1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
|
//===- CoroFrame.cpp - Builds and manipulates coroutine frame -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file contains classes used to discover if for a particular value
// there from sue to definition that crosses a suspend block.
//
// Using the information discovered we form a Coroutine Frame structure to
// contain those values. All uses of those values are replaced with appropriate
// GEP + load from the coroutine frame. At the point of the definition we spill
// the value into the coroutine frame.
//===----------------------------------------------------------------------===//
#include "CoroInternal.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Analysis/PtrUseVisitor.h"
#include "llvm/Analysis/StackLifetime.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/OptimizedStructLayout.h"
#include "llvm/Support/circular_raw_ostream.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include <algorithm>
using namespace llvm;
// The "coro-suspend-crossing" flag is very noisy. There is another debug type,
// "coro-frame", which results in leaner debug spew.
#define DEBUG_TYPE "coro-suspend-crossing"
static cl::opt<bool> EnableReuseStorageInFrame(
"reuse-storage-in-coroutine-frame", cl::Hidden,
cl::desc(
"Enable the optimization which would reuse the storage in the coroutine \
frame for allocas whose liferanges are not overlapped, for testing purposes"),
llvm::cl::init(false));
enum { SmallVectorThreshold = 32 };
// Provides two way mapping between the blocks and numbers.
namespace {
class BlockToIndexMapping {
SmallVector<BasicBlock *, SmallVectorThreshold> V;
public:
size_t size() const { return V.size(); }
BlockToIndexMapping(Function &F) {
for (BasicBlock &BB : F)
V.push_back(&BB);
llvm::sort(V);
}
size_t blockToIndex(BasicBlock *BB) const {
auto *I = llvm::lower_bound(V, BB);
assert(I != V.end() && *I == BB && "BasicBlockNumberng: Unknown block");
return I - V.begin();
}
BasicBlock *indexToBlock(unsigned Index) const { return V[Index]; }
};
} // end anonymous namespace
// The SuspendCrossingInfo maintains data that allows to answer a question
// whether given two BasicBlocks A and B there is a path from A to B that
// passes through a suspend point.
//
// For every basic block 'i' it maintains a BlockData that consists of:
// Consumes: a bit vector which contains a set of indices of blocks that can
// reach block 'i'
// Kills: a bit vector which contains a set of indices of blocks that can
// reach block 'i', but one of the path will cross a suspend point
// Suspend: a boolean indicating whether block 'i' contains a suspend point.
// End: a boolean indicating whether block 'i' contains a coro.end intrinsic.
//
namespace {
struct SuspendCrossingInfo {
BlockToIndexMapping Mapping;
struct BlockData {
BitVector Consumes;
BitVector Kills;
bool Suspend = false;
bool End = false;
};
SmallVector<BlockData, SmallVectorThreshold> Block;
iterator_range<succ_iterator> successors(BlockData const &BD) const {
BasicBlock *BB = Mapping.indexToBlock(&BD - &Block[0]);
return llvm::successors(BB);
}
BlockData &getBlockData(BasicBlock *BB) {
return Block[Mapping.blockToIndex(BB)];
}
void dump() const;
void dump(StringRef Label, BitVector const &BV) const;
SuspendCrossingInfo(Function &F, coro::Shape &Shape);
bool hasPathCrossingSuspendPoint(BasicBlock *DefBB, BasicBlock *UseBB) const {
size_t const DefIndex = Mapping.blockToIndex(DefBB);
size_t const UseIndex = Mapping.blockToIndex(UseBB);
bool const Result = Block[UseIndex].Kills[DefIndex];
LLVM_DEBUG(dbgs() << UseBB->getName() << " => " << DefBB->getName()
<< " answer is " << Result << "\n");
return Result;
}
bool isDefinitionAcrossSuspend(BasicBlock *DefBB, User *U) const {
auto *I = cast<Instruction>(U);
// We rewrote PHINodes, so that only the ones with exactly one incoming
// value need to be analyzed.
if (auto *PN = dyn_cast<PHINode>(I))
if (PN->getNumIncomingValues() > 1)
return false;
BasicBlock *UseBB = I->getParent();
// As a special case, treat uses by an llvm.coro.suspend.retcon or an
// llvm.coro.suspend.async as if they were uses in the suspend's single
// predecessor: the uses conceptually occur before the suspend.
if (isa<CoroSuspendRetconInst>(I) || isa<CoroSuspendAsyncInst>(I)) {
UseBB = UseBB->getSinglePredecessor();
assert(UseBB && "should have split coro.suspend into its own block");
}
return hasPathCrossingSuspendPoint(DefBB, UseBB);
}
bool isDefinitionAcrossSuspend(Argument &A, User *U) const {
return isDefinitionAcrossSuspend(&A.getParent()->getEntryBlock(), U);
}
bool isDefinitionAcrossSuspend(Instruction &I, User *U) const {
auto *DefBB = I.getParent();
// As a special case, treat values produced by an llvm.coro.suspend.*
// as if they were defined in the single successor: the uses
// conceptually occur after the suspend.
if (isa<AnyCoroSuspendInst>(I)) {
DefBB = DefBB->getSingleSuccessor();
assert(DefBB && "should have split coro.suspend into its own block");
}
return isDefinitionAcrossSuspend(DefBB, U);
}
bool isDefinitionAcrossSuspend(Value &V, User *U) const {
if (auto *Arg = dyn_cast<Argument>(&V))
return isDefinitionAcrossSuspend(*Arg, U);
if (auto *Inst = dyn_cast<Instruction>(&V))
return isDefinitionAcrossSuspend(*Inst, U);
llvm_unreachable(
"Coroutine could only collect Argument and Instruction now.");
}
};
} // end anonymous namespace
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void SuspendCrossingInfo::dump(StringRef Label,
BitVector const &BV) const {
dbgs() << Label << ":";
for (size_t I = 0, N = BV.size(); I < N; ++I)
if (BV[I])
dbgs() << " " << Mapping.indexToBlock(I)->getName();
dbgs() << "\n";
}
LLVM_DUMP_METHOD void SuspendCrossingInfo::dump() const {
for (size_t I = 0, N = Block.size(); I < N; ++I) {
BasicBlock *const B = Mapping.indexToBlock(I);
dbgs() << B->getName() << ":\n";
dump(" Consumes", Block[I].Consumes);
dump(" Kills", Block[I].Kills);
}
dbgs() << "\n";
}
#endif
SuspendCrossingInfo::SuspendCrossingInfo(Function &F, coro::Shape &Shape)
: Mapping(F) {
const size_t N = Mapping.size();
Block.resize(N);
// Initialize every block so that it consumes itself
for (size_t I = 0; I < N; ++I) {
auto &B = Block[I];
B.Consumes.resize(N);
B.Kills.resize(N);
B.Consumes.set(I);
}
// Mark all CoroEnd Blocks. We do not propagate Kills beyond coro.ends as
// the code beyond coro.end is reachable during initial invocation of the
// coroutine.
for (auto *CE : Shape.CoroEnds)
getBlockData(CE->getParent()).End = true;
// Mark all suspend blocks and indicate that they kill everything they
// consume. Note, that crossing coro.save also requires a spill, as any code
// between coro.save and coro.suspend may resume the coroutine and all of the
// state needs to be saved by that time.
auto markSuspendBlock = [&](IntrinsicInst *BarrierInst) {
BasicBlock *SuspendBlock = BarrierInst->getParent();
auto &B = getBlockData(SuspendBlock);
B.Suspend = true;
B.Kills |= B.Consumes;
};
for (auto *CSI : Shape.CoroSuspends) {
markSuspendBlock(CSI);
if (auto *Save = CSI->getCoroSave())
markSuspendBlock(Save);
}
// Iterate propagating consumes and kills until they stop changing.
int Iteration = 0;
(void)Iteration;
bool Changed;
do {
LLVM_DEBUG(dbgs() << "iteration " << ++Iteration);
LLVM_DEBUG(dbgs() << "==============\n");
Changed = false;
for (size_t I = 0; I < N; ++I) {
auto &B = Block[I];
for (BasicBlock *SI : successors(B)) {
auto SuccNo = Mapping.blockToIndex(SI);
// Saved Consumes and Kills bitsets so that it is easy to see
// if anything changed after propagation.
auto &S = Block[SuccNo];
auto SavedConsumes = S.Consumes;
auto SavedKills = S.Kills;
// Propagate Kills and Consumes from block B into its successor S.
S.Consumes |= B.Consumes;
S.Kills |= B.Kills;
// If block B is a suspend block, it should propagate kills into the
// its successor for every block B consumes.
if (B.Suspend) {
S.Kills |= B.Consumes;
}
if (S.Suspend) {
// If block S is a suspend block, it should kill all of the blocks it
// consumes.
S.Kills |= S.Consumes;
} else if (S.End) {
// If block S is an end block, it should not propagate kills as the
// blocks following coro.end() are reached during initial invocation
// of the coroutine while all the data are still available on the
// stack or in the registers.
S.Kills.reset();
} else {
// This is reached when S block it not Suspend nor coro.end and it
// need to make sure that it is not in the kill set.
S.Kills.reset(SuccNo);
}
// See if anything changed.
Changed |= (S.Kills != SavedKills) || (S.Consumes != SavedConsumes);
if (S.Kills != SavedKills) {
LLVM_DEBUG(dbgs() << "\nblock " << I << " follower " << SI->getName()
<< "\n");
LLVM_DEBUG(dump("S.Kills", S.Kills));
LLVM_DEBUG(dump("SavedKills", SavedKills));
}
if (S.Consumes != SavedConsumes) {
LLVM_DEBUG(dbgs() << "\nblock " << I << " follower " << SI << "\n");
LLVM_DEBUG(dump("S.Consume", S.Consumes));
LLVM_DEBUG(dump("SavedCons", SavedConsumes));
}
}
}
} while (Changed);
LLVM_DEBUG(dump());
}
#undef DEBUG_TYPE // "coro-suspend-crossing"
#define DEBUG_TYPE "coro-frame"
namespace {
class FrameTypeBuilder;
// Mapping from the to-be-spilled value to all the users that need reload.
using SpillInfo = SmallMapVector<Value *, SmallVector<Instruction *, 2>, 8>;
struct AllocaInfo {
AllocaInst *Alloca;
DenseMap<Instruction *, llvm::Optional<APInt>> Aliases;
bool MayWriteBeforeCoroBegin;
AllocaInfo(AllocaInst *Alloca,
DenseMap<Instruction *, llvm::Optional<APInt>> Aliases,
bool MayWriteBeforeCoroBegin)
: Alloca(Alloca), Aliases(std::move(Aliases)),
MayWriteBeforeCoroBegin(MayWriteBeforeCoroBegin) {}
};
struct FrameDataInfo {
// All the values (that are not allocas) that needs to be spilled to the
// frame.
SpillInfo Spills;
// Allocas contains all values defined as allocas that need to live in the
// frame.
SmallVector<AllocaInfo, 8> Allocas;
SmallVector<Value *, 8> getAllDefs() const {
SmallVector<Value *, 8> Defs;
for (const auto &P : Spills)
Defs.push_back(P.first);
for (const auto &A : Allocas)
Defs.push_back(A.Alloca);
return Defs;
}
uint32_t getFieldIndex(Value *V) const {
auto Itr = FieldIndexMap.find(V);
assert(Itr != FieldIndexMap.end() &&
"Value does not have a frame field index");
return Itr->second;
}
void setFieldIndex(Value *V, uint32_t Index) {
assert((LayoutIndexUpdateStarted || FieldIndexMap.count(V) == 0) &&
"Cannot set the index for the same field twice.");
FieldIndexMap[V] = Index;
}
uint64_t getAlign(Value *V) const {
auto Iter = FieldAlignMap.find(V);
assert(Iter != FieldAlignMap.end());
return Iter->second;
}
void setAlign(Value *V, uint64_t Align) {
assert(FieldAlignMap.count(V) == 0);
FieldAlignMap.insert({V, Align});
}
uint64_t getOffset(Value *V) const {
auto Iter = FieldOffsetMap.find(V);
assert(Iter != FieldOffsetMap.end());
return Iter->second;
}
void setOffset(Value *V, uint64_t Offset) {
assert(FieldOffsetMap.count(V) == 0);
FieldOffsetMap.insert({V, Offset});
}
// Remap the index of every field in the frame, using the final layout index.
void updateLayoutIndex(FrameTypeBuilder &B);
private:
// LayoutIndexUpdateStarted is used to avoid updating the index of any field
// twice by mistake.
bool LayoutIndexUpdateStarted = false;
// Map from values to their slot indexes on the frame. They will be first set
// with their original insertion field index. After the frame is built, their
// indexes will be updated into the final layout index.
DenseMap<Value *, uint32_t> FieldIndexMap;
// Map from values to their alignment on the frame. They would be set after
// the frame is built.
DenseMap<Value *, uint64_t> FieldAlignMap;
// Map from values to their offset on the frame. They would be set after
// the frame is built.
