1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
|
//===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
// Implementation for the IROutliner which is used by the IROutliner Pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/IROutliner.h"
#include "llvm/Analysis/IRSimilarityIdentifier.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/PassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/IPO.h"
#include <map>
#include <set>
#include <vector>
#define DEBUG_TYPE "iroutliner"
using namespace llvm;
using namespace IRSimilarity;
// A command flag to be used for debugging to exclude branches from similarity
// matching and outlining.
namespace llvm {
extern cl::opt<bool> DisableBranches;
// A command flag to be used for debugging to indirect calls from similarity
// matching and outlining.
extern cl::opt<bool> DisableIndirectCalls;
// A command flag to be used for debugging to exclude intrinsics from similarity
// matching and outlining.
extern cl::opt<bool> DisableIntrinsics;
} // namespace llvm
// Set to true if the user wants the ir outliner to run on linkonceodr linkage
// functions. This is false by default because the linker can dedupe linkonceodr
// functions. Since the outliner is confined to a single module (modulo LTO),
// this is off by default. It should, however, be the default behavior in
// LTO.
static cl::opt<bool> EnableLinkOnceODRIROutlining(
"enable-linkonceodr-ir-outlining", cl::Hidden,
cl::desc("Enable the IR outliner on linkonceodr functions"),
cl::init(false));
// This is a debug option to test small pieces of code to ensure that outlining
// works correctly.
static cl::opt<bool> NoCostModel(
"ir-outlining-no-cost", cl::init(false), cl::ReallyHidden,
cl::desc("Debug option to outline greedily, without restriction that "
"calculated benefit outweighs cost"));
/// The OutlinableGroup holds all the overarching information for outlining
/// a set of regions that are structurally similar to one another, such as the
/// types of the overall function, the output blocks, the sets of stores needed
/// and a list of the different regions. This information is used in the
/// deduplication of extracted regions with the same structure.
struct OutlinableGroup {
/// The sections that could be outlined
std::vector<OutlinableRegion *> Regions;
/// The argument types for the function created as the overall function to
/// replace the extracted function for each region.
std::vector<Type *> ArgumentTypes;
/// The FunctionType for the overall function.
FunctionType *OutlinedFunctionType = nullptr;
/// The Function for the collective overall function.
Function *OutlinedFunction = nullptr;
/// Flag for whether we should not consider this group of OutlinableRegions
/// for extraction.
bool IgnoreGroup = false;
/// The return blocks for the overall function.
DenseMap<Value *, BasicBlock *> EndBBs;
/// The PHIBlocks with their corresponding return block based on the return
/// value as the key.
DenseMap<Value *, BasicBlock *> PHIBlocks;
/// A set containing the different GVN store sets needed. Each array contains
/// a sorted list of the different values that need to be stored into output
/// registers.
DenseSet<ArrayRef<unsigned>> OutputGVNCombinations;
/// Flag for whether the \ref ArgumentTypes have been defined after the
/// extraction of the first region.
bool InputTypesSet = false;
/// The number of input values in \ref ArgumentTypes. Anything after this
/// index in ArgumentTypes is an output argument.
unsigned NumAggregateInputs = 0;
/// The mapping of the canonical numbering of the values in outlined sections
/// to specific arguments.
DenseMap<unsigned, unsigned> CanonicalNumberToAggArg;
/// The number of branches in the region target a basic block that is outside
/// of the region.
unsigned BranchesToOutside = 0;
/// Tracker counting backwards from the highest unsigned value possible to
/// avoid conflicting with the GVNs of assigned values. We start at -3 since
/// -2 and -1 are assigned by the DenseMap.
unsigned PHINodeGVNTracker = -3;
DenseMap<unsigned,
std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>>
PHINodeGVNToGVNs;
DenseMap<hash_code, unsigned> GVNsToPHINodeGVN;
/// The number of instructions that will be outlined by extracting \ref
/// Regions.
InstructionCost Benefit = 0;
/// The number of added instructions needed for the outlining of the \ref
/// Regions.
InstructionCost Cost = 0;
/// The argument that needs to be marked with the swifterr attribute. If not
/// needed, there is no value.
Optional<unsigned> SwiftErrorArgument;
/// For the \ref Regions, we look at every Value. If it is a constant,
/// we check whether it is the same in Region.
///
/// \param [in,out] NotSame contains the global value numbers where the
/// constant is not always the same, and must be passed in as an argument.
void findSameConstants(DenseSet<unsigned> &NotSame);
/// For the regions, look at each set of GVN stores needed and account for
/// each combination. Add an argument to the argument types if there is
/// more than one combination.
///
/// \param [in] M - The module we are outlining from.
void collectGVNStoreSets(Module &M);
};
/// Move the contents of \p SourceBB to before the last instruction of \p
/// TargetBB.
/// \param SourceBB - the BasicBlock to pull Instructions from.
/// \param TargetBB - the BasicBlock to put Instruction into.
static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) {
for (Instruction &I : llvm::make_early_inc_range(SourceBB))
I.moveBefore(TargetBB, TargetBB.end());
}
/// A function to sort the keys of \p Map, which must be a mapping of constant
/// values to basic blocks and return it in \p SortedKeys
///
/// \param SortedKeys - The vector the keys will be return in and sorted.
/// \param Map - The DenseMap containing keys to sort.
static void getSortedConstantKeys(std::vector<Value *> &SortedKeys,
DenseMap<Value *, BasicBlock *> &Map) {
for (auto &VtoBB : Map)
SortedKeys.push_back(VtoBB.first);
stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) {
const ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS);
const ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS);
assert(RHSC && "Not a constant integer in return value?");
assert(LHSC && "Not a constant integer in return value?");
return LHSC->getLimitedValue() < RHSC->getLimitedValue();
});
}
Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other,
Value *V) {
Optional<unsigned> GVN = Candidate->getGVN(V);
assert(GVN.hasValue() && "No GVN for incoming value");
Optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN);
Optional<unsigned> FirstGVN = Other.Candidate->fromCanonicalNum(*CanonNum);
Optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN);
return FoundValueOpt.getValueOr(nullptr);
}
/// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found
/// in \p Included to branch to BasicBlock \p Replace if they currently branch
/// to the BasicBlock \p Find. This is used to fix up the incoming basic blocks
/// when PHINodes are included in outlined regions.
///
/// \param PHIBlock - The BasicBlock containing the PHINodes that need to be
/// checked.
/// \param Find - The successor block to be replaced.
/// \param Replace - The new succesor block to branch to.
/// \param Included - The set of blocks about to be outlined.
static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find,
BasicBlock *Replace,
DenseSet<BasicBlock *> &Included) {
for (PHINode &PN : PHIBlock->phis()) {
for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd;
++Idx) {
// Check if the incoming block is included in the set of blocks being
// outlined.
BasicBlock *Incoming = PN.getIncomingBlock(Idx);
if (!Included.contains(Incoming))
continue;
BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator());
assert(BI && "Not a branch instruction?");
// Look over the branching instructions into this block to see if we
// used to branch to Find in this outlined block.
for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End;
Succ++) {
// If we have found the block to replace, we do so here.
if (BI->getSuccessor(Succ) != Find)
continue;
BI->setSuccessor(Succ, Replace);
}
}
}
}
void OutlinableRegion::splitCandidate() {
assert(!CandidateSplit && "Candidate already split!");
Instruction *BackInst = Candidate->backInstruction();
Instruction *EndInst = nullptr;
// Check whether the last instruction is a terminator, if it is, we do
// not split on the following instruction. We leave the block as it is. We
// also check that this is not the last instruction in the Module, otherwise
// the check for whether the current following instruction matches the
// previously recorded instruction will be incorrect.
if (!BackInst->isTerminator() ||
BackInst->getParent() != &BackInst->getFunction()->back()) {
EndInst = Candidate->end()->Inst;
assert(EndInst && "Expected an end instruction?");
}
// We check if the current instruction following the last instruction in the
// region is the same as the recorded instruction following the last
// instruction. If they do not match, there could be problems in rewriting
// the program after outlining, so we ignore it.
if (!BackInst->isTerminator() &&
EndInst != BackInst->getNextNonDebugInstruction())
return;
Instruction *StartInst = (*Candidate->begin()).Inst;
assert(StartInst && "Expected a start instruction?");
StartBB = StartInst->getParent();
PrevBB = StartBB;
DenseSet<BasicBlock *> BBSet;
Candidate->getBasicBlocks(BBSet);
// We iterate over the instructions in the region, if we find a PHINode, we
// check if there are predecessors outside of the region, if there are,
// we ignore this region since we are unable to handle the severing of the
// phi node right now.
