMXCast);
bool transformAllAMXCast();
bool optimizeAMXCastFromPhi(IntrinsicInst *CI, PHINode *PN,
SmallSetVector<Instruction *, 16> &DeadInst);
};
static bool DCEInstruction(Instruction *I,
SmallSetVector<Instruction *, 16> &WorkList,
const TargetLibraryInfo *TLI) {
if (isInstructionTriviallyDead(I, TLI)) {
salvageDebugInfo(*I);
salvageKnowledge(I);
// Null out all of the instruction's operands to see if any operand becomes
// dead as we go.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Value *OpV = I->getOperand(i);
I->setOperand(i, nullptr);
if (!OpV->use_empty() || I == OpV)
continue;
// If the operand is an instruction that became dead as we nulled out the
// operand, and if it is 'trivially' dead, delete it in a future loop
// iteration.
if (Instruction *OpI = dyn_cast<Instruction>(OpV)) {
if (isInstructionTriviallyDead(OpI, TLI)) {
WorkList.insert(OpI);
}
}
}
I->eraseFromParent();
return true;
}
return false;
}
/// This function handles following case
///
/// A -> B amxcast
/// PHI
/// B -> A amxcast
///
/// All the related PHI nodes can be replaced by new PHI nodes with type A.
/// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
bool X86LowerAMXCast::optimizeAMXCastFromPhi(
IntrinsicInst *CI, PHINode *PN,
SmallSetVector<Instruction *, 16> &DeadInst) {
IRBuilder<> Builder(CI);
Value *Src = CI->getOperand(0);
Type *SrcTy = Src->getType(); // Type B
Type *DestTy = CI->getType(); // Type A
SmallVector<PHINode *, 4> PhiWorklist;
SmallSetVector<PHINode *, 4> OldPhiNodes;
// Find all of the A->B casts and PHI nodes.
// We need to inspect all related PHI nodes, but PHIs can be cyclic, so
// OldPhiNodes is used to track all known PHI nodes, before adding a new
// PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
PhiWorklist.push_back(PN);
OldPhiNodes.insert(PN);
while (!PhiWorklist.empty()) {
auto *OldPN = PhiWorklist.pop_back_val();
for (Value *IncValue : OldPN->incoming_values()) {
// TODO: currently, We ignore cases where it is a const. In the future, we
// might support const.
if (isa<Constant>(IncValue))
return false;
if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
if (OldPhiNodes.insert(PNode))
PhiWorklist.push_back(PNode);
continue;
}
Instruction *ACI = dyn_cast<Instruction>(IncValue);
if (ACI && isAMXCast(ACI)) {
// Verify it's a A->B cast.
Type *TyA = ACI->getOperand(0)->getType();
Type *TyB = ACI->getType();
if (TyA != DestTy || TyB != SrcTy)
return false;
continue;
}
return false;
}
}
// Check that each user of each old PHI node is something that we can
// rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
for (auto *OldPN : OldPhiNodes) {
for (User *V : OldPN->users()) {
Instruction *ACI = dyn_cast<Instruction>(V);
if (ACI && isAMXCast(ACI)) {
// Verify it's a B->A cast.
Type *TyB = ACI->getOperand(0)->getType();
Type *TyA = ACI->getType();
if (TyA != DestTy || TyB != SrcTy)
return false;
} else if (auto *PHI = dyn_cast<PHINode>(V)) {
// As long as the user is another old PHI node, then even if we don't
// rewrite it, the PHI web we're considering won't have any users
// outside itself, so it'll be dead.
// example:
// bb.0:
// %0 = amxcast ...
// bb.1:
// %1 = amxcast ...
// bb.2:
// %goodphi = phi %0, %1
// %3 = amxcast %goodphi
// bb.3:
// %goodphi2 = phi %0, %goodphi
// %4 = amxcast %goodphi2
// When optimizeAMXCastFromPhi process %3 and %goodphi, %goodphi2 is
// outside the phi-web, so the combination stop When
// optimizeAMXCastFromPhi process %4 and %goodphi2, the optimization
// will be done.
if (OldPhiNodes.count(PHI) == 0)
return false;
} else
return false;
}
}
// For each old PHI node, create a corresponding new PHI node with a type A.
SmallDenseMap<PHINode *, PHINode *> NewPNodes;
for (auto *OldPN : OldPhiNodes) {
Builder.SetInsertPoint(OldPN);
PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
NewPNodes[OldPN] = NewPN;
}
// Fill in the operands of new PHI nodes.
for (auto *OldPN : OldPhiNodes) {
PHINode *NewPN = NewPNodes[OldPN];
for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
Value *V = OldPN->getOperand(j);
Value *NewV = nullptr;
Instruction *ACI = dyn_cast<Instruction>(V);
// There should not be a AMXcast from a const.
if (ACI && isAMXCast(ACI))
NewV = ACI->getOperand(0);
else if (auto *PrevPN = dyn_cast<PHINode>(V))
NewV = NewPNodes[PrevPN];
assert(NewV);
NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
}
}
// Traverse all accumulated PHI nodes and process its users,
// which are Stores and BitcCasts. Without this processing
// NewPHI nodes could be replicated and could lead to extra
// moves generated after DeSSA.