DenseMap<Value *, uint64_t> FieldOffsetMap;
};
} // namespace
#ifndef NDEBUG
static void dumpSpills(StringRef Title, const SpillInfo &Spills) {
dbgs() << "------------- " << Title << "--------------\n";
for (const auto &E : Spills) {
E.first->dump();
dbgs() << " user: ";
for (auto *I : E.second)
I->dump();
}
}
static void dumpAllocas(const SmallVectorImpl<AllocaInfo> &Allocas) {
dbgs() << "------------- Allocas --------------\n";
for (const auto &A : Allocas) {
A.Alloca->dump();
}
}
#endif
namespace {
using FieldIDType = size_t;
// We cannot rely solely on natural alignment of a type when building a
// coroutine frame and if the alignment specified on the Alloca instruction
// differs from the natural alignment of the alloca type we will need to insert
// padding.
class FrameTypeBuilder {
private:
struct Field {
uint64_t Size;
uint64_t Offset;
Type *Ty;
FieldIDType LayoutFieldIndex;
Align Alignment;
Align TyAlignment;
};
const DataLayout &DL;
LLVMContext &Context;
uint64_t StructSize = 0;
Align StructAlign;
bool IsFinished = false;
Optional<Align> MaxFrameAlignment;
SmallVector<Field, 8> Fields;
DenseMap<Value*, unsigned> FieldIndexByKey;
public:
FrameTypeBuilder(LLVMContext &Context, const DataLayout &DL,
Optional<Align> MaxFrameAlignment)
: DL(DL), Context(Context), MaxFrameAlignment(MaxFrameAlignment) {}
/// Add a field to this structure for the storage of an `alloca`
/// instruction.
LLVM_NODISCARD FieldIDType addFieldForAlloca(AllocaInst *AI,
bool IsHeader = false) {
Type *Ty = AI->getAllocatedType();
// Make an array type if this is a static array allocation.
if (AI->isArrayAllocation()) {
if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
Ty = ArrayType::get(Ty, CI->getValue().getZExtValue());
else
report_fatal_error("Coroutines cannot handle non static allocas yet");
}
return addField(Ty, AI->getAlign(), IsHeader);
}
/// We want to put the allocas whose lifetime-ranges are not overlapped
/// into one slot of coroutine frame.
/// Consider the example at:https://bugs.llvm.org/show_bug.cgi?id=45566
///
/// cppcoro::task<void> alternative_paths(bool cond) {
/// if (cond) {
/// big_structure a;
/// process(a);
/// co_await something();
/// } else {
/// big_structure b;
/// process2(b);
/// co_await something();
/// }
/// }
///
/// We want to put variable a and variable b in the same slot to
/// reduce the size of coroutine frame.
///
/// This function use StackLifetime algorithm to partition the AllocaInsts in
/// Spills to non-overlapped sets in order to put Alloca in the same
/// non-overlapped set into the same slot in the Coroutine Frame. Then add
/// field for the allocas in the same non-overlapped set by using the largest
/// type as the field type.
///
/// Side Effects: Because We sort the allocas, the order of allocas in the
/// frame may be different with the order in the source code.
void addFieldForAllocas(const Function &F, FrameDataInfo &FrameData,
coro::Shape &Shape);
/// Add a field to this structure.
LLVM_NODISCARD FieldIDType addField(Type *Ty, MaybeAlign FieldAlignment,
bool IsHeader = false,
bool IsSpillOfValue = false) {
assert(!IsFinished && "adding fields to a finished builder");
assert(Ty && "must provide a type for a field");
// The field size is always the alloc size of the type.
uint64_t FieldSize = DL.getTypeAllocSize(Ty);
// For an alloca with size=0, we don't need to add a field and they
// can just point to any index in the frame. Use index 0.
if (FieldSize == 0) {
return 0;
}
// The field alignment might not be the type alignment, but we need
// to remember the type alignment anyway to build the type.
// If we are spilling values we don't need to worry about ABI alignment
// concerns.
auto ABIAlign = DL.getABITypeAlign(Ty);
Align TyAlignment =
(IsSpillOfValue && MaxFrameAlignment)
? (*MaxFrameAlignment < ABIAlign ? *MaxFrameAlignment : ABIAlign)
: ABIAlign;
if (!FieldAlignment) {
FieldAlignment = TyAlignment;
}
// Lay out header fields immediately.
uint64_t Offset;
if (IsHeader) {
Offset = alignTo(StructSize, FieldAlignment);
StructSize = Offset + FieldSize;
// Everything else has a flexible offset.
} else {
Offset = OptimizedStructLayoutField::FlexibleOffset;
}
Fields.push_back({FieldSize, Offset, Ty, 0, *FieldAlignment, TyAlignment});
return Fields.size() - 1;
}
/// Finish the layout and set the body on the given type.
void finish(StructType *Ty);
uint64_t getStructSize() const {
assert(IsFinished && "not yet finished!");
return StructSize;
}
Align getStructAlign() const {
assert(IsFinished && "not yet finished!");
return StructAlign;
}
FieldIDType getLayoutFieldIndex(FieldIDType Id) const {
assert(IsFinished && "not yet finished!");
return Fields[Id].LayoutFieldIndex;
}
Field getLayoutField(FieldIDType Id) const {
assert(IsFinished && "not yet finished!");
return Fields[Id];
}
};
} // namespace
void FrameDataInfo::updateLayoutIndex(FrameTypeBuilder &B) {
auto Updater = [&](Value *I) {
auto Field = B.getLayoutField(getFieldIndex(I));
setFieldIndex(I, Field.LayoutFieldIndex);
setAlign(I, Field.Alignment.value());
setOffset(I, Field.Offset);
};
LayoutIndexUpdateStarted = true;
for (auto &S : Spills)
Updater(S.first);
for (const auto &A : Allocas)
Updater(A.Alloca);
LayoutIndexUpdateStarted = false;
}
void FrameTypeBuilder::addFieldForAllocas(const Function &F,
FrameDataInfo &FrameData,
coro::Shape &Shape) {
using AllocaSetType = SmallVector<AllocaInst *, 4>;
SmallVector<AllocaSetType, 4> NonOverlapedAllocas;
// We need to add field for allocas at the end of this function.
auto AddFieldForAllocasAtExit = make_scope_exit([&]() {
for (auto AllocaList : NonOverlapedAllocas) {
auto *LargestAI = *AllocaList.begin();
FieldIDType Id = addFieldForAlloca(LargestAI);
for (auto *Alloca : AllocaList)
FrameData.setFieldIndex(Alloca, Id);
}
});
if (!Shape.OptimizeFrame && !EnableReuseStorageInFrame) {
for (const auto &A : FrameData.Allocas) {
AllocaInst *Alloca = A.Alloca;
NonOverlapedAllocas.emplace_back(AllocaSetType(1, Alloca));
}
return;
}
// Because there are pathes from the lifetime.start to coro.end
// for each alloca, the liferanges for every alloca is overlaped
// in the blocks who contain coro.end and the successor blocks.
// So we choose to skip there blocks when we calculates the liferange
// for each alloca. It should be reasonable since there shouldn't be uses
// in these blocks and the coroutine frame shouldn't be used outside the
// coroutine body.
//
// Note that the user of coro.suspend may not be SwitchInst. However, this
// case seems too complex to handle. And it is harmless to skip these
// patterns since it just prevend putting the allocas to live in the same
// slot.
DenseMap<SwitchInst *, BasicBlock *> DefaultSuspendDest;
for (auto CoroSuspendInst : Shape.CoroSuspends) {
for (auto U : CoroSuspendInst->users()) {
if (auto *ConstSWI = dyn_cast<SwitchInst>(U)) {
auto *SWI = const_cast<SwitchInst *>(ConstSWI);
DefaultSuspendDest[SWI] = SWI->getDefaultDest();
SWI->setDefaultDest(SWI->getSuccessor(1));
}
}
}
auto ExtractAllocas = [&]() {
AllocaSetType Allocas;
Allocas.reserve(FrameData.Allocas.size());
for (const auto &A : FrameData.Allocas)
Allocas.push_back(A.Alloca);
return Allocas;
};
StackLifetime StackLifetimeAnalyzer(F, ExtractAllocas(),
StackLifetime::LivenessType::May);
StackLifetimeAnalyzer.run();
auto IsAllocaInferenre = [&](const AllocaInst *AI1, const AllocaInst *AI2) {
return StackLifetimeAnalyzer.getLiveRange(AI1).overlaps(
StackLifetimeAnalyzer.getLiveRange(AI2));
};
auto GetAllocaSize = [&](const AllocaInfo &A) {
Optional<TypeSize> RetSize = A.Alloca->getAllocationSizeInBits(DL);
assert(RetSize && "Variable Length Arrays (VLA) are not supported.\n");
assert(!RetSize->isScalable() && "Scalable vectors are not yet supported");
return RetSize->getFixedSize();
};
// Put larger allocas in the front. So the larger allocas have higher
// priority to merge, which can save more space potentially. Also each
// AllocaSet would be ordered. So we can get the largest Alloca in one
// AllocaSet easily.
sort(FrameData.Allocas, [&](const auto &Iter1, const auto &Iter2) {
return GetAllocaSize(Iter1) > GetAllocaSize(Iter2);
});
for (const auto &A : FrameData.Allocas) {
AllocaInst *Alloca = A.Alloca;
bool Merged = false;
// Try to find if the Alloca is not inferenced with any existing
// NonOverlappedAllocaSet. If it is true, insert the alloca to that
// NonOverlappedAllocaSet.
for (auto &AllocaSet : NonOverlapedAllocas) {
assert(!AllocaSet.empty() && "Processing Alloca Set is not empty.\n");
bool NoInference = none_of(AllocaSet, [&](auto Iter) {
return IsAllocaInferenre(Alloca, Iter);
});
// If the alignment of A is multiple of the alignment of B, the address
// of A should satisfy the requirement for aligning for B.
//
// There may be other more fine-grained strategies to handle the alignment
// infomation during the merging process. But it seems hard to handle
// these strategies and benefit little.
bool Alignable = [&]() -> bool {
auto *LargestAlloca = *AllocaSet.begin();
return LargestAlloca->getAlign().value() % Alloca->getAlign().value() ==
0;
}();
bool CouldMerge = NoInference && Alignable;
if (!CouldMerge)
continue;
AllocaSet.push_back(Alloca);
Merged = true;
break;
}
if (!Merged) {
NonOverlapedAllocas.emplace_back(AllocaSetType(1, Alloca));
}
}
// Recover the default target destination for each Switch statement
// reserved.
for (auto SwitchAndDefaultDest : DefaultSuspendDest) {
SwitchInst *SWI = SwitchAndDefaultDest.first;
BasicBlock *DestBB = SwitchAndDefaultDest.second;
SWI->setDefaultDest(DestBB);
}
// This Debug Info could tell us which allocas are merged into one slot.
LLVM_DEBUG(for (auto &AllocaSet
: NonOverlapedAllocas) {
if (AllocaSet.size() > 1) {
dbgs() << "In Function:" << F.getName() << "\n";
dbgs() << "Find Union Set "
<< "\n";
dbgs() << "\tAllocas are \n";
for (auto Alloca : AllocaSet)
dbgs() << "\t\t" << *Alloca << "\n";
}
});
}
void FrameTypeBuilder::finish(StructType *Ty) {
assert(!IsFinished && "already finished!");
// Prepare the optimal-layout field array.
// The Id in the layout field is a pointer to our Field for it.
SmallVector<OptimizedStructLayoutField, 8> LayoutFields;
LayoutFields.reserve(Fields.size());
for (auto &Field : Fields) {
LayoutFields.emplace_back(&Field, Field.Size, Field.Alignment,
Field.Offset);
}
// Perform layout.
auto SizeAndAlign = performOptimizedStructLayout(LayoutFields);
StructSize = SizeAndAlign.first;
StructAlign = SizeAndAlign.second;
auto getField = [](const OptimizedStructLayoutField &LayoutField) -> Field & {
return *static_cast<Field *>(const_cast<void*>(LayoutField.Id));
};
// We need to produce a packed struct type if there's a field whose
// assigned offset isn't a multiple of its natural type alignment.
bool Packed = [&] {
for (auto &LayoutField : LayoutFields) {
auto &F = getField(LayoutField);
if (!isAligned(F.TyAlignment, LayoutField.Offset))
return true;
}
return false;
}();
// Build the struct body.
SmallVector<Type*, 16> FieldTypes;
FieldTypes.reserve(LayoutFields.size() * 3 / 2);
uint64_t LastOffset = 0;
for (auto &LayoutField : LayoutFields) {
auto &F = getField(LayoutField);
auto Offset = LayoutField.Offset;
// Add a padding field if there's a padding gap and we're either
// building a packed struct or the padding gap is more than we'd
// get from aligning to the field type's natural alignment.
assert(Offset >= LastOffset);
if (Offset != LastOffset) {
if (Packed || alignTo(LastOffset, F.TyAlignment) != Offset)
FieldTypes.push_back(ArrayType::get(Type::getInt8Ty(Context),
Offset - LastOffset));
}
F.Offset = Offset;
F.LayoutFieldIndex = FieldTypes.size();
FieldTypes.push_back(F.Ty);
LastOffset = Offset + F.Size;
}
Ty->setBody(FieldTypes, Packed);
#ifndef NDEBUG
// Check that the IR layout matches the offsets we expect.
auto Layout = DL.getStructLayout(Ty);
for (auto &F : Fields) {
assert(Ty->getElementType(F.LayoutFieldIndex) == F.Ty);
assert(Layout->getElementOffset(F.LayoutFieldIndex) == F.Offset);
}
#endif
IsFinished = true;
}
static void cacheDIVar(FrameDataInfo &FrameData,
DenseMap<Value *, DILocalVariable *> &DIVarCache) {
for (auto *V : FrameData.getAllDefs()) {
if (DIVarCache.find(V) != DIVarCache.end())
continue;
auto DDIs = FindDbgDeclareUses(V);
auto *I = llvm::find_if(DDIs, [](DbgDeclareInst *DDI) {
return DDI->getExpression()->getNumElements() == 0;
});
if (I != DDIs.end())
DIVarCache.insert({V, (*I)->getVariable()});
}
}
/// Create name for Type. It uses MDString to store new created string to
/// avoid memory leak.
static StringRef solveTypeName(Type *Ty) {
if (Ty->isIntegerTy()) {
// The longest name in common may be '__int_128', which has 9 bits.