BasicBlock::iterator It = StartInst->getIterator();
while (PHINode *PN = dyn_cast<PHINode>(&*It)) {
unsigned NumPredsOutsideRegion = 0;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (!BBSet.contains(PN->getIncomingBlock(i)))
++NumPredsOutsideRegion;
if (NumPredsOutsideRegion > 1)
return;
It++;
}
// If the region starts with a PHINode, but is not the initial instruction of
// the BasicBlock, we ignore this region for now.
if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin())
return;
// If the region ends with a PHINode, but does not contain all of the phi node
// instructions of the region, we ignore it for now.
if (isa<PHINode>(BackInst)) {
EndBB = BackInst->getParent();
if (BackInst != &*std::prev(EndBB->getFirstInsertionPt()))
return;
}
// The basic block gets split like so:
// block: block:
// inst1 inst1
// inst2 inst2
// region1 br block_to_outline
// region2 block_to_outline:
// region3 -> region1
// region4 region2
// inst3 region3
// inst4 region4
// br block_after_outline
// block_after_outline:
// inst3
// inst4
std::string OriginalName = PrevBB->getName().str();
StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline");
PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB);
CandidateSplit = true;
if (!BackInst->isTerminator()) {
EndBB = EndInst->getParent();
FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline");
EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB);
FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB);
} else {
EndBB = BackInst->getParent();
EndsInBranch = true;
FollowBB = nullptr;
}
// Refind the basic block set.
BBSet.clear();
Candidate->getBasicBlocks(BBSet);
// For the phi nodes in the new starting basic block of the region, we
// reassign the targets of the basic blocks branching instructions.
replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet);
if (FollowBB)
replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet);
}
void OutlinableRegion::reattachCandidate() {
assert(CandidateSplit && "Candidate is not split!");
// The basic block gets reattached like so:
// block: block:
// inst1 inst1
// inst2 inst2
// br block_to_outline region1
// block_to_outline: -> region2
// region1 region3
// region2 region4
// region3 inst3
// region4 inst4
// br block_after_outline
// block_after_outline:
// inst3
// inst4
assert(StartBB != nullptr && "StartBB for Candidate is not defined!");
assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!");
PrevBB->getTerminator()->eraseFromParent();
// If we reattaching after outlining, we iterate over the phi nodes to
// the initial block, and reassign the branch instructions of the incoming
// blocks to the block we are remerging into.
if (!ExtractedFunction) {
DenseSet<BasicBlock *> BBSet;
Candidate->getBasicBlocks(BBSet);
replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet);
if (!EndsInBranch)
replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet);
}
moveBBContents(*StartBB, *PrevBB);
BasicBlock *PlacementBB = PrevBB;
if (StartBB != EndBB)
PlacementBB = EndBB;
if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) {
assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!");
assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!");
PlacementBB->getTerminator()->eraseFromParent();
moveBBContents(*FollowBB, *PlacementBB);
PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB);
FollowBB->eraseFromParent();
}
PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB);
StartBB->eraseFromParent();
// Make sure to save changes back to the StartBB.
StartBB = PrevBB;
EndBB = nullptr;
PrevBB = nullptr;
FollowBB = nullptr;
CandidateSplit = false;
}
/// Find whether \p V matches the Constants previously found for the \p GVN.
///
/// \param V - The value to check for consistency.
/// \param GVN - The global value number assigned to \p V.
/// \param GVNToConstant - The mapping of global value number to Constants.
/// \returns true if the Value matches the Constant mapped to by V and false if
/// it \p V is a Constant but does not match.
/// \returns None if \p V is not a Constant.
static Optional<bool>
constantMatches(Value *V, unsigned GVN,
DenseMap<unsigned, Constant *> &GVNToConstant) {
// See if we have a constants
Constant *CST = dyn_cast<Constant>(V);
if (!CST)
return None;
// Holds a mapping from a global value number to a Constant.
DenseMap<unsigned, Constant *>::iterator GVNToConstantIt;
bool Inserted;
// If we have a constant, try to make a new entry in the GVNToConstant.
std::tie(GVNToConstantIt, Inserted) =
GVNToConstant.insert(std::make_pair(GVN, CST));
// If it was found and is not equal, it is not the same. We do not
// handle this case yet, and exit early.
if (Inserted || (GVNToConstantIt->second == CST))
return true;
return false;
}
InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) {
InstructionCost Benefit = 0;
// Estimate the benefit of outlining a specific sections of the program. We
// delegate mostly this task to the TargetTransformInfo so that if the target
// has specific changes, we can have a more accurate estimate.
// However, getInstructionCost delegates the code size calculation for
// arithmetic instructions to getArithmeticInstrCost in
// include/Analysis/TargetTransformImpl.h, where it always estimates that the
// code size for a division and remainder instruction to be equal to 4, and
// everything else to 1. This is not an accurate representation of the
// division instruction for targets that have a native division instruction.
// To be overly conservative, we only add 1 to the number of instructions for
// each division instruction.
for (IRInstructionData &ID : *Candidate) {
Instruction *I = ID.Inst;
switch (I->getOpcode()) {
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::UDiv:
case Instruction::URem:
Benefit += 1;
break;
default:
Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize);
break;
}
}
return Benefit;
}
/// Check the \p OutputMappings structure for value \p Input, if it exists
/// it has been used as an output for outlining, and has been renamed, and we
/// return the new value, otherwise, we return the same value.
///
/// \param OutputMappings [in] - The mapping of values to their renamed value
/// after being used as an output for an outlined region.
/// \param Input [in] - The value to find the remapped value of, if it exists.
/// \return The remapped value if it has been renamed, and the same value if has
/// not.
static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings,
Value *Input) {
DenseMap<Value *, Value *>::const_iterator OutputMapping =
OutputMappings.find(Input);
if (OutputMapping != OutputMappings.end())
return OutputMapping->second;
return Input;
}
/// Find whether \p Region matches the global value numbering to Constant
/// mapping found so far.
///
/// \param Region - The OutlinableRegion we are checking for constants
/// \param GVNToConstant - The mapping of global value number to Constants.
/// \param NotSame - The set of global value numbers that do not have the same
/// constant in each region.
/// \returns true if all Constants are the same in every use of a Constant in \p
/// Region and false if not
static bool
collectRegionsConstants(OutlinableRegion &Region,
DenseMap<unsigned, Constant *> &GVNToConstant,
DenseSet<unsigned> &NotSame) {
bool ConstantsTheSame = true;
IRSimilarityCandidate &C = *Region.Candidate;
for (IRInstructionData &ID : C) {
// Iterate over the operands in an instruction. If the global value number,
// assigned by the IRSimilarityCandidate, has been seen before, we check if
// the the number has been found to be not the same value in each instance.
for (Value *V : ID.OperVals) {
Optional<unsigned> GVNOpt = C.getGVN(V);
assert(GVNOpt.hasValue() && "Expected a GVN for operand?");
unsigned GVN = GVNOpt.getValue();
// Check if this global value has been found to not be the same already.
if (NotSame.contains(GVN)) {
if (isa<Constant>(V))
ConstantsTheSame = false;
continue;
}
// If it has been the same so far, we check the value for if the
// associated Constant value match the previous instances of the same
// global value number. If the global value does not map to a Constant,
// it is considered to not be the same value.
Optional<bool> ConstantMatches = constantMatches(V, GVN, GVNToConstant);
if (ConstantMatches.hasValue()) {
if (ConstantMatches.getValue())
continue;
else
ConstantsTheSame = false;
}
// While this value is a register, it might not have been previously,
// make sure we don't already have a constant mapped to this global value
// number.
if (GVNToConstant.find(GVN) != GVNToConstant.end())
ConstantsTheSame = false;
NotSame.insert(GVN);
}
}
return ConstantsTheSame;
}
void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) {
DenseMap<unsigned, Constant *> GVNToConstant;
for (OutlinableRegion *Region : Regions)
collectRegionsConstants(*Region, GVNToConstant, NotSame);
}
void OutlinableGroup::collectGVNStoreSets(Module &M) {
for (OutlinableRegion *OS : Regions)
OutputGVNCombinations.insert(OS->GVNStores);
// We are adding an extracted argument to decide between which output path
// to use in the basic block. It is used in a switch statement and only
// needs to be an integer.
if (OutputGVNCombinations.size() > 1)
ArgumentTypes.push_back(Type::getInt32Ty(M.getContext()));
}
/// Get the subprogram if it exists for one of the outlined regions.
///
/// \param [in] Group - The set of regions to find a subprogram for.
/// \returns the subprogram if it exists, or nullptr.
static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) {
for (OutlinableRegion *OS : Group.Regions)
if (Function *F = OS->Call->getFunction())
if (DISubprogram *SP = F->getSubprogram())
return SP;
return nullptr;
}
Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group,
unsigned FunctionNameSuffix) {
assert(!Group.OutlinedFunction && "Function is already defined!");
Type *RetTy = Type::getVoidTy(M.getContext());
// All extracted functions _should_ have the same return type at this point
// since the similarity identifier ensures that all branches outside of the
// region occur in the same place.