// If there is a store with type B, change it to type A.
// Replace users of BitCast B->A with NewPHI. These will help
// later to get rid of a closure formed by OldPHI nodes.
for (auto *OldPN : OldPhiNodes) {
PHINode *NewPN = NewPNodes[OldPN];
for (User *V : make_early_inc_range(OldPN->users())) {
Instruction *ACI = dyn_cast<Instruction>(V);
if (ACI && isAMXCast(ACI)) {
Type *TyB = ACI->getOperand(0)->getType();
Type *TyA = ACI->getType();
assert(TyA == DestTy && TyB == SrcTy);
(void)TyA;
(void)TyB;
ACI->replaceAllUsesWith(NewPN);
DeadInst.insert(ACI);
} else if (auto *PHI = dyn_cast<PHINode>(V)) {
// We don't need to push PHINode into DeadInst since they are operands
// of rootPN DCE can safely delete rootPN's operands if rootPN is dead.
assert(OldPhiNodes.contains(PHI));
(void)PHI;
} else
llvm_unreachable("all uses should be handled");
}
}
return true;
}
bool X86LowerAMXCast::combineAMXcast(TargetLibraryInfo *TLI) {
bool Change = false;
// Collect tile cast instruction.
SmallVector<Instruction *, 8> Vec2TileInsts;
SmallVector<Instruction *, 8> Tile2VecInsts;
SmallVector<Instruction *, 8> PhiCastWorkList;
SmallSetVector<Instruction *, 16> DeadInst;
for (BasicBlock &BB : Func) {
for (Instruction &I : BB) {
Value *Vec;
if (match(&I,
m_Intrinsic<Intrinsic::x86_cast_vector_to_tile>(m_Value(Vec))))
Vec2TileInsts.push_back(&I);
else if (match(&I, m_Intrinsic<Intrinsic::x86_cast_tile_to_vector>(
m_Value(Vec))))
Tile2VecInsts.push_back(&I);
}
}
auto Convert = [&](SmallVectorImpl<Instruction *> &Insts, Intrinsic::ID IID) {
for (auto *Inst : Insts) {
for (User *U : Inst->users()) {
IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
if (!II || II->getIntrinsicID() != IID)
continue;
// T1 = vec2tile V0
// V2 = tile2vec T1
// V3 = OP V2
// -->
// T1 = vec2tile V0
// V2 = tile2vec T1
// V3 = OP V0
II->replaceAllUsesWith(Inst->getOperand(0));
Change = true;
}
}
};
Convert(Vec2TileInsts, Intrinsic::x86_cast_tile_to_vector);
Convert(Tile2VecInsts, Intrinsic::x86_cast_vector_to_tile);
auto EraseInst = [&](SmallVectorImpl<Instruction *> &Insts) {
for (auto *Inst : Insts) {
if (Inst->use_empty()) {
Inst->eraseFromParent();
Change = true;
}
}
};
EraseInst(Vec2TileInsts);
EraseInst(Tile2VecInsts);
// Handle the A->B->A cast, and there is an intervening PHI node.
for (BasicBlock &BB : Func) {
for (Instruction &I : BB) {
if (isAMXCast(&I)) {
if (isa<PHINode>(I.getOperand(0)))
PhiCastWorkList.push_back(&I);
}
}
}
for (auto *I : PhiCastWorkList) {
// We skip the dead Amxcast.
if (DeadInst.contains(I))
continue;
PHINode *PN = cast<PHINode>(I->getOperand(0));
if (optimizeAMXCastFromPhi(cast<IntrinsicInst>(I), PN, DeadInst)) {
DeadInst.insert(PN);
Change = true;
}
}
// Since we create new phi and merge AMXCast, some old phis and AMXCast might
// have no uses. We do some DeadCodeElimination for them.
while (!DeadInst.empty()) {
Instruction *I = DeadInst.pop_back_val();
Change |= DCEInstruction(I, DeadInst, TLI);
}
return Change;
}
// There might be remaining AMXcast after combineAMXcast and they should be
// handled elegantly.