SmallString<16> Buffer;
raw_svector_ostream OS(Buffer);
OS << "__int_" << cast<IntegerType>(Ty)->getBitWidth();
auto *MDName = MDString::get(Ty->getContext(), OS.str());
return MDName->getString();
}
if (Ty->isFloatingPointTy()) {
if (Ty->isFloatTy())
return "__float_";
if (Ty->isDoubleTy())
return "__double_";
return "__floating_type_";
}
if (Ty->isPointerTy()) {
auto *PtrTy = cast<PointerType>(Ty);
Type *PointeeTy = PtrTy->getPointerElementType();
auto Name = solveTypeName(PointeeTy);
if (Name == "UnknownType")
return "PointerType";
SmallString<16> Buffer;
Twine(Name + "_Ptr").toStringRef(Buffer);
auto *MDName = MDString::get(Ty->getContext(), Buffer.str());
return MDName->getString();
}
if (Ty->isStructTy()) {
if (!cast<StructType>(Ty)->hasName())
return "__LiteralStructType_";
auto Name = Ty->getStructName();
SmallString<16> Buffer(Name);
for_each(Buffer, [](auto &Iter) {
if (Iter == '.' || Iter == ':')
Iter = '_';
});
auto *MDName = MDString::get(Ty->getContext(), Buffer.str());
return MDName->getString();
}
return "UnknownType";
}
static DIType *solveDIType(DIBuilder &Builder, Type *Ty,
const DataLayout &Layout, DIScope *Scope,
unsigned LineNum,
DenseMap<Type *, DIType *> &DITypeCache) {
if (DIType *DT = DITypeCache.lookup(Ty))
return DT;
StringRef Name = solveTypeName(Ty);
DIType *RetType = nullptr;
if (Ty->isIntegerTy()) {
auto BitWidth = cast<IntegerType>(Ty)->getBitWidth();
RetType = Builder.createBasicType(Name, BitWidth, dwarf::DW_ATE_signed,
llvm::DINode::FlagArtificial);
} else if (Ty->isFloatingPointTy()) {
RetType = Builder.createBasicType(Name, Layout.getTypeSizeInBits(Ty),
dwarf::DW_ATE_float,
llvm::DINode::FlagArtificial);
} else if (Ty->isPointerTy()) {
// Construct BasicType instead of PointerType to avoid infinite
// search problem.
// For example, we would be in trouble if we traverse recursively:
//
// struct Node {
// Node* ptr;
// };
RetType = Builder.createBasicType(Name, Layout.getTypeSizeInBits(Ty),
dwarf::DW_ATE_address,
llvm::DINode::FlagArtificial);
} else if (Ty->isStructTy()) {
auto *DIStruct = Builder.createStructType(
Scope, Name, Scope->getFile(), LineNum, Layout.getTypeSizeInBits(Ty),
Layout.getPrefTypeAlignment(Ty), llvm::DINode::FlagArtificial, nullptr,
llvm::DINodeArray());
auto *StructTy = cast<StructType>(Ty);
SmallVector<Metadata *, 16> Elements;
for (unsigned I = 0; I < StructTy->getNumElements(); I++) {
DIType *DITy = solveDIType(Builder, StructTy->getElementType(I), Layout,
Scope, LineNum, DITypeCache);
assert(DITy);
Elements.push_back(Builder.createMemberType(
Scope, DITy->getName(), Scope->getFile(), LineNum,
DITy->getSizeInBits(), DITy->getAlignInBits(),
Layout.getStructLayout(StructTy)->getElementOffsetInBits(I),
llvm::DINode::FlagArtificial, DITy));
}
Builder.replaceArrays(DIStruct, Builder.getOrCreateArray(Elements));
RetType = DIStruct;
} else {
LLVM_DEBUG(dbgs() << "Unresolved Type: " << *Ty << "\n";);
SmallString<32> Buffer;
raw_svector_ostream OS(Buffer);
OS << Name.str() << "_" << Layout.getTypeSizeInBits(Ty);
RetType = Builder.createBasicType(OS.str(), Layout.getTypeSizeInBits(Ty),
dwarf::DW_ATE_address,
llvm::DINode::FlagArtificial);
}
DITypeCache.insert({Ty, RetType});
return RetType;
}
/// Build artificial debug info for C++ coroutine frames to allow users to
/// inspect the contents of the frame directly
///
/// Create Debug information for coroutine frame with debug name "__coro_frame".
/// The debug information for the fields of coroutine frame is constructed from
/// the following way:
/// 1. For all the value in the Frame, we search the use of dbg.declare to find
/// the corresponding debug variables for the value. If we can find the
/// debug variable, we can get full and accurate debug information.
/// 2. If we can't get debug information in step 1 and 2, we could only try to
/// build the DIType by Type. We did this in solveDIType. We only handle
/// integer, float, double, integer type and struct type for now.
static void buildFrameDebugInfo(Function &F, coro::Shape &Shape,
FrameDataInfo &FrameData) {
DISubprogram *DIS = F.getSubprogram();
// If there is no DISubprogram for F, it implies the Function are not compiled
// with debug info. So we also don't need to generate debug info for the frame
// neither.
if (!DIS || !DIS->getUnit() ||
!dwarf::isCPlusPlus(
(dwarf::SourceLanguage)DIS->getUnit()->getSourceLanguage()))
return;
assert(Shape.ABI == coro::ABI::Switch &&
"We could only build debug infomation for C++ coroutine now.\n");
DIBuilder DBuilder(*F.getParent(), /*AllowUnresolved*/ false);
AllocaInst *PromiseAlloca = Shape.getPromiseAlloca();
assert(PromiseAlloca &&
"Coroutine with switch ABI should own Promise alloca");
TinyPtrVector<DbgDeclareInst *> DIs = FindDbgDeclareUses(PromiseAlloca);
if (DIs.empty())
return;
DbgDeclareInst *PromiseDDI = DIs.front();
DILocalVariable *PromiseDIVariable = PromiseDDI->getVariable();
DILocalScope *PromiseDIScope = PromiseDIVariable->getScope();
DIFile *DFile = PromiseDIScope->getFile();
DILocation *DILoc = PromiseDDI->getDebugLoc().get();
unsigned LineNum = PromiseDIVariable->getLine();
DICompositeType *FrameDITy = DBuilder.createStructType(
DIS, "__coro_frame_ty", DFile, LineNum, Shape.FrameSize * 8,
Shape.FrameAlign.value() * 8, llvm::DINode::FlagArtificial, nullptr,
llvm::DINodeArray());
StructType *FrameTy = Shape.FrameTy;
SmallVector<Metadata *, 16> Elements;
DataLayout Layout = F.getParent()->getDataLayout();
DenseMap<Value *, DILocalVariable *> DIVarCache;
cacheDIVar(FrameData, DIVarCache);
unsigned ResumeIndex = coro::Shape::SwitchFieldIndex::Resume;
unsigned DestroyIndex = coro::Shape::SwitchFieldIndex::Destroy;
unsigned IndexIndex = Shape.SwitchLowering.IndexField;
DenseMap<unsigned, StringRef> NameCache;
NameCache.insert({ResumeIndex, "__resume_fn"});
NameCache.insert({DestroyIndex, "__destroy_fn"});
NameCache.insert({IndexIndex, "__coro_index"});
Type *ResumeFnTy = FrameTy->getElementType(ResumeIndex),
*DestroyFnTy = FrameTy->getElementType(DestroyIndex),
*IndexTy = FrameTy->getElementType(IndexIndex);
DenseMap<unsigned, DIType *> TyCache;
TyCache.insert({ResumeIndex,
DBuilder.createBasicType("__resume_fn",
Layout.getTypeSizeInBits(ResumeFnTy),
dwarf::DW_ATE_address)});
TyCache.insert(
{DestroyIndex, DBuilder.createBasicType(
"__destroy_fn", Layout.getTypeSizeInBits(DestroyFnTy),
dwarf::DW_ATE_address)});
/// FIXME: If we fill the field `SizeInBits` with the actual size of
/// __coro_index in bits, then __coro_index wouldn't show in the debugger.
TyCache.insert({IndexIndex, DBuilder.createBasicType(
"__coro_index",
(Layout.getTypeSizeInBits(IndexTy) < 8)
? 8
: Layout.getTypeSizeInBits(IndexTy),
dwarf::DW_ATE_unsigned_char)});
for (auto *V : FrameData.getAllDefs()) {
if (DIVarCache.find(V) == DIVarCache.end())
continue;
auto Index = FrameData.getFieldIndex(V);
NameCache.insert({Index, DIVarCache[V]->getName()});
TyCache.insert({Index, DIVarCache[V]->getType()});
}
// Cache from index to (Align, Offset Pair)
DenseMap<unsigned, std::pair<unsigned, unsigned>> OffsetCache;
// The Align and Offset of Resume function and Destroy function are fixed.
OffsetCache.insert({ResumeIndex, {8, 0}});
OffsetCache.insert({DestroyIndex, {8, 8}});
OffsetCache.insert(
{IndexIndex,
{Shape.SwitchLowering.IndexAlign, Shape.SwitchLowering.IndexOffset}});
for (auto *V : FrameData.getAllDefs()) {
auto Index = FrameData.getFieldIndex(V);
OffsetCache.insert(
{Index, {FrameData.getAlign(V), FrameData.getOffset(V)}});
}
DenseMap<Type *, DIType *> DITypeCache;
// This counter is used to avoid same type names. e.g., there would be
// many i32 and i64 types in one coroutine. And we would use i32_0 and
// i32_1 to avoid the same type. Since it makes no sense the name of the
// fields confilicts with each other.
unsigned UnknownTypeNum = 0;
for (unsigned Index = 0; Index < FrameTy->getNumElements(); Index++) {
if (OffsetCache.find(Index) == OffsetCache.end())
continue;
std::string Name;
uint64_t SizeInBits;
uint32_t AlignInBits;
uint64_t OffsetInBits;
DIType *DITy = nullptr;
Type *Ty = FrameTy->getElementType(Index);
assert(Ty->isSized() && "We can't handle type which is not sized.\n");
SizeInBits = Layout.getTypeSizeInBits(Ty).getFixedSize();
AlignInBits = OffsetCache[Index].first * 8;
OffsetInBits = OffsetCache[Index].second * 8;
if (NameCache.find(Index) != NameCache.end()) {
Name = NameCache[Index].str();
DITy = TyCache[Index];
} else {
DITy = solveDIType(DBuilder, Ty, Layout, FrameDITy, LineNum, DITypeCache);
assert(DITy && "SolveDIType shouldn't return nullptr.\n");
Name = DITy->getName().str();
Name += "_" + std::to_string(UnknownTypeNum);
UnknownTypeNum++;
}
Elements.push_back(DBuilder.createMemberType(
FrameDITy, Name, DFile, LineNum, SizeInBits, AlignInBits, OffsetInBits,
llvm::DINode::FlagArtificial, DITy));
}
DBuilder.replaceArrays(FrameDITy, DBuilder.getOrCreateArray(Elements));
auto *FrameDIVar = DBuilder.createAutoVariable(PromiseDIScope, "__coro_frame",
DFile, LineNum, FrameDITy,
true, DINode::FlagArtificial);
assert(FrameDIVar->isValidLocationForIntrinsic(PromiseDDI->getDebugLoc()));
// Subprogram would have ContainedNodes field which records the debug
// variables it contained. So we need to add __coro_frame to the
// ContainedNodes of it.
//
// If we don't add __coro_frame to the RetainedNodes, user may get
// `no symbol __coro_frame in context` rather than `__coro_frame`
// is optimized out, which is more precise.
if (auto *SubProgram = dyn_cast<DISubprogram>(PromiseDIScope)) {
auto RetainedNodes = SubProgram->getRetainedNodes();
SmallVector<Metadata *, 32> RetainedNodesVec(RetainedNodes.begin(),
RetainedNodes.end());
RetainedNodesVec.push_back(FrameDIVar);
SubProgram->replaceOperandWith(
7, (MDTuple::get(F.getContext(), RetainedNodesVec)));
}
DBuilder.insertDeclare(Shape.FramePtr, FrameDIVar,
DBuilder.createExpression(), DILoc,
Shape.FramePtr->getNextNode());
}
// Build a struct that will keep state for an active coroutine.