// NOTE: Should we ever move to the model that uses a switch at every point
// needed, meaning that we could branch within the region or out, it is
// possible that we will need to switch to using the most general case all of
// the time.
for (OutlinableRegion *R : Group.Regions) {
Type *ExtractedFuncType = R->ExtractedFunction->getReturnType();
if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) ||
(RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16)))
RetTy = ExtractedFuncType;
}
Group.OutlinedFunctionType = FunctionType::get(
RetTy, Group.ArgumentTypes, false);
// These functions will only be called from within the same module, so
// we can set an internal linkage.
Group.OutlinedFunction = Function::Create(
Group.OutlinedFunctionType, GlobalValue::InternalLinkage,
"outlined_ir_func_" + std::to_string(FunctionNameSuffix), M);
// Transfer the swifterr attribute to the correct function parameter.
if (Group.SwiftErrorArgument.hasValue())
Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.getValue(),
Attribute::SwiftError);
Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize);
Group.OutlinedFunction->addFnAttr(Attribute::MinSize);
// If there's a DISubprogram associated with this outlined function, then
// emit debug info for the outlined function.
if (DISubprogram *SP = getSubprogramOrNull(Group)) {
Function *F = Group.OutlinedFunction;
// We have a DISubprogram. Get its DICompileUnit.
DICompileUnit *CU = SP->getUnit();
DIBuilder DB(M, true, CU);
DIFile *Unit = SP->getFile();
Mangler Mg;
// Get the mangled name of the function for the linkage name.
std::string Dummy;
llvm::raw_string_ostream MangledNameStream(Dummy);
Mg.getNameWithPrefix(MangledNameStream, F, false);
DISubprogram *OutlinedSP = DB.createFunction(
Unit /* Context */, F->getName(), MangledNameStream.str(),
Unit /* File */,
0 /* Line 0 is reserved for compiler-generated code. */,
DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
0, /* Line 0 is reserved for compiler-generated code. */
DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
/* Outlined code is optimized code by definition. */
DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
// Don't add any new variables to the subprogram.
DB.finalizeSubprogram(OutlinedSP);
// Attach subprogram to the function.
F->setSubprogram(OutlinedSP);
// We're done with the DIBuilder.
DB.finalize();
}
return Group.OutlinedFunction;
}
/// Move each BasicBlock in \p Old to \p New.
///
/// \param [in] Old - The function to move the basic blocks from.
/// \param [in] New - The function to move the basic blocks to.
/// \param [out] NewEnds - The return blocks of the new overall function.
static void moveFunctionData(Function &Old, Function &New,
DenseMap<Value *, BasicBlock *> &NewEnds) {
for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) {
CurrBB.removeFromParent();
CurrBB.insertInto(&New);
Instruction *I = CurrBB.getTerminator();
// For each block we find a return instruction is, it is a potential exit
// path for the function. We keep track of each block based on the return
// value here.
if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB));
std::vector<Instruction *> DebugInsts;
for (Instruction &Val : CurrBB) {
// We must handle the scoping of called functions differently than
// other outlined instructions.
if (!isa<CallInst>(&Val)) {
// Remove the debug information for outlined functions.
Val.setDebugLoc(DebugLoc());
continue;
}
// From this point we are only handling call instructions.
CallInst *CI = cast<CallInst>(&Val);
// We add any debug statements here, to be removed after. Since the
// instructions originate from many different locations in the program,
// it will cause incorrect reporting from a debugger if we keep the
// same debug instructions.
if (isa<DbgInfoIntrinsic>(CI)) {
DebugInsts.push_back(&Val);
continue;
}
// Edit the scope of called functions inside of outlined functions.
if (DISubprogram *SP = New.getSubprogram()) {
DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP);
Val.setDebugLoc(DI);
}
}
for (Instruction *I : DebugInsts)
I->eraseFromParent();
}
assert(NewEnds.size() > 0 && "No return instruction for new function?");
}
/// Find the the constants that will need to be lifted into arguments
/// as they are not the same in each instance of the region.
///
/// \param [in] C - The IRSimilarityCandidate containing the region we are
/// analyzing.
/// \param [in] NotSame - The set of global value numbers that do not have a
/// single Constant across all OutlinableRegions similar to \p C.
/// \param [out] Inputs - The list containing the global value numbers of the
/// arguments needed for the region of code.
static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame,
std::vector<unsigned> &Inputs) {
DenseSet<unsigned> Seen;
// Iterate over the instructions, and find what constants will need to be
// extracted into arguments.
for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end();
IDIt != EndIDIt; IDIt++) {
for (Value *V : (*IDIt).OperVals) {
// Since these are stored before any outlining, they will be in the
// global value numbering.
unsigned GVN = C.getGVN(V).getValue();
if (isa<Constant>(V))
if (NotSame.contains(GVN) && !Seen.contains(GVN)) {
Inputs.push_back(GVN);
Seen.insert(GVN);
}
}
}
}
/// Find the GVN for the inputs that have been found by the CodeExtractor.
///
/// \param [in] C - The IRSimilarityCandidate containing the region we are
/// analyzing.
/// \param [in] CurrentInputs - The set of inputs found by the
/// CodeExtractor.
/// \param [in] OutputMappings - The mapping of values that have been replaced
/// by a new output value.
/// \param [out] EndInputNumbers - The global value numbers for the extracted
/// arguments.
static void mapInputsToGVNs(IRSimilarityCandidate &C,
SetVector<Value *> &CurrentInputs,
const DenseMap<Value *, Value *> &OutputMappings,
std::vector<unsigned> &EndInputNumbers) {
// Get the Global Value Number for each input. We check if the Value has been
// replaced by a different value at output, and use the original value before
// replacement.
for (Value *Input : CurrentInputs) {
assert(Input && "Have a nullptr as an input");
if (OutputMappings.find(Input) != OutputMappings.end())
Input = OutputMappings.find(Input)->second;
assert(C.getGVN(Input).hasValue() &&
"Could not find a numbering for the given input");
EndInputNumbers.push_back(C.getGVN(Input).getValue());
}
}
/// Find the original value for the \p ArgInput values if any one of them was
/// replaced during a previous extraction.
///
/// \param [in] ArgInputs - The inputs to be extracted by the code extractor.
/// \param [in] OutputMappings - The mapping of values that have been replaced
/// by a new output value.
/// \param [out] RemappedArgInputs - The remapped values according to
/// \p OutputMappings that will be extracted.
static void
remapExtractedInputs(const ArrayRef<Value *> ArgInputs,
const DenseMap<Value *, Value *> &OutputMappings,
SetVector<Value *> &RemappedArgInputs) {
// Get the global value number for each input that will be extracted as an
// argument by the code extractor, remapping if needed for reloaded values.
for (Value *Input : ArgInputs) {
if (OutputMappings.find(Input) != OutputMappings.end())
Input = OutputMappings.find(Input)->second;
RemappedArgInputs.insert(Input);
}
}
/// Find the input GVNs and the output values for a region of Instructions.
/// Using the code extractor, we collect the inputs to the extracted function.
///
/// The \p Region can be identified as needing to be ignored in this function.
/// It should be checked whether it should be ignored after a call to this
/// function.
///
/// \param [in,out] Region - The region of code to be analyzed.
/// \param [out] InputGVNs - The global value numbers for the extracted
/// arguments.
/// \param [in] NotSame - The global value numbers in the region that do not
/// have the same constant value in the regions structurally similar to
/// \p Region.
/// \param [in] OutputMappings - The mapping of values that have been replaced
/// by a new output value after extraction.
/// \param [out] ArgInputs - The values of the inputs to the extracted function.
/// \param [out] Outputs - The set of values extracted by the CodeExtractor
/// as outputs.
static void getCodeExtractorArguments(
OutlinableRegion &Region, std::vector<unsigned> &InputGVNs,
DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings,
SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) {
IRSimilarityCandidate &C = *Region.Candidate;
// OverallInputs are the inputs to the region found by the CodeExtractor,
// SinkCands and HoistCands are used by the CodeExtractor to find sunken
// allocas of values whose lifetimes are contained completely within the
// outlined region. PremappedInputs are the arguments found by the
// CodeExtractor, removing conditions such as sunken allocas, but that
// may need to be remapped due to the extracted output values replacing
// the original values. We use DummyOutputs for this first run of finding
// inputs and outputs since the outputs could change during findAllocas,
// the correct set of extracted outputs will be in the final Outputs ValueSet.
SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands,
DummyOutputs;
// Use the code extractor to get the inputs and outputs, without sunken
// allocas or removing llvm.assumes.
CodeExtractor *CE = Region.CE;
CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands);
assert(Region.StartBB && "Region must have a start BasicBlock!");
Function *OrigF = Region.StartBB->getParent();
CodeExtractorAnalysisCache CEAC(*OrigF);
BasicBlock *Dummy = nullptr;
// The region may be ineligible due to VarArgs in the parent function. In this
// case we ignore the region.
if (!CE->isEligible()) {
Region.IgnoreRegion = true;
return;
}
// Find if any values are going to be sunk into the function when extracted
CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy);
CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands);
// TODO: Support regions with sunken allocas: values whose lifetimes are
// contained completely within the outlined region. These are not guaranteed
// to be the same in every region, so we must elevate them all to arguments
// when they appear. If these values are not equal, it means there is some
// Input in OverallInputs that was removed for ArgInputs.
if (OverallInputs.size() != PremappedInputs.size()) {
Region.IgnoreRegion = true;
return;
}
findConstants(C, NotSame, InputGVNs);
mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs);
remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings,
ArgInputs);
// Sort the GVNs, since we now have constants included in the \ref InputGVNs
// we need to make sure they are in a deterministic order.
stable_sort(InputGVNs);
}
/// Look over the inputs and map each input argument to an argument in the
/// overall function for the OutlinableRegions. This creates a way to replace
/// the arguments of the extracted function with the arguments of the new
/// overall function.
///
/// \param [in,out] Region - The region of code to be analyzed.
/// \param [in] InputGVNs - The global value numbering of the input values
/// collected.
/// \param [in] ArgInputs - The values of the arguments to the extracted
/// function.
static void
findExtractedInputToOverallInputMapping(OutlinableRegion &Region,
std::vector<unsigned> &InputGVNs,
SetVector<Value *> &ArgInputs) {
IRSimilarityCandidate &C = *Region.Candidate;
OutlinableGroup &Group = *Region.Parent;
// This counts the argument number in the overall function.
unsigned TypeIndex = 0;
// This counts the argument number in the extracted function.
unsigned OriginalIndex = 0;
// Find the mapping of the extracted arguments to the arguments for the
// overall function. Since there may be extra arguments in the overall
// function to account for the extracted constants, we have two different
// counters as we find extracted arguments, and as we come across overall
// arguments.
// Additionally, in our first pass, for the first extracted function,
// we find argument locations for the canonical value numbering. This
// numbering overrides any discovered location for the extracted code.
for (unsigned InputVal : InputGVNs) {
Optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal);
assert(CanonicalNumberOpt.hasValue() && "Canonical number not found?");
unsigned CanonicalNumber = CanonicalNumberOpt.getValue();
Optional<Value *> InputOpt = C.fromGVN(InputVal);
assert(InputOpt.hasValue() && "Global value number not found?");
Value *Input = InputOpt.getValue();
DenseMap<unsigned, unsigned>::iterator AggArgIt =
Group.CanonicalNumberToAggArg.find(CanonicalNumber);
if (!Group.InputTypesSet) {
Group.ArgumentTypes.push_back(Input->getType());
// If the input value has a swifterr attribute, make sure to mark the
// argument in the overall function.
if (Input->isSwiftError()) {
assert(
!Group.SwiftErrorArgument.hasValue() &&
"Argument already marked with swifterr for this OutlinableGroup!");
Group.SwiftErrorArgument = TypeIndex;
}
}
// Check if we have a constant. If we do add it to the overall argument
// number to Constant map for the region, and continue to the next input.
if (Constant *CST = dyn_cast<Constant>(Input)) {
if (AggArgIt != Group.CanonicalNumberToAggArg.end())
Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST));
else {
Group.CanonicalNumberToAggArg.insert(
std::make_pair(CanonicalNumber, TypeIndex));
Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST));
}
TypeIndex++;
continue;
}
// It is not a constant, we create the mapping from extracted argument list
// to the overall argument list, using the canonical location, if it exists.
assert(ArgInputs.count(Input) && "Input cannot be found!");
if (AggArgIt != Group.CanonicalNumberToAggArg.end()) {
if (OriginalIndex != AggArgIt->second)
Region.ChangedArgOrder = true;
Region.ExtractedArgToAgg.insert(
std::make_pair(OriginalIndex, AggArgIt->second));
Region.AggArgToExtracted.insert(
std::make_pair(AggArgIt->second, OriginalIndex));
} else {
Group.CanonicalNumberToAggArg.insert(
std::make_pair(CanonicalNumber, TypeIndex));
Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex));
Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex));
}
OriginalIndex++;
TypeIndex++;
}
// If the function type definitions for the OutlinableGroup holding the region
// have not been set, set the length of the inputs here. We should have the
// same inputs for all of the different regions contained in the
// OutlinableGroup since they are all structurally similar to one another.
if (!Group.InputTypesSet) {
Group.NumAggregateInputs = TypeIndex;
Group.InputTypesSet = true;
}
Region.NumExtractedInputs = OriginalIndex;
}
/// Check if the \p V has any uses outside of the region other than \p PN.
///
/// \param V [in] - The value to check.
/// \param PHILoc [in] - The location in the PHINode of \p V.
/// \param PN [in] - The PHINode using \p V.
/// \param Exits [in] - The potential blocks we exit to from the outlined
/// region.
/// \param BlocksInRegion [in] - The basic blocks contained in the region.
/// \returns true if \p V has any use soutside its region other than \p PN.
static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN,
SmallPtrSet<BasicBlock *, 1> &Exits,
DenseSet<BasicBlock *> &BlocksInRegion) {
// We check to see if the value is used by the PHINode from some other
// predecessor not included in the region. If it is, we make sure
// to keep it as an output.
SmallVector<unsigned, 2> IncomingNumbers(PN.getNumIncomingValues());
std::iota(IncomingNumbers.begin(), IncomingNumbers.end(), 0);
if (any_of(IncomingNumbers, [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) {
return (Idx != PHILoc && V == PN.getIncomingValue(Idx) &&
!BlocksInRegion.contains(PN.getIncomingBlock(Idx)));
}))
return true;
// Check if the value is used by any other instructions outside the region.
return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) {
Instruction *I = dyn_cast<Instruction>(U);
if (!I)
return false;
// If the use of the item is inside the region, we skip it. Uses
// inside the region give us useful information about how the item could be
// used as an output.
BasicBlock *Parent = I->getParent();
if (BlocksInRegion.contains(Parent))
return false;
// If it's not a PHINode then we definitely know the use matters. This
// output value will not completely combined with another item in a PHINode
// as it is directly reference by another non-phi instruction
if (!isa<PHINode>(I))
return true;
// If we have a PHINode outside one of the exit locations, then it
// can be considered an outside use as well. If there is a PHINode
// contained in the Exit where this values use matters, it will be
// caught when we analyze that PHINode.
if (!Exits.contains(Parent))
return true;
return false;
});
}
/// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be
/// considered outputs. A PHINodes is an output when more than one incoming
/// value has been marked by the CodeExtractor as an output.
///
/// \param CurrentExitFromRegion [in] - The block to analyze.
/// \param PotentialExitsFromRegion [in] - The potential exit blocks from the
/// region.
/// \param RegionBlocks [in] - The basic blocks in the region.
/// \param Outputs [in, out] - The existing outputs for the region, we may add
/// PHINodes to this as we find that they replace output values.
/// \param OutputsReplacedByPHINode [out] - A set containing outputs that are
/// totally replaced by a PHINode.
/// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used
/// in PHINodes, but have other uses, and should still be considered outputs.
static void analyzeExitPHIsForOutputUses(
BasicBlock *CurrentExitFromRegion,
SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion,
DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs,
DenseSet<Value *> &OutputsReplacedByPHINode,
DenseSet<Value *> &OutputsWithNonPhiUses) {
for (PHINode &PN : CurrentExitFromRegion->phis()) {
// Find all incoming values from the outlining region.
SmallVector<unsigned, 2> IncomingVals;
for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I)
if (RegionBlocks.contains(PN.getIncomingBlock(I)))
IncomingVals.push_back(I);
// Do not process PHI if there are no predecessors from region.
unsigned NumIncomingVals = IncomingVals.size();
if (NumIncomingVals == 0)
continue;
// If there is one predecessor, we mark it as a value that needs to be kept
// as an output.
if (NumIncomingVals == 1) {
Value *V = PN.getIncomingValue(*IncomingVals.begin());
OutputsWithNonPhiUses.insert(V);
OutputsReplacedByPHINode.erase(V);
continue;
}
// This PHINode will be used as an output value, so we add it to our list.