bool X86LowerAMXCast::transformAMXCast(IntrinsicInst *AMXCast) {
IRBuilder<> Builder(AMXCast);
AllocaInst *AllocaAddr;
Value *I8Ptr, *Stride;
auto *Src = AMXCast->getOperand(0);
auto Prepare = [&](Type *MemTy) {
AllocaAddr = createAllocaInstAtEntry(Builder, AMXCast->getParent(), MemTy);
I8Ptr = Builder.CreateBitCast(AllocaAddr, Builder.getInt8PtrTy());
Stride = Builder.getInt64(64);
};
if (AMXCast->getType()->isX86_AMXTy()) {
// %2 = amxcast <225 x i32> %src to x86_amx
// call void @llvm.x86.tilestored64.internal(i16 15, i16 60,
// i8* %addr3, i64 60, x86_amx %2)
// -->
// %addr = alloca <225 x i32>, align 64
// store <225 x i32> %src, <225 x i32>* %addr, align 64
// %addr2 = bitcast <225 x i32>* %addr to i8*
// %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 15, i16 60,
// i8* %addr2,
// i64 60)
// call void @llvm.x86.tilestored64.internal(i16 15, i16 60,
// i8* %addr3, i64 60, x86_amx %2)
Use &U = *(AMXCast->use_begin());
unsigned OpNo = U.getOperandNo();
auto *II = dyn_cast<IntrinsicInst>(U.getUser());
if (!II)
return false; // May be bitcast from x86amx to <256 x i32>.
Prepare(AMXCast->getOperand(0)->getType());
Builder.CreateStore(Src, AllocaAddr);
// TODO we can pick an constant operand for the shape.
Value *Row = nullptr, *Col = nullptr;
std::tie(Row, Col) = getShape(II, OpNo);
std::array<Value *, 4> Args = {
Row, Col, I8Ptr, Builder.CreateSExt(Col, Builder.getInt64Ty())};
Value *NewInst = Builder.CreateIntrinsic(
Intrinsic::x86_tileloadd64_internal, None, Args);
AMXCast->replaceAllUsesWith(NewInst);
AMXCast->eraseFromParent();
} else {
// %2 = amxcast x86_amx %src to <225 x i32>
// -->
// %addr = alloca <225 x i32>, align 64
// %addr2 = bitcast <225 x i32>* to i8*
// call void @llvm.x86.tilestored64.internal(i16 %row, i16 %col,
// i8* %addr2, i64 %stride)
// %2 = load <225 x i32>, <225 x i32>* %addr, align 64
auto *II = dyn_cast<IntrinsicInst>(Src);
if (!II)
return false; // May be bitcast from <256 x i32> to x86amx.
Prepare(AMXCast->getType());
Value *Row = II->getOperand(0);
Value *Col = II->getOperand(1);
std::array<Value *, 5> Args = {
Row, Col, I8Ptr, Builder.CreateSExt(Col, Builder.getInt64Ty()), Src};
Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
Value *NewInst = Builder.CreateLoad(AMXCast->getType(), AllocaAddr);
AMXCast->replaceAllUsesWith(NewInst);
AMXCast->eraseFromParent();
}
return true;
}
bool X86LowerAMXCast::transformAllAMXCast() {
bool Change = false;
// Collect tile cast instruction.
SmallVector<Instruction *, 8> WorkLists;
for (BasicBlock &BB : Func) {
for (Instruction &I : BB) {
if (isAMXCast(&I))
WorkLists.push_back(&I);
}
}
for (auto *Inst : WorkLists) {
Change |= transformAMXCast(cast<IntrinsicInst>(Inst));
}
return Change;
}
} // anonymous namespace
namespace {
class X86LowerAMXTypeLegacyPass : public FunctionPass {
public:
static char ID;
X86LowerAMXTypeLegacyPass() : FunctionPass(ID) {
initializeX86LowerAMXTypeLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
bool C = false;
TargetMachine *TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
TargetLibraryInfo *TLI =
&getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
X86LowerAMXCast LAC(F);
C |= LAC.combineAMXcast(TLI);
// There might be remaining AMXcast after combineAMXcast and they should be
// handled elegantly.
C |= LAC.transformAllAMXCast();
X86LowerAMXType LAT(F);
C |= LAT.visit();
// Prepare for fast register allocation at O0.
// Todo: May better check the volatile model of AMX code, not just
// by checking Attribute::OptimizeNone and CodeGenOpt::None.
if (TM->getOptLevel() == CodeGenOpt::None) {
// If Front End not use O0 but the Mid/Back end use O0, (e.g.
// "Clang -O2 -S -emit-llvm t.c" + "llc t.ll") we should make
// sure the amx data is volatile, that is nessary for AMX fast
// register allocation.
if (!F.hasFnAttribute(Attribute::OptimizeNone)) {
X86VolatileTileData VTD(F);
C = VTD.volatileTileData() || C;
}
}
return C;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<TargetPassConfig>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
}
};
} // anonymous namespace
static const char PassName[] = "Lower AMX type for load/store";
char X86LowerAMXTypeLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(X86LowerAMXTypeLegacyPass, DEBUG_TYPE, PassName, false,
false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(X86LowerAMXTypeLegacyPass, DEBUG_TYPE, PassName, false,
false)
FunctionPass *llvm::createX86LowerAMXTypePass() {
return new X86LowerAMXTypeLegacyPass();
}
|