// struct f.frame {
// ResumeFnTy ResumeFnAddr;
// ResumeFnTy DestroyFnAddr;
// int ResumeIndex;
// ... promise (if present) ...
// ... spills ...
// };
static StructType *buildFrameType(Function &F, coro::Shape &Shape,
FrameDataInfo &FrameData) {
LLVMContext &C = F.getContext();
const DataLayout &DL = F.getParent()->getDataLayout();
StructType *FrameTy = [&] {
SmallString<32> Name(F.getName());
Name.append(".Frame");
return StructType::create(C, Name);
}();
// We will use this value to cap the alignment of spilled values.
Optional<Align> MaxFrameAlignment;
if (Shape.ABI == coro::ABI::Async)
MaxFrameAlignment = Shape.AsyncLowering.getContextAlignment();
FrameTypeBuilder B(C, DL, MaxFrameAlignment);
AllocaInst *PromiseAlloca = Shape.getPromiseAlloca();
Optional<FieldIDType> SwitchIndexFieldId;
if (Shape.ABI == coro::ABI::Switch) {
auto *FramePtrTy = FrameTy->getPointerTo();
auto *FnTy = FunctionType::get(Type::getVoidTy(C), FramePtrTy,
/*IsVarArg=*/false);
auto *FnPtrTy = FnTy->getPointerTo();
// Add header fields for the resume and destroy functions.
// We can rely on these being perfectly packed.
(void)B.addField(FnPtrTy, None, /*header*/ true);
(void)B.addField(FnPtrTy, None, /*header*/ true);
// PromiseAlloca field needs to be explicitly added here because it's
// a header field with a fixed offset based on its alignment. Hence it
// needs special handling and cannot be added to FrameData.Allocas.
if (PromiseAlloca)
FrameData.setFieldIndex(
PromiseAlloca, B.addFieldForAlloca(PromiseAlloca, /*header*/ true));
// Add a field to store the suspend index. This doesn't need to
// be in the header.
unsigned IndexBits = std::max(1U, Log2_64_Ceil(Shape.CoroSuspends.size()));
Type *IndexType = Type::getIntNTy(C, IndexBits);
SwitchIndexFieldId = B.addField(IndexType, None);
} else {
assert(PromiseAlloca == nullptr && "lowering doesn't support promises");
}
// Because multiple allocas may own the same field slot,
// we add allocas to field here.
B.addFieldForAllocas(F, FrameData, Shape);
// Add PromiseAlloca to Allocas list so that
// 1. updateLayoutIndex could update its index after
// `performOptimizedStructLayout`
// 2. it is processed in insertSpills.
if (Shape.ABI == coro::ABI::Switch && PromiseAlloca)
// We assume that the promise alloca won't be modified before
// CoroBegin and no alias will be create before CoroBegin.
FrameData.Allocas.emplace_back(
PromiseAlloca, DenseMap<Instruction *, llvm::Optional<APInt>>{}, false);
// Create an entry for every spilled value.
for (auto &S : FrameData.Spills) {
Type *FieldType = S.first->getType();
// For byval arguments, we need to store the pointed value in the frame,
// instead of the pointer itself.
if (const Argument *A = dyn_cast<Argument>(S.first))
if (A->hasByValAttr())
FieldType = A->getParamByValType();
FieldIDType Id =
B.addField(FieldType, None, false /*header*/, true /*IsSpillOfValue*/);
FrameData.setFieldIndex(S.first, Id);
}
B.finish(FrameTy);
FrameData.updateLayoutIndex(B);
Shape.FrameAlign = B.getStructAlign();
Shape.FrameSize = B.getStructSize();
switch (Shape.ABI) {
case coro::ABI::Switch: {
// In the switch ABI, remember the switch-index field.
auto IndexField = B.getLayoutField(*SwitchIndexFieldId);
Shape.SwitchLowering.IndexField = IndexField.LayoutFieldIndex;
Shape.SwitchLowering.IndexAlign = IndexField.Alignment.value();
Shape.SwitchLowering.IndexOffset = IndexField.Offset;
// Also round the frame size up to a multiple of its alignment, as is
// generally expected in C/C++.
Shape.FrameSize = alignTo(Shape.FrameSize, Shape.FrameAlign);
break;
}
// In the retcon ABI, remember whether the frame is inline in the storage.
case coro::ABI::Retcon:
case coro::ABI::RetconOnce: {
auto Id = Shape.getRetconCoroId();
Shape.RetconLowering.IsFrameInlineInStorage
= (B.getStructSize() <= Id->getStorageSize() &&
B.getStructAlign() <= Id->getStorageAlignment());
break;
}
case coro::ABI::Async: {
Shape.AsyncLowering.FrameOffset =
alignTo(Shape.AsyncLowering.ContextHeaderSize, Shape.FrameAlign);
// Also make the final context size a multiple of the context alignment to
// make allocation easier for allocators.
Shape.AsyncLowering.ContextSize =
alignTo(Shape.AsyncLowering.FrameOffset + Shape.FrameSize,
Shape.AsyncLowering.getContextAlignment());
if (Shape.AsyncLowering.getContextAlignment() < Shape.FrameAlign) {
report_fatal_error(
"The alignment requirment of frame variables cannot be higher than "
"the alignment of the async function context");
}
break;
}
}
return FrameTy;
}
// We use a pointer use visitor to track how an alloca is being used.
// The goal is to be able to answer the following three questions:
// 1. Should this alloca be allocated on the frame instead.
// 2. Could the content of the alloca be modified prior to CoroBegn, which would
// require copying the data from alloca to the frame after CoroBegin.
// 3. Is there any alias created for this alloca prior to CoroBegin, but used
// after CoroBegin. In that case, we will need to recreate the alias after
// CoroBegin based off the frame. To answer question 1, we track two things:
// a. List of all BasicBlocks that use this alloca or any of the aliases of
// the alloca. In the end, we check if there exists any two basic blocks that
// cross suspension points. If so, this alloca must be put on the frame. b.
// Whether the alloca or any alias of the alloca is escaped at some point,
// either by storing the address somewhere, or the address is used in a
// function call that might capture. If it's ever escaped, this alloca must be
// put on the frame conservatively.
// To answer quetion 2, we track through the variable MayWriteBeforeCoroBegin.
// Whenever a potential write happens, either through a store instruction, a
// function call or any of the memory intrinsics, we check whether this
// instruction is prior to CoroBegin. To answer question 3, we track the offsets
// of all aliases created for the alloca prior to CoroBegin but used after
// CoroBegin. llvm::Optional is used to be able to represent the case when the
// offset is unknown (e.g. when you have a PHINode that takes in different
// offset values). We cannot handle unknown offsets and will assert. This is the
// potential issue left out. An ideal solution would likely require a
// significant redesign.
namespace {
struct AllocaUseVisitor : PtrUseVisitor<AllocaUseVisitor> {
using Base = PtrUseVisitor<AllocaUseVisitor>;
AllocaUseVisitor(const DataLayout &DL, const DominatorTree &DT,
const CoroBeginInst &CB, const SuspendCrossingInfo &Checker,
bool ShouldUseLifetimeStartInfo)
: PtrUseVisitor(DL), DT(DT), CoroBegin(CB), Checker(Checker),
ShouldUseLifetimeStartInfo(ShouldUseLifetimeStartInfo) {}
void visit(Instruction &I) {
Users.insert(&I);
Base::visit(I);
// If the pointer is escaped prior to CoroBegin, we have to assume it would
// be written into before CoroBegin as well.
if (PI.isEscaped() && !DT.dominates(&CoroBegin, PI.getEscapingInst())) {
MayWriteBeforeCoroBegin = true;
}
}
// We need to provide this overload as PtrUseVisitor uses a pointer based
// visiting function.
void visit(Instruction *I) { return visit(*I); }
void visitPHINode(PHINode &I) {
enqueueUsers(I);
handleAlias(I);
}
void visitSelectInst(SelectInst &I) {
enqueueUsers(I);
handleAlias(I);
}
void visitStoreInst(StoreInst &SI) {
// Regardless whether the alias of the alloca is the value operand or the
// pointer operand, we need to assume the alloca is been written.
handleMayWrite(SI);
if (SI.getValueOperand() != U->get())
return;
// We are storing the pointer into a memory location, potentially escaping.
// As an optimization, we try to detect simple cases where it doesn't
// actually escape, for example:
// %ptr = alloca ..
// %addr = alloca ..
// store %ptr, %addr
// %x = load %addr
// ..
// If %addr is only used by loading from it, we could simply treat %x as
// another alias of %ptr, and not considering %ptr being escaped.
auto IsSimpleStoreThenLoad = [&]() {
auto *AI = dyn_cast<AllocaInst>(SI.getPointerOperand());
// If the memory location we are storing to is not an alloca, it
// could be an alias of some other memory locations, which is difficult
// to analyze.
if (!AI)
return false;
// StoreAliases contains aliases of the memory location stored into.
SmallVector<Instruction *, 4> StoreAliases = {AI};
while (!StoreAliases.empty()) {
Instruction *I = StoreAliases.pop_back_val();
for (User *U : I->users()) {
// If we are loading from the memory location, we are creating an
// alias of the original pointer.
if (auto *LI = dyn_cast<LoadInst>(U)) {
enqueueUsers(*LI);
handleAlias(*LI);
continue;
}
// If we are overriding the memory location, the pointer certainly
// won't escape.
if (auto *S = dyn_cast<StoreInst>(U))
if (S->getPointerOperand() == I)
continue;
if (auto *II = dyn_cast<IntrinsicInst>(U))
if (II->isLifetimeStartOrEnd())
continue;
// BitCastInst creats aliases of the memory location being stored
// into.
if (auto *BI = dyn_cast<BitCastInst>(U)) {
StoreAliases.push_back(BI);
continue;
}
return false;
}
}
return true;
};
if (!IsSimpleStoreThenLoad())
PI.setEscaped(&SI);
}
// All mem intrinsics modify the data.
void visitMemIntrinsic(MemIntrinsic &MI) { handleMayWrite(MI); }
void visitBitCastInst(BitCastInst &BC) {
Base::visitBitCastInst(BC);
handleAlias(BC);
}
void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
Base::visitAddrSpaceCastInst(ASC);
handleAlias(ASC);
}
void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
// The base visitor will adjust Offset accordingly.
Base::visitGetElementPtrInst(GEPI);
handleAlias(GEPI);
}
void visitIntrinsicInst(IntrinsicInst &II) {
// When we found the lifetime markers refers to a
// subrange of the original alloca, ignore the lifetime
// markers to avoid misleading the analysis.
if (II.getIntrinsicID() != Intrinsic::lifetime_start || !IsOffsetKnown ||
!Offset.isZero())
return Base::visitIntrinsicInst(II);
LifetimeStarts.insert(&II);
}
void visitCallBase(CallBase &CB) {
for (unsigned Op = 0, OpCount = CB.arg_size(); Op < OpCount; ++Op)
if (U->get() == CB.getArgOperand(Op) && !CB.doesNotCapture(Op))
PI.setEscaped(&CB);
handleMayWrite(CB);
}
bool getShouldLiveOnFrame() const {
if (!ShouldLiveOnFrame)
ShouldLiveOnFrame = computeShouldLiveOnFrame();
return ShouldLiveOnFrame.getValue();
}
bool getMayWriteBeforeCoroBegin() const { return MayWriteBeforeCoroBegin; }
DenseMap<Instruction *, llvm::Optional<APInt>> getAliasesCopy() const {
assert(getShouldLiveOnFrame() && "This method should only be called if the "
"alloca needs to live on the frame.");
for (const auto &P : AliasOffetMap)
if (!P.second)
report_fatal_error("Unable to handle an alias with unknown offset "
"created before CoroBegin.");
return AliasOffetMap;
}
private:
const DominatorTree &DT;
const CoroBeginInst &CoroBegin;
const SuspendCrossingInfo &Checker;
// All alias to the original AllocaInst, created before CoroBegin and used
// after CoroBegin. Each entry contains the instruction and the offset in the
// original Alloca. They need to be recreated after CoroBegin off the frame.
DenseMap<Instruction *, llvm::Optional<APInt>> AliasOffetMap{};
SmallPtrSet<Instruction *, 4> Users{};
SmallPtrSet<IntrinsicInst *, 2> LifetimeStarts{};
bool MayWriteBeforeCoroBegin{false};
bool ShouldUseLifetimeStartInfo{true};
mutable llvm::Optional<bool> ShouldLiveOnFrame{};
bool computeShouldLiveOnFrame() const {
// If lifetime information is available, we check it first since it's
// more precise. We look at every pair of lifetime.start intrinsic and
// every basic block that uses the pointer to see if they cross suspension
// points. The uses cover both direct uses as well as indirect uses.
if (ShouldUseLifetimeStartInfo && !LifetimeStarts.empty()) {
for (auto *I : Users)
for (auto *S : LifetimeStarts)
if (Checker.isDefinitionAcrossSuspend(*S, I))
return true;
return false;
}
// FIXME: Ideally the isEscaped check should come at the beginning.