Outputs.insert(&PN);
// Not all of the incoming values should be ignored as other inputs and
// outputs may have uses in outlined region. If they have other uses
// outside of the single PHINode we should not skip over it.
for (unsigned Idx : IncomingVals) {
Value *V = PN.getIncomingValue(Idx);
if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) {
OutputsWithNonPhiUses.insert(V);
OutputsReplacedByPHINode.erase(V);
continue;
}
if (!OutputsWithNonPhiUses.contains(V))
OutputsReplacedByPHINode.insert(V);
}
}
}
// Represents the type for the unsigned number denoting the output number for
// phi node, along with the canonical number for the exit block.
using ArgLocWithBBCanon = std::pair<unsigned, unsigned>;
// The list of canonical numbers for the incoming values to a PHINode.
using CanonList = SmallVector<unsigned, 2>;
// The pair type representing the set of canonical values being combined in the
// PHINode, along with the location data for the PHINode.
using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>;
/// Encode \p PND as an integer for easy lookup based on the argument location,
/// the parent BasicBlock canonical numbering, and the canonical numbering of
/// the values stored in the PHINode.
///
/// \param PND - The data to hash.
/// \returns The hash code of \p PND.
static hash_code encodePHINodeData(PHINodeData &PND) {
return llvm::hash_combine(
llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second),
llvm::hash_combine_range(PND.second.begin(), PND.second.end()));
}
/// Create a special GVN for PHINodes that will be used outside of
/// the region. We create a hash code based on the Canonical number of the
/// parent BasicBlock, the canonical numbering of the values stored in the
/// PHINode and the aggregate argument location. This is used to find whether
/// this PHINode type has been given a canonical numbering already. If not, we
/// assign it a value and store it for later use. The value is returned to
/// identify different output schemes for the set of regions.
///
/// \param Region - The region that \p PN is an output for.
/// \param PN - The PHINode we are analyzing.
/// \param AggArgIdx - The argument \p PN will be stored into.
/// \returns An optional holding the assigned canonical number, or None if
/// there is some attribute of the PHINode blocking it from being used.
static Optional<unsigned> getGVNForPHINode(OutlinableRegion &Region,
PHINode *PN, unsigned AggArgIdx) {
OutlinableGroup &Group = *Region.Parent;
IRSimilarityCandidate &Cand = *Region.Candidate;
BasicBlock *PHIBB = PN->getParent();
CanonList PHIGVNs;
for (Value *Incoming : PN->incoming_values()) {
// If we cannot find a GVN, this means that the input to the PHINode is
// not included in the region we are trying to analyze, meaning, that if
// it was outlined, we would be adding an extra input. We ignore this
// case for now, and so ignore the region.
Optional<unsigned> OGVN = Cand.getGVN(Incoming);
if (!OGVN.hasValue()) {
Region.IgnoreRegion = true;
return None;
}
// Collect the canonical numbers of the values in the PHINode.
unsigned GVN = OGVN.getValue();
OGVN = Cand.getCanonicalNum(GVN);
assert(OGVN.hasValue() && "No GVN found for incoming value?");
PHIGVNs.push_back(*OGVN);
}
// Now that we have the GVNs for the incoming values, we are going to combine
// them with the GVN of the incoming bock, and the output location of the
// PHINode to generate a hash value representing this instance of the PHINode.
DenseMap<hash_code, unsigned>::iterator GVNToPHIIt;
DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt;
Optional<unsigned> BBGVN = Cand.getGVN(PHIBB);
assert(BBGVN.hasValue() && "Could not find GVN for the incoming block!");
BBGVN = Cand.getCanonicalNum(BBGVN.getValue());
assert(BBGVN.hasValue() &&
"Could not find canonical number for the incoming block!");
// Create a pair of the exit block canonical value, and the aggregate
// argument location, connected to the canonical numbers stored in the
// PHINode.
PHINodeData TemporaryPair =
std::make_pair(std::make_pair(BBGVN.getValue(), AggArgIdx), PHIGVNs);
hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair);
// Look for and create a new entry in our connection between canonical
// numbers for PHINodes, and the set of objects we just created.
GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash);
if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) {
bool Inserted = false;
std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert(
std::make_pair(Group.PHINodeGVNTracker, TemporaryPair));
std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert(
std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--));
}
return GVNToPHIIt->second;
}
/// Create a mapping of the output arguments for the \p Region to the output
/// arguments of the overall outlined function.
///
/// \param [in,out] Region - The region of code to be analyzed.
/// \param [in] Outputs - The values found by the code extractor.
static void
findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region,
SetVector<Value *> &Outputs) {
OutlinableGroup &Group = *Region.Parent;
IRSimilarityCandidate &C = *Region.Candidate;
SmallVector<BasicBlock *> BE;
DenseSet<BasicBlock *> BlocksInRegion;
C.getBasicBlocks(BlocksInRegion, BE);
// Find the exits to the region.
SmallPtrSet<BasicBlock *, 1> Exits;
for (BasicBlock *Block : BE)
for (BasicBlock *Succ : successors(Block))
if (!BlocksInRegion.contains(Succ))
Exits.insert(Succ);
// After determining which blocks exit to PHINodes, we add these PHINodes to
// the set of outputs to be processed. We also check the incoming values of
// the PHINodes for whether they should no longer be considered outputs.
DenseSet<Value *> OutputsReplacedByPHINode;
DenseSet<Value *> OutputsWithNonPhiUses;
for (BasicBlock *ExitBB : Exits)
analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs,
OutputsReplacedByPHINode,
OutputsWithNonPhiUses);
// This counts the argument number in the extracted function.
unsigned OriginalIndex = Region.NumExtractedInputs;
// This counts the argument number in the overall function.
unsigned TypeIndex = Group.NumAggregateInputs;
bool TypeFound;
DenseSet<unsigned> AggArgsUsed;
// Iterate over the output types and identify if there is an aggregate pointer
// type whose base type matches the current output type. If there is, we mark
// that we will use this output register for this value. If not we add another
// type to the overall argument type list. We also store the GVNs used for
// stores to identify which values will need to be moved into an special
// block that holds the stores to the output registers.
for (Value *Output : Outputs) {
TypeFound = false;
// We can do this since it is a result value, and will have a number
// that is necessarily the same. BUT if in the future, the instructions
// do not have to be in same order, but are functionally the same, we will
// have to use a different scheme, as one-to-one correspondence is not
// guaranteed.
unsigned ArgumentSize = Group.ArgumentTypes.size();
// If the output is combined in a PHINode, we make sure to skip over it.
if (OutputsReplacedByPHINode.contains(Output))
continue;
unsigned AggArgIdx = 0;
for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) {
if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType()))
continue;
if (AggArgsUsed.contains(Jdx))
continue;
TypeFound = true;
AggArgsUsed.insert(Jdx);
Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx));
Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex));
AggArgIdx = Jdx;
break;
}
// We were unable to find an unused type in the output type set that matches
// the output, so we add a pointer type to the argument types of the overall
// function to handle this output and create a mapping to it.
if (!TypeFound) {
Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType()));
// Mark the new pointer type as the last value in the aggregate argument
// list.
unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1;
AggArgsUsed.insert(ArgTypeIdx);
Region.ExtractedArgToAgg.insert(
std::make_pair(OriginalIndex, ArgTypeIdx));
Region.AggArgToExtracted.insert(
std::make_pair(ArgTypeIdx, OriginalIndex));
AggArgIdx = ArgTypeIdx;
}
// TODO: Adapt to the extra input from the PHINode.
PHINode *PN = dyn_cast<PHINode>(Output);
Optional<unsigned> GVN;
if (PN && !BlocksInRegion.contains(PN->getParent())) {
// Values outside the region can be combined into PHINode when we
// have multiple exits. We collect both of these into a list to identify
// which values are being used in the PHINode. Each list identifies a
// different PHINode, and a different output. We store the PHINode as it's
// own canonical value. These canonical values are also dependent on the
// output argument it is saved to.
// If two PHINodes have the same canonical values, but different aggregate
// argument locations, then they will have distinct Canonical Values.
GVN = getGVNForPHINode(Region, PN, AggArgIdx);
if (!GVN.hasValue())
return;
} else {
// If we do not have a PHINode we use the global value numbering for the
// output value, to find the canonical number to add to the set of stored
// values.
GVN = C.getGVN(Output);
GVN = C.getCanonicalNum(*GVN);
}
// Each region has a potentially unique set of outputs. We save which
// values are output in a list of canonical values so we can differentiate
// among the different store schemes.