// However there are a few loose ends that need to be fixed first before
// we can do that. We need to make sure we are not over-conservative, so
// that the data accessed in-between await_suspend and symmetric transfer
// is always put on the stack, and also data accessed after coro.end is
// always put on the stack (esp the return object). To fix that, we need
// to:
// 1) Potentially treat sret as nocapture in calls
// 2) Special handle the return object and put it on the stack
// 3) Utilize lifetime.end intrinsic
if (PI.isEscaped())
return true;
for (auto *U1 : Users)
for (auto *U2 : Users)
if (Checker.isDefinitionAcrossSuspend(*U1, U2))
return true;
return false;
}
void handleMayWrite(const Instruction &I) {
if (!DT.dominates(&CoroBegin, &I))
MayWriteBeforeCoroBegin = true;
}
bool usedAfterCoroBegin(Instruction &I) {
for (auto &U : I.uses())
if (DT.dominates(&CoroBegin, U))
return true;
return false;
}
void handleAlias(Instruction &I) {
// We track all aliases created prior to CoroBegin but used after.
// These aliases may need to be recreated after CoroBegin if the alloca
// need to live on the frame.
if (DT.dominates(&CoroBegin, &I) || !usedAfterCoroBegin(I))
return;
if (!IsOffsetKnown) {
AliasOffetMap[&I].reset();
} else {
auto Itr = AliasOffetMap.find(&I);
if (Itr == AliasOffetMap.end()) {
AliasOffetMap[&I] = Offset;
} else if (Itr->second.hasValue() && Itr->second.getValue() != Offset) {
// If we have seen two different possible values for this alias, we set
// it to empty.
AliasOffetMap[&I].reset();
}
}
}
};
} // namespace
// We need to make room to insert a spill after initial PHIs, but before
// catchswitch instruction. Placing it before violates the requirement that
// catchswitch, like all other EHPads must be the first nonPHI in a block.
//
// Split away catchswitch into a separate block and insert in its place:
//
// cleanuppad <InsertPt> cleanupret.
//
// cleanupret instruction will act as an insert point for the spill.
static Instruction *splitBeforeCatchSwitch(CatchSwitchInst *CatchSwitch) {
BasicBlock *CurrentBlock = CatchSwitch->getParent();
BasicBlock *NewBlock = CurrentBlock->splitBasicBlock(CatchSwitch);
CurrentBlock->getTerminator()->eraseFromParent();
auto *CleanupPad =
CleanupPadInst::Create(CatchSwitch->getParentPad(), {}, "", CurrentBlock);
auto *CleanupRet =
CleanupReturnInst::Create(CleanupPad, NewBlock, CurrentBlock);
return CleanupRet;
}
static void createFramePtr(coro::Shape &Shape) {
auto *CB = Shape.CoroBegin;
IRBuilder<> Builder(CB->getNextNode());
StructType *FrameTy = Shape.FrameTy;
PointerType *FramePtrTy = FrameTy->getPointerTo();
Shape.FramePtr =
cast<Instruction>(Builder.CreateBitCast(CB, FramePtrTy, "FramePtr"));
}
// Replace all alloca and SSA values that are accessed across suspend points
// with GetElementPointer from coroutine frame + loads and stores. Create an
// AllocaSpillBB that will become the new entry block for the resume parts of
// the coroutine:
//
// %hdl = coro.begin(...)
// whatever
//
// becomes:
//
// %hdl = coro.begin(...)
// %FramePtr = bitcast i8* hdl to %f.frame*
// br label %AllocaSpillBB
//
// AllocaSpillBB:
// ; geps corresponding to allocas that were moved to coroutine frame
// br label PostSpill
//
// PostSpill:
// whatever
//
//
static Instruction *insertSpills(const FrameDataInfo &FrameData,
coro::Shape &Shape) {
auto *CB = Shape.CoroBegin;
LLVMContext &C = CB->getContext();
IRBuilder<> Builder(C);
StructType *FrameTy = Shape.FrameTy;
Instruction *FramePtr = Shape.FramePtr;
DominatorTree DT(*CB->getFunction());
SmallDenseMap<llvm::Value *, llvm::AllocaInst *, 4> DbgPtrAllocaCache;
// Create a GEP with the given index into the coroutine frame for the original
// value Orig. Appends an extra 0 index for array-allocas, preserving the
// original type.
auto GetFramePointer = [&](Value *Orig) -> Value * {
FieldIDType Index = FrameData.getFieldIndex(Orig);
SmallVector<Value *, 3> Indices = {
ConstantInt::get(Type::getInt32Ty(C), 0),
ConstantInt::get(Type::getInt32Ty(C), Index),
};
if (auto *AI = dyn_cast<AllocaInst>(Orig)) {
if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
auto Count = CI->getValue().getZExtValue();
if (Count > 1) {
Indices.push_back(ConstantInt::get(Type::getInt32Ty(C), 0));
}
} else {
report_fatal_error("Coroutines cannot handle non static allocas yet");
}
}
auto GEP = cast<GetElementPtrInst>(
Builder.CreateInBoundsGEP(FrameTy, FramePtr, Indices));
if (isa<AllocaInst>(Orig)) {
// If the type of GEP is not equal to the type of AllocaInst, it implies
// that the AllocaInst may be reused in the Frame slot of other
// AllocaInst. So We cast GEP to the AllocaInst here to re-use
// the Frame storage.
//
// Note: If we change the strategy dealing with alignment, we need to refine
// this casting.
if (GEP->getResultElementType() != Orig->getType())
return Builder.CreateBitCast(GEP, Orig->getType(),
Orig->getName() + Twine(".cast"));
}
return GEP;
};
for (auto const &E : FrameData.Spills) {
Value *Def = E.first;
auto SpillAlignment = Align(FrameData.getAlign(Def));
// Create a store instruction storing the value into the
// coroutine frame.
Instruction *InsertPt = nullptr;
bool NeedToCopyArgPtrValue = false;
if (auto *Arg = dyn_cast<Argument>(Def)) {
// For arguments, we will place the store instruction right after
// the coroutine frame pointer instruction, i.e. bitcast of
// coro.begin from i8* to %f.frame*.
InsertPt = FramePtr->getNextNode();
// If we're spilling an Argument, make sure we clear 'nocapture'
// from the coroutine function.
Arg->getParent()->removeParamAttr(Arg->getArgNo(), Attribute::NoCapture);
if (Arg->hasByValAttr())
NeedToCopyArgPtrValue = true;
} else if (auto *CSI = dyn_cast<AnyCoroSuspendInst>(Def)) {
// Don't spill immediately after a suspend; splitting assumes
// that the suspend will be followed by a branch.
InsertPt = CSI->getParent()->getSingleSuccessor()->getFirstNonPHI();
} else {
auto *I = cast<Instruction>(Def);
if (!DT.dominates(CB, I)) {
// If it is not dominated by CoroBegin, then spill should be
// inserted immediately after CoroFrame is computed.
InsertPt = FramePtr->getNextNode();
} else if (auto *II = dyn_cast<InvokeInst>(I)) {
// If we are spilling the result of the invoke instruction, split
// the normal edge and insert the spill in the new block.
auto *NewBB = SplitEdge(II->getParent(), II->getNormalDest());
InsertPt = NewBB->getTerminator();
} else if (isa<PHINode>(I)) {
// Skip the PHINodes and EH pads instructions.
BasicBlock *DefBlock = I->getParent();
if (auto *CSI = dyn_cast<CatchSwitchInst>(DefBlock->getTerminator()))
InsertPt = splitBeforeCatchSwitch(CSI);
else
InsertPt = &*DefBlock->getFirstInsertionPt();
} else {
assert(!I->isTerminator() && "unexpected terminator");
// For all other values, the spill is placed immediately after
// the definition.
InsertPt = I->getNextNode();
}
}
auto Index = FrameData.getFieldIndex(Def);
Builder.SetInsertPoint(InsertPt);
auto *G = Builder.CreateConstInBoundsGEP2_32(
FrameTy, FramePtr, 0, Index, Def->getName() + Twine(".spill.addr"));
if (NeedToCopyArgPtrValue) {
// For byval arguments, we need to store the pointed value in the frame,
// instead of the pointer itself.
auto *Value =
Builder.CreateLoad(Def->getType()->getPointerElementType(), Def);
Builder.CreateAlignedStore(Value, G, SpillAlignment);
} else {
Builder.CreateAlignedStore(Def, G, SpillAlignment);
}
BasicBlock *CurrentBlock = nullptr;
Value *CurrentReload = nullptr;
for (auto *U : E.second) {
// If we have not seen the use block, create a load instruction to reload
// the spilled value from the coroutine frame. Populates the Value pointer
// reference provided with the frame GEP.
if (CurrentBlock != U->getParent()) {
CurrentBlock = U->getParent();
Builder.SetInsertPoint(&*CurrentBlock->getFirstInsertionPt());
auto *GEP = GetFramePointer(E.first);
GEP->setName(E.first->getName() + Twine(".reload.addr"));
if (NeedToCopyArgPtrValue)
CurrentReload = GEP;
else
CurrentReload = Builder.CreateAlignedLoad(
FrameTy->getElementType(FrameData.getFieldIndex(E.first)), GEP,
SpillAlignment, E.first->getName() + Twine(".reload"));
TinyPtrVector<DbgDeclareInst *> DIs = FindDbgDeclareUses(Def);
for (DbgDeclareInst *DDI : DIs) {
bool AllowUnresolved = false;
// This dbg.declare is preserved for all coro-split function
// fragments. It will be unreachable in the main function, and
// processed by coro::salvageDebugInfo() by CoroCloner.
DIBuilder(*CurrentBlock->getParent()->getParent(), AllowUnresolved)
.insertDeclare(CurrentReload, DDI->getVariable(),
DDI->getExpression(), DDI->getDebugLoc(),
&*Builder.GetInsertPoint());
// This dbg.declare is for the main function entry point. It
// will be deleted in all coro-split functions.
coro::salvageDebugInfo(DbgPtrAllocaCache, DDI, Shape.OptimizeFrame);
}
}
// If we have a single edge PHINode, remove it and replace it with a
// reload from the coroutine frame. (We already took care of multi edge
// PHINodes by rewriting them in the rewritePHIs function).
if (auto *PN = dyn_cast<PHINode>(U)) {
assert(PN->getNumIncomingValues() == 1 &&
"unexpected number of incoming "
"values in the PHINode");
PN->replaceAllUsesWith(CurrentReload);
PN->eraseFromParent();
continue;
}
// Replace all uses of CurrentValue in the current instruction with
// reload.
U->replaceUsesOfWith(Def, CurrentReload);
}
}
BasicBlock *FramePtrBB = FramePtr->getParent();
auto SpillBlock =
FramePtrBB->splitBasicBlock(FramePtr->getNextNode(), "AllocaSpillBB");
SpillBlock->splitBasicBlock(&SpillBlock->front(), "PostSpill");
Shape.AllocaSpillBlock = SpillBlock;
// retcon and retcon.once lowering assumes all uses have been sunk.
if (Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce ||
Shape.ABI == coro::ABI::Async) {
// If we found any allocas, replace all of their remaining uses with Geps.
Builder.SetInsertPoint(&SpillBlock->front());
for (const auto &P : FrameData.Allocas) {
AllocaInst *Alloca = P.Alloca;
auto *G = GetFramePointer(Alloca);
// We are not using ReplaceInstWithInst(P.first, cast<Instruction>(G))
// here, as we are changing location of the instruction.
G->takeName(Alloca);
Alloca->replaceAllUsesWith(G);
Alloca->eraseFromParent();
}
return FramePtr;
}
// If we found any alloca, replace all of their remaining uses with GEP
// instructions. To remain debugbility, we replace the uses of allocas for
// dbg.declares and dbg.values with the reload from the frame.
// Note: We cannot replace the alloca with GEP instructions indiscriminately,
// as some of the uses may not be dominated by CoroBegin.