Region.GVNStores.push_back(*GVN);
OriginalIndex++;
TypeIndex++;
}
// We sort the stored values to make sure that we are not affected by analysis
// order when determining what combination of items were stored.
stable_sort(Region.GVNStores);
}
void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region,
DenseSet<unsigned> &NotSame) {
std::vector<unsigned> Inputs;
SetVector<Value *> ArgInputs, Outputs;
getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs,
Outputs);
if (Region.IgnoreRegion)
return;
// Map the inputs found by the CodeExtractor to the arguments found for
// the overall function.
findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs);
// Map the outputs found by the CodeExtractor to the arguments found for
// the overall function.
findExtractedOutputToOverallOutputMapping(Region, Outputs);
}
/// Replace the extracted function in the Region with a call to the overall
/// function constructed from the deduplicated similar regions, replacing and
/// remapping the values passed to the extracted function as arguments to the
/// new arguments of the overall function.
///
/// \param [in] M - The module to outline from.
/// \param [in] Region - The regions of extracted code to be replaced with a new
/// function.
/// \returns a call instruction with the replaced function.
CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) {
std::vector<Value *> NewCallArgs;
DenseMap<unsigned, unsigned>::iterator ArgPair;
OutlinableGroup &Group = *Region.Parent;
CallInst *Call = Region.Call;
assert(Call && "Call to replace is nullptr?");
Function *AggFunc = Group.OutlinedFunction;
assert(AggFunc && "Function to replace with is nullptr?");
// If the arguments are the same size, there are not values that need to be
// made into an argument, the argument ordering has not been change, or
// different output registers to handle. We can simply replace the called
// function in this case.
if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) {
LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
<< *AggFunc << " with same number of arguments\n");
Call->setCalledFunction(AggFunc);
return Call;
}
// We have a different number of arguments than the new function, so
// we need to use our previously mappings off extracted argument to overall
// function argument, and constants to overall function argument to create the
// new argument list.
for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) {
if (AggArgIdx == AggFunc->arg_size() - 1 &&
Group.OutputGVNCombinations.size() > 1) {
// If we are on the last argument, and we need to differentiate between
// output blocks, add an integer to the argument list to determine
// what block to take
LLVM_DEBUG(dbgs() << "Set switch block argument to "
<< Region.OutputBlockNum << "\n");
NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()),
Region.OutputBlockNum));
continue;
}
ArgPair = Region.AggArgToExtracted.find(AggArgIdx);
if (ArgPair != Region.AggArgToExtracted.end()) {
Value *ArgumentValue = Call->getArgOperand(ArgPair->second);
// If we found the mapping from the extracted function to the overall
// function, we simply add it to the argument list. We use the same
// value, it just needs to honor the new order of arguments.
LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
<< *ArgumentValue << "\n");
NewCallArgs.push_back(ArgumentValue);
continue;
}
// If it is a constant, we simply add it to the argument list as a value.
if (Region.AggArgToConstant.find(AggArgIdx) !=
Region.AggArgToConstant.end()) {
Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second;
LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
<< *CST << "\n");
NewCallArgs.push_back(CST);
continue;
}
// Add a nullptr value if the argument is not found in the extracted
// function. If we cannot find a value, it means it is not in use
// for the region, so we should not pass anything to it.
LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n");
NewCallArgs.push_back(ConstantPointerNull::get(
static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType())));
}
LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
<< *AggFunc << " with new set of arguments\n");
// Create the new call instruction and erase the old one.
Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "",
Call);
// It is possible that the call to the outlined function is either the first
// instruction is in the new block, the last instruction, or both. If either
// of these is the case, we need to make sure that we replace the instruction
// in the IRInstructionData struct with the new call.
CallInst *OldCall = Region.Call;
if (Region.NewFront->Inst == OldCall)
Region.NewFront->Inst = Call;
if (Region.NewBack->Inst == OldCall)
Region.NewBack->Inst = Call;
// Transfer any debug information.
Call->setDebugLoc(Region.Call->getDebugLoc());
// Since our output may determine which branch we go to, we make sure to
// propogate this new call value through the module.
OldCall->replaceAllUsesWith(Call);
// Remove the old instruction.
OldCall->eraseFromParent();
Region.Call = Call;
// Make sure that the argument in the new function has the SwiftError
// argument.
if (Group.SwiftErrorArgument.hasValue())
Call->addParamAttr(Group.SwiftErrorArgument.getValue(),
Attribute::SwiftError);
return Call;
}
/// Find or create a BasicBlock in the outlined function containing PhiBlocks
/// for \p RetVal.
///
/// \param Group - The OutlinableGroup containing the information about the
/// overall outlined function.
/// \param RetVal - The return value or exit option that we are currently
/// evaluating.
/// \returns The found or newly created BasicBlock to contain the needed
/// PHINodes to be used as outputs.
static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) {
DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal,
ReturnBlockForRetVal;
PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
ReturnBlockForRetVal = Group.EndBBs.find(RetVal);
assert(ReturnBlockForRetVal != Group.EndBBs.end() &&
"Could not find output value!");
BasicBlock *ReturnBB = ReturnBlockForRetVal->second;
// Find if a PHIBlock exists for this return value already. If it is
// the first time we are analyzing this, we will not, so we record it.
PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
if (PhiBlockForRetVal != Group.PHIBlocks.end())
return PhiBlockForRetVal->second;
// If we did not find a block, we create one, and insert it into the
// overall function and record it.
bool Inserted = false;
BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block",
ReturnBB->getParent());
std::tie(PhiBlockForRetVal, Inserted) =
Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
// We find the predecessors of the return block in the newly created outlined
// function in order to point them to the new PHIBlock rather than the already
// existing return block.
SmallVector<BranchInst *, 2> BranchesToChange;
for (BasicBlock *Pred : predecessors(ReturnBB))
BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator()));
// Now we mark the branch instructions found, and change the references of the
// return block to the newly created PHIBlock.
for (BranchInst *BI : BranchesToChange)
for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) {
if (BI->getSuccessor(Succ) != ReturnBB)
continue;
BI->setSuccessor(Succ, PHIBlock);
}
BranchInst::Create(ReturnBB, PHIBlock);
return PhiBlockForRetVal->second;
}
/// For the function call now representing the \p Region, find the passed value
/// to that call that represents Argument \p A at the call location if the
/// call has already been replaced with a call to the overall, aggregate
/// function.
///
/// \param A - The Argument to get the passed value for.
/// \param Region - The extracted Region corresponding to the outlined function.
/// \returns The Value representing \p A at the call site.
static Value *
getPassedArgumentInAlreadyOutlinedFunction(const Argument *A,
const OutlinableRegion &Region) {
// If we don't need to adjust the argument number at all (since the call
// has already been replaced by a call to the overall outlined function)
// we can just get the specified argument.
return Region.Call->getArgOperand(A->getArgNo());
}
/// For the function call now representing the \p Region, find the passed value
/// to that call that represents Argument \p A at the call location if the
/// call has only been replaced by the call to the aggregate function.
///
/// \param A - The Argument to get the passed value for.
/// \param Region - The extracted Region corresponding to the outlined function.
/// \returns The Value representing \p A at the call site.
static Value *
getPassedArgumentAndAdjustArgumentLocation(const Argument *A,
const OutlinableRegion &Region) {
unsigned ArgNum = A->getArgNo();
// If it is a constant, we can look at our mapping from when we created
// the outputs to figure out what the constant value is.
if (Region.AggArgToConstant.count(ArgNum))
return Region.AggArgToConstant.find(ArgNum)->second;
// If it is not a constant, and we are not looking at the overall function, we
// need to adjust which argument we are looking at.
ArgNum = Region.AggArgToExtracted.find(ArgNum)->second;
return Region.Call->getArgOperand(ArgNum);
}
/// Find the canonical numbering for the incoming Values into the PHINode \p PN.
///
/// \param PN [in] - The PHINode that we are finding the canonical numbers for.
/// \param Region [in] - The OutlinableRegion containing \p PN.
/// \param OutputMappings [in] - The mapping of output values from outlined
/// region to their original values.
/// \param CanonNums [out] - The canonical numbering for the incoming values to
/// \p PN.
/// \param ReplacedWithOutlinedCall - A flag to use the extracted function call
/// of \p Region rather than the overall function's call.
static void
findCanonNumsForPHI(PHINode *PN, OutlinableRegion &Region,
const DenseMap<Value *, Value *> &OutputMappings,
DenseSet<unsigned> &CanonNums,
bool ReplacedWithOutlinedCall = true) {
// Iterate over the incoming values.
for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
Value *IVal = PN->getIncomingValue(Idx);
// If we have an argument as incoming value, we need to grab the passed
// value from the call itself.
if (Argument *A = dyn_cast<Argument>(IVal)) {
if (ReplacedWithOutlinedCall)
IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region);
else
IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region);
}
// Get the original value if it has been replaced by an output value.
IVal = findOutputMapping(OutputMappings, IVal);
// Find and add the canonical number for the incoming value.