Builder.SetInsertPoint(&Shape.AllocaSpillBlock->front());
SmallVector<Instruction *, 4> UsersToUpdate;
for (const auto &A : FrameData.Allocas) {
AllocaInst *Alloca = A.Alloca;
UsersToUpdate.clear();
for (User *U : Alloca->users()) {
auto *I = cast<Instruction>(U);
if (DT.dominates(CB, I))
UsersToUpdate.push_back(I);
}
if (UsersToUpdate.empty())
continue;
auto *G = GetFramePointer(Alloca);
G->setName(Alloca->getName() + Twine(".reload.addr"));
SmallVector<DbgVariableIntrinsic *, 4> DIs;
findDbgUsers(DIs, Alloca);
for (auto *DVI : DIs)
DVI->replaceUsesOfWith(Alloca, G);
for (Instruction *I : UsersToUpdate)
I->replaceUsesOfWith(Alloca, G);
}
Builder.SetInsertPoint(FramePtr->getNextNode());
for (const auto &A : FrameData.Allocas) {
AllocaInst *Alloca = A.Alloca;
if (A.MayWriteBeforeCoroBegin) {
// isEscaped really means potentially modified before CoroBegin.
if (Alloca->isArrayAllocation())
report_fatal_error(
"Coroutines cannot handle copying of array allocas yet");
auto *G = GetFramePointer(Alloca);
auto *Value = Builder.CreateLoad(Alloca->getAllocatedType(), Alloca);
Builder.CreateStore(Value, G);
}
// For each alias to Alloca created before CoroBegin but used after
// CoroBegin, we recreate them after CoroBegin by appplying the offset
// to the pointer in the frame.
for (const auto &Alias : A.Aliases) {
auto *FramePtr = GetFramePointer(Alloca);
auto *FramePtrRaw =
Builder.CreateBitCast(FramePtr, Type::getInt8PtrTy(C));
auto *AliasPtr = Builder.CreateGEP(
Type::getInt8Ty(C), FramePtrRaw,
ConstantInt::get(Type::getInt64Ty(C), Alias.second.getValue()));
auto *AliasPtrTyped =
Builder.CreateBitCast(AliasPtr, Alias.first->getType());
Alias.first->replaceUsesWithIf(
AliasPtrTyped, [&](Use &U) { return DT.dominates(CB, U); });
}
}
return FramePtr;
}
// Moves the values in the PHIs in SuccBB that correspong to PredBB into a new
// PHI in InsertedBB.
static void movePHIValuesToInsertedBlock(BasicBlock *SuccBB,
BasicBlock *InsertedBB,
BasicBlock *PredBB,
PHINode *UntilPHI = nullptr) {
auto *PN = cast<PHINode>(&SuccBB->front());
do {
int Index = PN->getBasicBlockIndex(InsertedBB);
Value *V = PN->getIncomingValue(Index);
PHINode *InputV = PHINode::Create(
V->getType(), 1, V->getName() + Twine(".") + SuccBB->getName(),
&InsertedBB->front());
InputV->addIncoming(V, PredBB);
PN->setIncomingValue(Index, InputV);
PN = dyn_cast<PHINode>(PN->getNextNode());
} while (PN != UntilPHI);
}
// Rewrites the PHI Nodes in a cleanuppad.
static void rewritePHIsForCleanupPad(BasicBlock *CleanupPadBB,
CleanupPadInst *CleanupPad) {
// For every incoming edge to a CleanupPad we will create a new block holding
// all incoming values in single-value PHI nodes. We will then create another
// block to act as a dispather (as all unwind edges for related EH blocks
// must be the same).
//
// cleanuppad:
// %2 = phi i32[%0, %catchswitch], [%1, %catch.1]
// %3 = cleanuppad within none []
//
// It will create:
//
// cleanuppad.corodispatch
// %2 = phi i8[0, %catchswitch], [1, %catch.1]
// %3 = cleanuppad within none []
// switch i8 % 2, label %unreachable
// [i8 0, label %cleanuppad.from.catchswitch
// i8 1, label %cleanuppad.from.catch.1]
// cleanuppad.from.catchswitch:
// %4 = phi i32 [%0, %catchswitch]
// br %label cleanuppad
// cleanuppad.from.catch.1:
// %6 = phi i32 [%1, %catch.1]
// br %label cleanuppad
// cleanuppad:
// %8 = phi i32 [%4, %cleanuppad.from.catchswitch],
// [%6, %cleanuppad.from.catch.1]
// Unreachable BB, in case switching on an invalid value in the dispatcher.
auto *UnreachBB = BasicBlock::Create(
CleanupPadBB->getContext(), "unreachable", CleanupPadBB->getParent());
IRBuilder<> Builder(UnreachBB);
Builder.CreateUnreachable();
// Create a new cleanuppad which will be the dispatcher.
auto *NewCleanupPadBB =
BasicBlock::Create(CleanupPadBB->getContext(),
CleanupPadBB->getName() + Twine(".corodispatch"),
CleanupPadBB->getParent(), CleanupPadBB);
Builder.SetInsertPoint(NewCleanupPadBB);
auto *SwitchType = Builder.getInt8Ty();
auto *SetDispatchValuePN =
Builder.CreatePHI(SwitchType, pred_size(CleanupPadBB));
CleanupPad->removeFromParent();
CleanupPad->insertAfter(SetDispatchValuePN);
auto *SwitchOnDispatch = Builder.CreateSwitch(SetDispatchValuePN, UnreachBB,
pred_size(CleanupPadBB));
int SwitchIndex = 0;
SmallVector<BasicBlock *, 8> Preds(predecessors(CleanupPadBB));
for (BasicBlock *Pred : Preds) {
// Create a new cleanuppad and move the PHI values to there.
auto *CaseBB = BasicBlock::Create(CleanupPadBB->getContext(),
CleanupPadBB->getName() +
Twine(".from.") + Pred->getName(),
CleanupPadBB->getParent(), CleanupPadBB);
updatePhiNodes(CleanupPadBB, Pred, CaseBB);
CaseBB->setName(CleanupPadBB->getName() + Twine(".from.") +
Pred->getName());
Builder.SetInsertPoint(CaseBB);
Builder.CreateBr(CleanupPadBB);
movePHIValuesToInsertedBlock(CleanupPadBB, CaseBB, NewCleanupPadBB);
// Update this Pred to the new unwind point.
setUnwindEdgeTo(Pred->getTerminator(), NewCleanupPadBB);
// Setup the switch in the dispatcher.
auto *SwitchConstant = ConstantInt::get(SwitchType, SwitchIndex);
SetDispatchValuePN->addIncoming(SwitchConstant, Pred);
SwitchOnDispatch->addCase(SwitchConstant, CaseBB);
SwitchIndex++;
}
}
static void cleanupSinglePredPHIs(Function &F) {
SmallVector<PHINode *, 32> Worklist;
for (auto &BB : F) {
for (auto &Phi : BB.phis()) {
if (Phi.getNumIncomingValues() == 1) {
Worklist.push_back(&Phi);
} else
break;
}
}
while (!Worklist.empty()) {
auto *Phi = Worklist.pop_back_val();
auto *OriginalValue = Phi->getIncomingValue(0);
Phi->replaceAllUsesWith(OriginalValue);
}
}
static void rewritePHIs(BasicBlock &BB) {
// For every incoming edge we will create a block holding all
// incoming values in a single PHI nodes.
//
// loop:
// %n.val = phi i32[%n, %entry], [%inc, %loop]
//
// It will create:
//
// loop.from.entry:
// %n.loop.pre = phi i32 [%n, %entry]
// br %label loop
// loop.from.loop:
// %inc.loop.pre = phi i32 [%inc, %loop]
// br %label loop
//
// After this rewrite, further analysis will ignore any phi nodes with more
// than one incoming edge.
// TODO: Simplify PHINodes in the basic block to remove duplicate
// predecessors.
// Special case for CleanupPad: all EH blocks must have the same unwind edge
// so we need to create an additional "dispatcher" block.
if (auto *CleanupPad =
dyn_cast_or_null<CleanupPadInst>(BB.getFirstNonPHI())) {
SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
for (BasicBlock *Pred : Preds) {
if (CatchSwitchInst *CS =
dyn_cast<CatchSwitchInst>(Pred->getTerminator())) {
// CleanupPad with a CatchSwitch predecessor: therefore this is an
// unwind destination that needs to be handle specially.
assert(CS->getUnwindDest() == &BB);
(void)CS;
rewritePHIsForCleanupPad(&BB, CleanupPad);
return;
}
}
}
LandingPadInst *LandingPad = nullptr;
PHINode *ReplPHI = nullptr;
if ((LandingPad = dyn_cast_or_null<LandingPadInst>(BB.getFirstNonPHI()))) {
// ehAwareSplitEdge will clone the LandingPad in all the edge blocks.
// We replace the original landing pad with a PHINode that will collect the
// results from all of them.
ReplPHI = PHINode::Create(LandingPad->getType(), 1, "", LandingPad);
ReplPHI->takeName(LandingPad);
LandingPad->replaceAllUsesWith(ReplPHI);
// We will erase the original landing pad at the end of this function after
// ehAwareSplitEdge cloned it in the transition blocks.
}
SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
for (BasicBlock *Pred : Preds) {
auto *IncomingBB = ehAwareSplitEdge(Pred, &BB, LandingPad, ReplPHI);
IncomingBB->setName(BB.getName() + Twine(".from.") + Pred->getName());
// Stop the moving of values at ReplPHI, as this is either null or the PHI
// that replaced the landing pad.
movePHIValuesToInsertedBlock(&BB, IncomingBB, Pred, ReplPHI);
}
if (LandingPad) {
// Calls to ehAwareSplitEdge function cloned the original lading pad.
// No longer need it.
LandingPad->eraseFromParent();
}
}
static void rewritePHIs(Function &F) {
SmallVector<BasicBlock *, 8> WorkList;
for (BasicBlock &BB : F)
if (auto *PN = dyn_cast<PHINode>(&BB.front()))
if (PN->getNumIncomingValues() > 1)
WorkList.push_back(&BB);
for (BasicBlock *BB : WorkList)
rewritePHIs(*BB);
}
// Check for instructions that we can recreate on resume as opposed to spill
// the result into a coroutine frame.
static bool materializable(Instruction &V) {
return isa<CastInst>(&V) || isa<GetElementPtrInst>(&V) ||
isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<SelectInst>(&V);
}
// Check for structural coroutine intrinsics that should not be spilled into
// the coroutine frame.
static bool isCoroutineStructureIntrinsic(Instruction &I) {
return isa<CoroIdInst>(&I) || isa<CoroSaveInst>(&I) ||
isa<CoroSuspendInst>(&I);
}
// For every use of the value that is across suspend point, recreate that value
// after a suspend point.
static void rewriteMaterializableInstructions(IRBuilder<> &IRB,
const SpillInfo &Spills) {
for (const auto &E : Spills) {
Value *Def = E.first;
BasicBlock *CurrentBlock = nullptr;
Instruction *CurrentMaterialization = nullptr;
for (Instruction *U : E.second) {
// If we have not seen this block, materialize the value.
if (CurrentBlock != U->getParent()) {
bool IsInCoroSuspendBlock = isa<AnyCoroSuspendInst>(U);
CurrentBlock = U->getParent();
auto *InsertBlock = IsInCoroSuspendBlock
? CurrentBlock->getSinglePredecessor()
: CurrentBlock;
CurrentMaterialization = cast<Instruction>(Def)->clone();
CurrentMaterialization->setName(Def->getName());
CurrentMaterialization->insertBefore(
IsInCoroSuspendBlock ? InsertBlock->getTerminator()
: &*InsertBlock->getFirstInsertionPt());
}
if (auto *PN = dyn_cast<PHINode>(U)) {
assert(PN->getNumIncomingValues() == 1 &&
"unexpected number of incoming "
"values in the PHINode");
PN->replaceAllUsesWith(CurrentMaterialization);
PN->eraseFromParent();
continue;
}
// Replace all uses of Def in the current instruction with the
// CurrentMaterialization for the block.
U->replaceUsesOfWith(Def, CurrentMaterialization);
}
}
}
// Splits the block at a particular instruction unless it is the first
// instruction in the block with a single predecessor.
static BasicBlock *splitBlockIfNotFirst(Instruction *I, const Twine &Name) {
auto *BB = I->getParent();
if (&BB->front() == I) {
if (BB->getSinglePredecessor()) {
BB->setName(Name);
return BB;
}
}
return BB->splitBasicBlock(I, Name);
}
// Split above and below a particular instruction so that it
// will be all alone by itself in a block.
static void splitAround(Instruction *I, const Twine &Name) {
splitBlockIfNotFirst(I, Name);
splitBlockIfNotFirst(I->getNextNode(), "After" + Name);
}
static bool isSuspendBlock(BasicBlock *BB) {
return isa<AnyCoroSuspendInst>(BB->front());
}
typedef SmallPtrSet<BasicBlock*, 8> VisitedBlocksSet;
/// Does control flow starting at the given block ever reach a suspend
/// instruction before reaching a block in VisitedOrFreeBBs?
static bool isSuspendReachableFrom(BasicBlock *From,
VisitedBlocksSet &VisitedOrFreeBBs) {
// Eagerly try to add this block to the visited set. If it's already
// there, stop recursing; this path doesn't reach a suspend before
// either looping or reaching a freeing block.
if (!VisitedOrFreeBBs.insert(From).second)
return false;
// We assume that we'll already have split suspends into their own blocks.
if (isSuspendBlock(From))
return true;
// Recurse on the successors.
for (auto Succ : successors(From)) {
if (isSuspendReachableFrom(Succ, VisitedOrFreeBBs))
return true;
}
return false;
}
/// Is the given alloca "local", i.e. bounded in lifetime to not cross a
/// suspend point?
static bool isLocalAlloca(CoroAllocaAllocInst *AI) {
// Seed the visited set with all the basic blocks containing a free
// so that we won't pass them up.
VisitedBlocksSet VisitedOrFreeBBs;
for (auto User : AI->users()) {
if (auto FI = dyn_cast<CoroAllocaFreeInst>(User))
VisitedOrFreeBBs.insert(FI->getParent());
}
return !isSuspendReachableFrom(AI->getParent(), VisitedOrFreeBBs);
}
/// After we split the coroutine, will the given basic block be along
/// an obvious exit path for the resumption function?
static bool willLeaveFunctionImmediatelyAfter(BasicBlock *BB,
unsigned depth = 3) {
// If we've bottomed out our depth count, stop searching and assume
// that the path might loop back.
if (depth == 0) return false;
// If this is a suspend block, we're about to exit the resumption function.
if (isSuspendBlock(BB)) return true;
// Recurse into the successors.
for (auto Succ : successors(BB)) {
if (!willLeaveFunctionImmediatelyAfter(Succ, depth - 1))
return false;
}
// If none of the successors leads back in a loop, we're on an exit/abort.
return true;
}
static bool localAllocaNeedsStackSave(CoroAllocaAllocInst *AI) {
// Look for a free that isn't sufficiently obviously followed by
// either a suspend or a termination, i.e. something that will leave
// the coro resumption frame.
for (auto U : AI->users()) {
auto FI = dyn_cast<CoroAllocaFreeInst>(U);
if (!FI) continue;
if (!willLeaveFunctionImmediatelyAfter(FI->getParent()))
return true;
}
// If we never found one, we don't need a stack save.
return false;
}
/// Turn each of the given local allocas into a normal (dynamic) alloca
/// instruction.
static void lowerLocalAllocas(ArrayRef<CoroAllocaAllocInst*> LocalAllocas,
SmallVectorImpl<Instruction*> &DeadInsts) {
for (auto AI : LocalAllocas) {
auto M = AI->getModule();
IRBuilder<> Builder(AI);
// Save the stack depth. Try to avoid doing this if the stackrestore
// is going to immediately precede a return or something.
Value *StackSave = nullptr;
if (localAllocaNeedsStackSave(AI))
StackSave = Builder.CreateCall(
Intrinsic::getDeclaration(M, Intrinsic::stacksave));
// Allocate memory.
auto Alloca = Builder.CreateAlloca(Builder.getInt8Ty(), AI->getSize());
Alloca->setAlignment(Align(AI->getAlignment()));
for (auto U : AI->users()) {
// Replace gets with the allocation.
if (isa<CoroAllocaGetInst>(U)) {
U->replaceAllUsesWith(Alloca);
// Replace frees with stackrestores. This is safe because
// alloca.alloc is required to obey a stack discipline, although we
// don't enforce that structurally.
} else {
auto FI = cast<CoroAllocaFreeInst>(U);
if (StackSave) {
Builder.SetInsertPoint(FI);
Builder.CreateCall(
Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
StackSave);
}
}
DeadInsts.push_back(cast<Instruction>(U));
}
DeadInsts.push_back(AI);
}
}
/// Turn the given coro.alloca.alloc call into a dynamic allocation.
/// This happens during the all-instructions iteration, so it must not
/// delete the call.
static Instruction *lowerNonLocalAlloca(CoroAllocaAllocInst *AI,
coro::Shape &Shape,
SmallVectorImpl<Instruction*> &DeadInsts) {
IRBuilder<> Builder(AI);
auto Alloc = Shape.emitAlloc(Builder, AI->getSize(), nullptr);
for (User *U : AI->users()) {
if (isa<CoroAllocaGetInst>(U)) {
U->replaceAllUsesWith(Alloc);
} else {
auto FI = cast<CoroAllocaFreeInst>(U);
Builder.SetInsertPoint(FI);
Shape.emitDealloc(Builder, Alloc, nullptr);
}
DeadInsts.push_back(cast<Instruction>(U));
}
// Push this on last so that it gets deleted after all the others.
DeadInsts.push_back(AI);
// Return the new allocation value so that we can check for needed spills.
return cast<Instruction>(Alloc);
}
/// Get the current swifterror value.
static Value *emitGetSwiftErrorValue(IRBuilder<> &Builder, Type *ValueTy,
coro::Shape &Shape) {
// Make a fake function pointer as a sort of intrinsic.
auto FnTy = FunctionType::get(ValueTy, {}, false);
auto Fn = ConstantPointerNull::get(FnTy->getPointerTo());
auto Call = Builder.CreateCall(FnTy, Fn, {});
Shape.SwiftErrorOps.push_back(Call);
return Call;
}
/// Set the given value as the current swifterror value.
///
/// Returns a slot that can be used as a swifterror slot.
static Value *emitSetSwiftErrorValue(IRBuilder<> &Builder, Value *V,
coro::Shape &Shape) {
// Make a fake function pointer as a sort of intrinsic.
auto FnTy = FunctionType::get(V->getType()->getPointerTo(),
{V->getType()}, false);
auto Fn = ConstantPointerNull::get(FnTy->getPointerTo());
auto Call = Builder.CreateCall(FnTy, Fn, { V });
Shape.SwiftErrorOps.push_back(Call);
return Call;
}
/// Set the swifterror value from the given alloca before a call,
/// then put in back in the alloca afterwards.
///
/// Returns an address that will stand in for the swifterror slot
/// until splitting.
static Value *emitSetAndGetSwiftErrorValueAround(Instruction *Call,
AllocaInst *Alloca,
coro::Shape &Shape) {
auto ValueTy = Alloca->getAllocatedType();
IRBuilder<> Builder(Call);
// Load the current value from the alloca and set it as the
// swifterror value.
auto ValueBeforeCall = Builder.CreateLoad(ValueTy, Alloca);
auto Addr = emitSetSwiftErrorValue(Builder, ValueBeforeCall, Shape);
// Move to after the call. Since swifterror only has a guaranteed
// value on normal exits, we can ignore implicit and explicit unwind
// edges.
if (isa<CallInst>(Call)) {
Builder.SetInsertPoint(Call->getNextNode());
} else {
auto Invoke = cast<InvokeInst>(Call);
Builder.SetInsertPoint(Invoke->getNormalDest()->getFirstNonPHIOrDbg());
}
// Get the current swifterror value and store it to the alloca.
auto ValueAfterCall = emitGetSwiftErrorValue(Builder, ValueTy, Shape);
Builder.CreateStore(ValueAfterCall, Alloca);
return Addr;
}
/// Eliminate a formerly-swifterror alloca by inserting the get/set
/// intrinsics and attempting to MemToReg the alloca away.
static void eliminateSwiftErrorAlloca(Function &F, AllocaInst *Alloca,
coro::Shape &Shape) {
for (Use &Use : llvm::make_early_inc_range(Alloca->uses())) {
// swifterror values can only be used in very specific ways.
// We take advantage of that here.
auto User = Use.getUser();
if (isa<LoadInst>(User) || isa<StoreInst>(User))
continue;
assert(isa<CallInst>(User) || isa<InvokeInst>(User));
auto Call = cast<Instruction>(User);
auto Addr = emitSetAndGetSwiftErrorValueAround(Call, Alloca, Shape);
// Use the returned slot address as the call argument.
Use.set(Addr);
}
// All the uses should be loads and stores now.
assert(isAllocaPromotable(Alloca));
}
/// "Eliminate" a swifterror argument by reducing it to the alloca case
/// and then loading and storing in the prologue and epilog.
///
/// The argument keeps the swifterror flag.
static void eliminateSwiftErrorArgument(Function &F, Argument &Arg,
coro::Shape &Shape,
SmallVectorImpl<AllocaInst*> &AllocasToPromote) {
IRBuilder<> Builder(F.getEntryBlock().getFirstNonPHIOrDbg());
auto ArgTy = cast<PointerType>(Arg.getType());
auto ValueTy = ArgTy->getPointerElementType();
// Reduce to the alloca case:
// Create an alloca and replace all uses of the arg with it.
auto Alloca = Builder.CreateAlloca(ValueTy, ArgTy->getAddressSpace());
Arg.replaceAllUsesWith(Alloca);
// Set an initial value in the alloca. swifterror is always null on entry.
auto InitialValue = Constant::getNullValue(ValueTy);
Builder.CreateStore(InitialValue, Alloca);
// Find all the suspends in the function and save and restore around them.
for (auto Suspend : Shape.CoroSuspends) {
(void) emitSetAndGetSwiftErrorValueAround(Suspend, Alloca, Shape);
}
// Find all the coro.ends in the function and restore the error value.
for (auto End : Shape.CoroEnds) {
Builder.SetInsertPoint(End);
auto FinalValue = Builder.CreateLoad(ValueTy, Alloca);
(void) emitSetSwiftErrorValue(Builder, FinalValue, Shape);
}
// Now we can use the alloca logic.
AllocasToPromote.push_back(Alloca);
eliminateSwiftErrorAlloca(F, Alloca, Shape);
}
/// Eliminate all problematic uses of swifterror arguments and allocas
/// from the function. We'll fix them up later when splitting the function.
static void eliminateSwiftError(Function &F, coro::Shape &Shape) {
SmallVector<AllocaInst*, 4> AllocasToPromote;
// Look for a swifterror argument.
for (auto &Arg : F.args()) {
if (!Arg.hasSwiftErrorAttr()) continue;
eliminateSwiftErrorArgument(F, Arg, Shape, AllocasToPromote);
break;
}
// Look for swifterror allocas.
for (auto &Inst : F.getEntryBlock()) {
auto Alloca = dyn_cast<AllocaInst>(&Inst);
if (!Alloca || !Alloca->isSwiftError()) continue;
// Clear the swifterror flag.
Alloca->setSwiftError(false);
AllocasToPromote.push_back(Alloca);
eliminateSwiftErrorAlloca(F, Alloca, Shape);
}
// If we have any allocas to promote, compute a dominator tree and
// promote them en masse.
if (!AllocasToPromote.empty()) {
DominatorTree DT(F);
PromoteMemToReg(AllocasToPromote, DT);
}
}
/// retcon and retcon.once conventions assume that all spill uses can be sunk
/// after the coro.begin intrinsic.
static void sinkSpillUsesAfterCoroBegin(Function &F,
const FrameDataInfo &FrameData,
CoroBeginInst *CoroBegin) {
DominatorTree Dom(F);
SmallSetVector<Instruction *, 32> ToMove;
SmallVector<Instruction *, 32> Worklist;
// Collect all users that precede coro.begin.
for (auto *Def : FrameData.getAllDefs()) {
for (User *U : Def->users()) {
auto Inst = cast<Instruction>(U);
if (Inst->getParent() != CoroBegin->getParent() ||
Dom.dominates(CoroBegin, Inst))
continue;
if (ToMove.insert(Inst))
Worklist.push_back(Inst);
}
}
// Recursively collect users before coro.begin.
while (!Worklist.empty()) {
auto *Def = Worklist.pop_back_val();
for (User *U : Def->users()) {
auto Inst = cast<Instruction>(U);
if (Dom.dominates(CoroBegin, Inst))
continue;
if (ToMove.insert(Inst))
Worklist.push_back(Inst);
}
}
// Sort by dominance.
SmallVector<Instruction *, 64> InsertionList(ToMove.begin(), ToMove.end());
llvm::sort(InsertionList, [&Dom](Instruction *A, Instruction *B) -> bool {
// If a dominates b it should preceed (<) b.
return Dom.dominates(A, B);
});
Instruction *InsertPt = CoroBegin->getNextNode();
for (Instruction *Inst : InsertionList)
Inst->moveBefore(InsertPt);
}
/// For each local variable that all of its user are only used inside one of
/// suspended region, we sink their lifetime.start markers to the place where
/// after the suspend block. Doing so minimizes the lifetime of each variable,
/// hence minimizing the amount of data we end up putting on the frame.
static void sinkLifetimeStartMarkers(Function &F, coro::Shape &Shape,
SuspendCrossingInfo &Checker) {
DominatorTree DT(F);
// Collect all possible basic blocks which may dominate all uses of allocas.
SmallPtrSet<BasicBlock *, 4> DomSet;
DomSet.insert(&F.getEntryBlock());
for (auto *CSI : Shape.CoroSuspends) {
BasicBlock *SuspendBlock = CSI->getParent();
assert(isSuspendBlock(SuspendBlock) && SuspendBlock->getSingleSuccessor() &&
"should have split coro.suspend into its own block");
DomSet.insert(SuspendBlock->getSingleSuccessor());
}
for (Instruction &I : instructions(F)) {
AllocaInst* AI = dyn_cast<AllocaInst>(&I);
if (!AI)
continue;
for (BasicBlock *DomBB : DomSet) {
bool Valid = true;
SmallVector<Instruction *, 1> Lifetimes;
auto isLifetimeStart = [](Instruction* I) {
if (auto* II = dyn_cast<IntrinsicInst>(I))
return II->getIntrinsicID() == Intrinsic::lifetime_start;
return false;
};
auto collectLifetimeStart = [&](Instruction *U, AllocaInst *AI) {
if (isLifetimeStart(U)) {
Lifetimes.push_back(U);
return true;
}
if (!U->hasOneUse() || U->stripPointerCasts() != AI)
return false;
if (isLifetimeStart(U->user_back())) {
Lifetimes.push_back(U->user_back());
return true;
}
return false;
};
for (User *U : AI->users()) {
Instruction *UI = cast<Instruction>(U);
// For all users except lifetime.start markers, if they are all
// dominated by one of the basic blocks and do not cross
// suspend points as well, then there is no need to spill the
// instruction.
if (!DT.dominates(DomBB, UI->getParent()) ||
Checker.isDefinitionAcrossSuspend(DomBB, UI)) {
// Skip lifetime.start, GEP and bitcast used by lifetime.start
// markers.
if (collectLifetimeStart(UI, AI))
continue;
Valid = false;
break;
}
}
// Sink lifetime.start markers to dominate block when they are
// only used outside the region.
if (Valid && Lifetimes.size() != 0) {
// May be AI itself, when the type of AI is i8*
auto *NewBitCast = [&](AllocaInst *AI) -> Value* {
if (isa<AllocaInst>(Lifetimes[0]->getOperand(1)))
return AI;
auto *Int8PtrTy = Type::getInt8PtrTy(F.getContext());
return CastInst::Create(Instruction::BitCast, AI, Int8PtrTy, "",
DomBB->getTerminator());
}(AI);
auto *NewLifetime = Lifetimes[0]->clone();
NewLifetime->replaceUsesOfWith(NewLifetime->getOperand(1), NewBitCast);
NewLifetime->insertBefore(DomBB->getTerminator());
// All the outsided lifetime.start markers are no longer necessary.
for (Instruction *S : Lifetimes)
S->eraseFromParent();
break;
}
}
}
}
static void collectFrameAllocas(Function &F, coro::Shape &Shape,
const SuspendCrossingInfo &Checker,
SmallVectorImpl<AllocaInfo> &Allocas) {
for (Instruction &I : instructions(F)) {
auto *AI = dyn_cast<AllocaInst>(&I);
if (!AI)
continue;
// The PromiseAlloca will be specially handled since it needs to be in a
// fixed position in the frame.
if (AI == Shape.SwitchLowering.PromiseAlloca) {
continue;
}
DominatorTree DT(F);
// The code that uses lifetime.start intrinsic does not work for functions
// with loops without exit. Disable it on ABIs we know to generate such
// code.
bool ShouldUseLifetimeStartInfo =
(Shape.ABI != coro::ABI::Async && Shape.ABI != coro::ABI::Retcon &&
Shape.ABI != coro::ABI::RetconOnce);
AllocaUseVisitor Visitor{F.getParent()->getDataLayout(), DT,
*Shape.CoroBegin, Checker,
ShouldUseLifetimeStartInfo};
Visitor.visitPtr(*AI);
if (!Visitor.getShouldLiveOnFrame())
continue;
Allocas.emplace_back(AI, Visitor.getAliasesCopy(),
Visitor.getMayWriteBeforeCoroBegin());
}
}
void coro::salvageDebugInfo(
SmallDenseMap<llvm::Value *, llvm::AllocaInst *, 4> &DbgPtrAllocaCache,
DbgVariableIntrinsic *DVI, bool OptimizeFrame) {
Function *F = DVI->getFunction();
IRBuilder<> Builder(F->getContext());
auto InsertPt = F->getEntryBlock().getFirstInsertionPt();
while (isa<IntrinsicInst>(InsertPt))
++InsertPt;
Builder.SetInsertPoint(&F->getEntryBlock(), InsertPt);
DIExpression *Expr = DVI->getExpression();
// Follow the pointer arithmetic all the way to the incoming
// function argument and convert into a DIExpression.
bool SkipOutermostLoad = !isa<DbgValueInst>(DVI);
Value *Storage = DVI->getVariableLocationOp(0);
Value *OriginalStorage = Storage;
while (auto *Inst = dyn_cast_or_null<Instruction>(Storage)) {
if (auto *LdInst = dyn_cast<LoadInst>(Inst)) {
Storage = LdInst->getOperand(0);
// FIXME: This is a heuristic that works around the fact that
// LLVM IR debug intrinsics cannot yet distinguish between
// memory and value locations: Because a dbg.declare(alloca) is
// implicitly a memory location no DW_OP_deref operation for the
// last direct load from an alloca is necessary. This condition
// effectively drops the *last* DW_OP_deref in the expression.
if (!SkipOutermostLoad)
Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
} else if (auto *StInst = dyn_cast<StoreInst>(Inst)) {
Storage = StInst->getOperand(0);
} else {
SmallVector<uint64_t, 16> Ops;
SmallVector<Value *, 0> AdditionalValues;
Value *Op = llvm::salvageDebugInfoImpl(
*Inst, Expr ? Expr->getNumLocationOperands() : 0, Ops,
AdditionalValues);
if (!Op || !AdditionalValues.empty()) {
// If salvaging failed or salvaging produced more than one location
// operand, give up.
break;
}
Storage = Op;
Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, /*StackValue*/ false);
}
SkipOutermostLoad = false;
}
if (!Storage)
return;
// Store a pointer to the coroutine frame object in an alloca so it
// is available throughout the function when producing unoptimized
// code. Extending the lifetime this way is correct because the
// variable has been declared by a dbg.declare intrinsic.
//
// Avoid to create the alloca would be eliminated by optimization
// passes and the corresponding dbg.declares would be invalid.
if (!OptimizeFrame && !EnableReuseStorageInFrame)
if (auto *Arg = dyn_cast<llvm::Argument>(Storage)) {
auto &Cached = DbgPtrAllocaCache[Storage];
if (!Cached) {
Cached = Builder.CreateAlloca(Storage->getType(), 0, nullptr,
Arg->getName() + ".debug");
Builder.CreateStore(Storage, Cached);
}
Storage = Cached;
// FIXME: LLVM lacks nuanced semantics to differentiate between
// memory and direct locations at the IR level. The backend will
// turn a dbg.declare(alloca, ..., DIExpression()) into a memory
// location. Thus, if there are deref and offset operations in the
// expression, we need to add a DW_OP_deref at the *start* of the
// expression to first load the contents of the alloca before
// adjusting it with the expression.
if (Expr && Expr->isComplex())
Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
}
DVI->replaceVariableLocationOp(OriginalStorage, Storage);
DVI->setExpression(Expr);
/// It makes no sense to move the dbg.value intrinsic.
if (!isa<DbgValueInst>(DVI)) {
if (auto *II = dyn_cast<InvokeInst>(Storage))
DVI->moveBefore(II->getNormalDest()->getFirstNonPHI());
else if (auto *CBI = dyn_cast<CallBrInst>(Storage))
DVI->moveBefore(CBI->getDefaultDest()->getFirstNonPHI());
else if (auto *InsertPt = dyn_cast<Instruction>(Storage)) {
assert(!InsertPt->isTerminator() &&
"Unimaged terminator that could return a storage.");
DVI->moveAfter(InsertPt);
} else if (isa<Argument>(Storage))
DVI->moveAfter(F->getEntryBlock().getFirstNonPHI());
}
}
void coro::buildCoroutineFrame(Function &F, Shape &Shape) {
// Don't eliminate swifterror in async functions that won't be split.
if (Shape.ABI != coro::ABI::Async || !Shape.CoroSuspends.empty())
eliminateSwiftError(F, Shape);
if (Shape.ABI == coro::ABI::Switch &&
Shape.SwitchLowering.PromiseAlloca) {
Shape.getSwitchCoroId()->clearPromise();
}
// Make sure that all coro.save, coro.suspend and the fallthrough coro.end
// intrinsics are in their own blocks to simplify the logic of building up
// SuspendCrossing data.
for (auto *CSI : Shape.CoroSuspends) {
if (auto *Save = CSI->getCoroSave())
splitAround(Save, "CoroSave");
splitAround(CSI, "CoroSuspend");
}
// Put CoroEnds into their own blocks.
for (AnyCoroEndInst *CE : Shape.CoroEnds) {
splitAround(CE, "CoroEnd");
// Emit the musttail call function in a new block before the CoroEnd.
// We do this here so that the right suspend crossing info is computed for
// the uses of the musttail call function call. (Arguments to the coro.end
// instructions would be ignored)
if (auto *AsyncEnd = dyn_cast<CoroAsyncEndInst>(CE)) {
auto *MustTailCallFn = AsyncEnd->getMustTailCallFunction();
if (!MustTailCallFn)
continue;
IRBuilder<> Builder(AsyncEnd);
SmallVector<Value *, 8> Args(AsyncEnd->args());
auto Arguments = ArrayRef<Value *>(Args).drop_front(3);
auto *Call = createMustTailCall(AsyncEnd->getDebugLoc(), MustTailCallFn,
Arguments, Builder);
splitAround(Call, "MustTailCall.Before.CoroEnd");
}
}
// Later code makes structural assumptions about single predecessors phis e.g
// that they are not live accross a suspend point.
cleanupSinglePredPHIs(F);
// Transforms multi-edge PHI Nodes, so that any value feeding into a PHI will
// never has its definition separated from the PHI by the suspend point.
rewritePHIs(F);
// Build suspend crossing info.
SuspendCrossingInfo Checker(F, Shape);
IRBuilder<> Builder(F.getContext());
FrameDataInfo FrameData;
SmallVector<CoroAllocaAllocInst*, 4> LocalAllocas;
SmallVector<Instruction*, 4> DeadInstructions;
{
SpillInfo Spills;
for (int Repeat = 0; Repeat < 4; ++Repeat) {
// See if there are materializable instructions across suspend points.
for (Instruction &I : instructions(F))
if (materializable(I)) {
for (User *U : I.users())
if (Checker.isDefinitionAcrossSuspend(I, U))
Spills[&I].push_back(cast<Instruction>(U));
// Manually add dbg.value metadata uses of I.
SmallVector<DbgValueInst *, 16> DVIs;
findDbgValues(DVIs, &I);
for (auto *DVI : DVIs)
if (Checker.isDefinitionAcrossSuspend(I, DVI))
Spills[&I].push_back(DVI);
}
if (Spills.empty())
break;
// Rewrite materializable instructions to be materialized at the use
// point.
LLVM_DEBUG(dumpSpills("Materializations", Spills));
rewriteMaterializableInstructions(Builder, Spills);
Spills.clear();
}
}
if (Shape.ABI != coro::ABI::Async && Shape.ABI != coro::ABI::Retcon &&
Shape.ABI != coro::ABI::RetconOnce)
sinkLifetimeStartMarkers(F, Shape, Checker);
if (Shape.ABI != coro::ABI::Async || !Shape.CoroSuspends.empty())
collectFrameAllocas(F, Shape, Checker, FrameData.Allocas);
LLVM_DEBUG(dumpAllocas(FrameData.Allocas));
// Collect the spills for arguments and other not-materializable values.
for (Argument &A : F.args())
for (User *U : A.users())
if (Checker.isDefinitionAcrossSuspend(A, U))
FrameData.Spills[&A].push_back(cast<Instruction>(U));
for (Instruction &I : instructions(F)) {
// Values returned from coroutine structure intrinsics should not be part
// of the Coroutine Frame.
if (isCoroutineStructureIntrinsic(I) || &I == Shape.CoroBegin)
continue;
// The Coroutine Promise always included into coroutine frame, no need to
// check for suspend crossing.
if (Shape.ABI == coro::ABI::Switch &&
Shape.SwitchLowering.PromiseAlloca == &I)
continue;
// Handle alloca.alloc specially here.
if (auto AI = dyn_cast<CoroAllocaAllocInst>(&I)) {
// Check whether the alloca's lifetime is bounded by suspend points.
if (isLocalAlloca(AI)) {
LocalAllocas.push_back(AI);
continue;
}
// If not, do a quick rewrite of the alloca and then add spills of
// the rewritten value. The rewrite doesn't invalidate anything in
// Spills because the other alloca intrinsics have no other operands
// besides AI, and it doesn't invalidate the iteration because we delay
// erasing AI.
auto Alloc = lowerNonLocalAlloca(AI, Shape, DeadInstructions);
for (User *U : Alloc->users()) {
if (Checker.isDefinitionAcrossSuspend(*Alloc, U))
FrameData.Spills[Alloc].push_back(cast<Instruction>(U));
}
continue;
}
// Ignore alloca.get; we process this as part of coro.alloca.alloc.
if (isa<CoroAllocaGetInst>(I))
continue;
if (isa<AllocaInst>(I))
continue;
for (User *U : I.users())
if (Checker.isDefinitionAcrossSuspend(I, U)) {
// We cannot spill a token.
if (I.getType()->isTokenTy())
report_fatal_error(
"token definition is separated from the use by a suspend point");
FrameData.Spills[&I].push_back(cast<Instruction>(U));
}
}
// We don't want the layout of coroutine frame to be affected
// by debug information. So we only choose to salvage DbgValueInst for
// whose value is already in the frame.
// We would handle the dbg.values for allocas specially
for (auto &Iter : FrameData.Spills) {
auto *V = Iter.first;
SmallVector<DbgValueInst *, 16> DVIs;
findDbgValues(DVIs, V);
llvm::for_each(DVIs, [&](DbgValueInst *DVI) {
if (Checker.isDefinitionAcrossSuspend(*V, DVI))
FrameData.Spills[V].push_back(DVI);
});
}
LLVM_DEBUG(dumpSpills("Spills", FrameData.Spills));
if (Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce ||
Shape.ABI == coro::ABI::Async)
sinkSpillUsesAfterCoroBegin(F, FrameData, Shape.CoroBegin);
Shape.FrameTy = buildFrameType(F, Shape, FrameData);
createFramePtr(Shape);
// For now, this works for C++ programs only.
buildFrameDebugInfo(F, Shape, FrameData);
insertSpills(FrameData, Shape);
lowerLocalAllocas(LocalAllocas, DeadInstructions);
for (auto I : DeadInstructions)
I->eraseFromParent();
}
|