Optional<unsigned> GVN = Region.Candidate->getGVN(IVal);
assert(GVN.hasValue() && "No GVN for incoming value");
Optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN);
assert(CanonNum.hasValue() && "No Canonical Number for GVN");
CanonNums.insert(*CanonNum);
}
}
/// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock
/// in order to condense the number of instructions added to the outlined
/// function.
///
/// \param PN [in] - The PHINode that we are finding the canonical numbers for.
/// \param Region [in] - The OutlinableRegion containing \p PN.
/// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find
/// \p PN in.
/// \param OutputMappings [in] - The mapping of output values from outlined
/// region to their original values.
/// \return the newly found or created PHINode in \p OverallPhiBlock.
static PHINode*
findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region,
BasicBlock *OverallPhiBlock,
const DenseMap<Value *, Value *> &OutputMappings) {
OutlinableGroup &Group = *Region.Parent;
DenseSet<unsigned> PNCanonNums;
// We have to use the extracted function since we have merged this region into
// the overall function yet. We make sure to reassign the argument numbering
// since it is possible that the argument ordering is different between the
// functions.
findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums,
/* ReplacedWithOutlinedCall = */ false);
OutlinableRegion *FirstRegion = Group.Regions[0];
DenseSet<unsigned> CurrentCanonNums;
// Find the Canonical Numbering for each PHINode, if it matches, we replace
// the uses of the PHINode we are searching for, with the found PHINode.
for (PHINode &CurrPN : OverallPhiBlock->phis()) {
CurrentCanonNums.clear();
findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums,
/* ReplacedWithOutlinedCall = */ true);
if (all_of(PNCanonNums, [&CurrentCanonNums](unsigned CanonNum) {
return CurrentCanonNums.contains(CanonNum);
}))
return &CurrPN;
}
// If we've made it here, it means we weren't able to replace the PHINode, so
// we must insert it ourselves.
PHINode *NewPN = cast<PHINode>(PN.clone());
NewPN->insertBefore(&*OverallPhiBlock->begin());
for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx;
Idx++) {
Value *IncomingVal = NewPN->getIncomingValue(Idx);
BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx);
// Find corresponding basic block in the overall function for the incoming
// block.
Instruction *FirstNonPHI = IncomingBlock->getFirstNonPHI();
assert(FirstNonPHI && "Incoming block is empty?");
Value *CorrespondingVal =
Region.findCorrespondingValueIn(*FirstRegion, FirstNonPHI);
assert(CorrespondingVal && "Value is nullptr?");
BasicBlock *BlockToUse = cast<Instruction>(CorrespondingVal)->getParent();
NewPN->setIncomingBlock(Idx, BlockToUse);
// If we have an argument we make sure we replace using the argument from
// the correct function.
if (Argument *A = dyn_cast<Argument>(IncomingVal)) {
Value *Val = Group.OutlinedFunction->getArg(A->getArgNo());
NewPN->setIncomingValue(Idx, Val);
continue;
}
// Find the corresponding value in the overall function.
IncomingVal = findOutputMapping(OutputMappings, IncomingVal);
Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal);
assert(Val && "Value is nullptr?");
NewPN->setIncomingValue(Idx, Val);
}
return NewPN;
}
// Within an extracted function, replace the argument uses of the extracted
// region with the arguments of the function for an OutlinableGroup.
//
/// \param [in] Region - The region of extracted code to be changed.
/// \param [in,out] OutputBBs - The BasicBlock for the output stores for this
/// region.
/// \param [in] FirstFunction - A flag to indicate whether we are using this
/// function to define the overall outlined function for all the regions, or
/// if we are operating on one of the following regions.
static void
replaceArgumentUses(OutlinableRegion &Region,
DenseMap<Value *, BasicBlock *> &OutputBBs,
const DenseMap<Value *, Value *> &OutputMappings,
bool FirstFunction = false) {
OutlinableGroup &Group = *Region.Parent;
assert(Region.ExtractedFunction && "Region has no extracted function?");
Function *DominatingFunction = Region.ExtractedFunction;
if (FirstFunction)
DominatingFunction = Group.OutlinedFunction;
DominatorTree DT(*DominatingFunction);
for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size();
ArgIdx++) {
assert(Region.ExtractedArgToAgg.find(ArgIdx) !=
Region.ExtractedArgToAgg.end() &&
"No mapping from extracted to outlined?");
unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second;
Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx);
Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx);
// The argument is an input, so we can simply replace it with the overall
// argument value
if (ArgIdx < Region.NumExtractedInputs) {
LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function "
<< *Region.ExtractedFunction << " with " << *AggArg
<< " in function " << *Group.OutlinedFunction << "\n");
Arg->replaceAllUsesWith(AggArg);
continue;
}
// If we are replacing an output, we place the store value in its own
// block inside the overall function before replacing the use of the output
// in the function.
assert(Arg->hasOneUse() && "Output argument can only have one use");
User *InstAsUser = Arg->user_back();
assert(InstAsUser && "User is nullptr!");
Instruction *I = cast<Instruction>(InstAsUser);
BasicBlock *BB = I->getParent();
SmallVector<BasicBlock *, 4> Descendants;
DT.getDescendants(BB, Descendants);
bool EdgeAdded = false;
if (Descendants.size() == 0) {
EdgeAdded = true;
DT.insertEdge(&DominatingFunction->getEntryBlock(), BB);
DT.getDescendants(BB, Descendants);
}
// Iterate over the following blocks, looking for return instructions,
// if we find one, find the corresponding output block for the return value
// and move our store instruction there.
for (BasicBlock *DescendBB : Descendants) {
ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator());
if (!RI)
continue;
Value *RetVal = RI->getReturnValue();
auto VBBIt = OutputBBs.find(RetVal);
assert(VBBIt != OutputBBs.end() && "Could not find output value!");
// If this is storing a PHINode, we must make sure it is included in the
// overall function.
StoreInst *SI = cast<StoreInst>(I);
Value *ValueOperand = SI->getValueOperand();
StoreInst *NewI = cast<StoreInst>(I->clone());
NewI->setDebugLoc(DebugLoc());
BasicBlock *OutputBB = VBBIt->second;
OutputBB->getInstList().push_back(NewI);
LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to "
<< *OutputBB << "\n");
// If this is storing a PHINode, we must make sure it is included in the
// overall function.
if (!isa<PHINode>(ValueOperand) ||
Region.Candidate->getGVN(ValueOperand).hasValue()) {
if (FirstFunction)
continue;
Value *CorrVal =
Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand);
assert(CorrVal && "Value is nullptr?");
NewI->setOperand(0, CorrVal);
continue;
}
PHINode *PN = cast<PHINode>(SI->getValueOperand());
// If it has a value, it was not split by the code extractor, which
// is what we are looking for.
if (Region.Candidate->getGVN(PN).hasValue())
continue;
// We record the parent block for the PHINode in the Region so that
// we can exclude it from checks later on.
Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent()));
// If this is the first function, we do not need to worry about mergiing
// this with any other block in the overall outlined function, so we can
// just continue.
if (FirstFunction) {
BasicBlock *PHIBlock = PN->getParent();
Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
continue;
}
// We look for the aggregate block that contains the PHINodes leading into
// this exit path. If we can't find one, we create one.
BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal);
// For our PHINode, we find the combined canonical numbering, and
// attempt to find a matching PHINode in the overall PHIBlock. If we
// cannot, we copy the PHINode and move it into this new block.
PHINode *NewPN =
findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock, OutputMappings);
NewI->setOperand(0, NewPN);
}
// If we added an edge for basic blocks without a predecessor, we remove it
// here.
if (EdgeAdded)
DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB);
I->eraseFromParent();
LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function "
<< *Region.ExtractedFunction << " with " << *AggArg
<< " in function " << *Group.OutlinedFunction << "\n");
Arg->replaceAllUsesWith(AggArg);
}
}
/// Within an extracted function, replace the constants that need to be lifted
/// into arguments with the actual argument.
///
/// \param Region [in] - The region of extracted code to be changed.
void replaceConstants(OutlinableRegion &Region) {
OutlinableGroup &Group = *Region.Parent;
// Iterate over the constants that need to be elevated into arguments
for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) {
unsigned AggArgIdx = Const.first;
Function *OutlinedFunction = Group.OutlinedFunction;
assert(OutlinedFunction && "Overall Function is not defined?");
Constant *CST = Const.second;
Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx);
// Identify the argument it will be elevated to, and replace instances of
// that constant in the function.
// TODO: If in the future constants do not have one global value number,
// i.e. a constant 1 could be mapped to several values, this check will
// have to be more strict. It cannot be using only replaceUsesWithIf.
LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST
<< " in function " << *OutlinedFunction << " with "
<< *Arg << "\n");
CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) {
if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
return I->getFunction() == OutlinedFunction;
return false;
});
}
}
/// It is possible that there is a basic block that already performs the same
/// stores. This returns a duplicate block, if it exists
///
/// \param OutputBBs [in] the blocks we are looking for a duplicate of.
/// \param OutputStoreBBs [in] The existing output blocks.
/// \returns an optional value with the number output block if there is a match.
Optional<unsigned> findDuplicateOutputBlock(
DenseMap<Value *, BasicBlock *> &OutputBBs,
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
bool Mismatch = false;
unsigned MatchingNum = 0;
// We compare the new set output blocks to the other sets of output blocks.
// If they are the same number, and have identical instructions, they are
// considered to be the same.
for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) {
Mismatch = false;
for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) {
DenseMap<Value *, BasicBlock *>::iterator OutputBBIt =
OutputBBs.find(VToB.first);
if (OutputBBIt == OutputBBs.end()) {
Mismatch = true;
break;
}
BasicBlock *CompBB = VToB.second;
BasicBlock *OutputBB = OutputBBIt->second;
if (CompBB->size() - 1 != OutputBB->size()) {
Mismatch = true;
break;
}
BasicBlock::iterator NIt = OutputBB->begin();
for (Instruction &I : *CompBB) {
if (isa<BranchInst>(&I))
continue;
if (!I.isIdenticalTo(&(*NIt))) {
Mismatch = true;
break;
}
NIt++;
}
}
if (!Mismatch)
return MatchingNum;
MatchingNum++;
}
return None;
}
/// Remove empty output blocks from the outlined region.
///
/// \param BlocksToPrune - Mapping of return values output blocks for the \p
/// Region.
/// \param Region - The OutlinableRegion we are analyzing.
static bool
analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune,
OutlinableRegion &Region) {
bool AllRemoved = true;
Value *RetValueForBB;
BasicBlock *NewBB;
SmallVector<Value *, 4> ToRemove;
// Iterate over the output blocks created in the outlined section.
for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) {
RetValueForBB = VtoBB.first;
NewBB = VtoBB.second;
// If there are no instructions, we remove it from the module, and also
// mark the value for removal from the return value to output block mapping.
if (NewBB->size() == 0) {
NewBB->eraseFromParent();
ToRemove.push_back(RetValueForBB);
continue;
}
// Mark that we could not remove all the blocks since they were not all
// empty.
AllRemoved = false;
}
// Remove the return value from the mapping.
for (Value *V : ToRemove)
BlocksToPrune.erase(V);
// Mark the region as having the no output scheme.
if (AllRemoved)
Region.OutputBlockNum = -1;
return AllRemoved;
}
/// For the outlined section, move needed the StoreInsts for the output
/// registers into their own block. Then, determine if there is a duplicate
/// output block already created.
///
/// \param [in] OG - The OutlinableGroup of regions to be outlined.
/// \param [in] Region - The OutlinableRegion that is being analyzed.
/// \param [in,out] OutputBBs - the blocks that stores for this region will be
/// placed in.
/// \param [in] EndBBs - the final blocks of the extracted function.
/// \param [in] OutputMappings - OutputMappings the mapping of values that have
/// been replaced by a new output value.
/// \param [in,out] OutputStoreBBs - The existing output blocks.
static void alignOutputBlockWithAggFunc(
OutlinableGroup &OG, OutlinableRegion &Region,
DenseMap<Value *, BasicBlock *> &OutputBBs,
DenseMap<Value *, BasicBlock *> &EndBBs,
const DenseMap<Value *, Value *> &OutputMappings,
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
// If none of the output blocks have any instructions, this means that we do
// not have to determine if it matches any of the other output schemes, and we
// don't have to do anything else.
if (analyzeAndPruneOutputBlocks(OutputBBs, Region))
return;
// Determine is there is a duplicate set of blocks.
Optional<unsigned> MatchingBB =
findDuplicateOutputBlock(OutputBBs, OutputStoreBBs);
// If there is, we remove the new output blocks. If it does not,
// we add it to our list of sets of output blocks.
if (MatchingBB.hasValue()) {
LLVM_DEBUG(dbgs() << "Set output block for region in function"
<< Region.ExtractedFunction << " to "
<< MatchingBB.getValue());
Region.OutputBlockNum = MatchingBB.getValue();
for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs)
VtoBB.second->eraseFromParent();
return;
}
Region.OutputBlockNum = OutputStoreBBs.size();
Value *RetValueForBB;
BasicBlock *NewBB;
OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) {
RetValueForBB = VtoBB.first;
NewBB = VtoBB.second;
DenseMap<Value *, BasicBlock *>::iterator VBBIt =
EndBBs.find(RetValueForBB);
LLVM_DEBUG(dbgs() << "Create output block for region in"
<< Region.ExtractedFunction << " to "
<< *NewBB);
BranchInst::Create(VBBIt->second, NewBB);
OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB));
}
}
/// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys,
/// before creating a basic block for each \p NewMap, and inserting into the new
/// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>".
///
/// \param OldMap [in] - The mapping to base the new mapping off of.
/// \param NewMap [out] - The output mapping using the keys of \p OldMap.
/// \param ParentFunc [in] - The function to put the new basic block in.
/// \param BaseName [in] - The start of the BasicBlock names to be appended to
/// by an index value.
static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap,
DenseMap<Value *, BasicBlock *> &NewMap,
Function *ParentFunc, Twine BaseName) {
unsigned Idx = 0;
std::vector<Value *> SortedKeys;
getSortedConstantKeys(SortedKeys, OldMap);
for (Value *RetVal : SortedKeys) {
BasicBlock *NewBB = BasicBlock::Create(
ParentFunc->getContext(),
Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)),
ParentFunc);
NewMap.insert(std::make_pair(RetVal, NewBB));
}
}
/// Create the switch statement for outlined function to differentiate between
/// all the output blocks.
///
/// For the outlined section, determine if an outlined block already exists that
/// matches the needed stores for the extracted section.
/// \param [in] M - The module we are outlining from.
/// \param [in] OG - The group of regions to be outlined.
/// \param [in] EndBBs - The final blocks of the extracted function.
/// \param [in,out] OutputStoreBBs - The existing output blocks.
void createSwitchStatement(
Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs,
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
// We only need the switch statement if there is more than one store
// combination, or there is more than one set of output blocks. The first
// will occur when we store different sets of values for two different
// regions. The second will occur when we have two outputs that are combined
// in a PHINode outside of the region in one outlined instance, and are used
// seaparately in another. This will create the same set of OutputGVNs, but
// will generate two different output schemes.
if (OG.OutputGVNCombinations.size() > 1) {
Function *AggFunc = OG.OutlinedFunction;
// Create a final block for each different return block.
DenseMap<Value *, BasicBlock *> ReturnBBs;
createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block");
for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) {
std::pair<Value *, BasicBlock *> &OutputBlock =
*OG.EndBBs.find(RetBlockPair.first);
BasicBlock *ReturnBlock = RetBlockPair.second;
BasicBlock *EndBB = OutputBlock.second;
Instruction *Term = EndBB->getTerminator();
// Move the return value to the final block instead of the original exit
// stub.
Term->moveBefore(*ReturnBlock, ReturnBlock->end());
// Put the switch statement in the old end basic block for the function
// with a fall through to the new return block.
LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for "
<< OutputStoreBBs.size() << "\n");
SwitchInst *SwitchI =
SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1),
ReturnBlock, OutputStoreBBs.size(), EndBB);
unsigned Idx = 0;
for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) {
DenseMap<Value *, BasicBlock *>::iterator OSBBIt =
OutputStoreBB.find(OutputBlock.first);
if (OSBBIt == OutputStoreBB.end())
continue;
BasicBlock *BB = OSBBIt->second;
SwitchI->addCase(
ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB);
Term = BB->getTerminator();
Term->setSuccessor(0, ReturnBlock);
Idx++;
}
}
return;
}
assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!");
// If there needs to be stores, move them from the output blocks to their
// corresponding ending block. We do not check that the OutputGVNCombinations
// is equal to 1 here since that could just been the case where there are 0
// outputs. Instead, we check whether there is more than one set of output
// blocks since this is the only case where we would have to move the
// stores, and erase the extraneous blocks.
if (OutputStoreBBs.size() == 1) {
LLVM_DEBUG(dbgs() << "Move store instructions to the end block in "
<< *OG.OutlinedFunction << "\n");
DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0];
for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) {
DenseMap<Value *, BasicBlock *>::iterator EndBBIt =
EndBBs.find(VBPair.first);
assert(EndBBIt != EndBBs.end() && "Could not find end block");
BasicBlock *EndBB = EndBBIt->second;
BasicBlock *OutputBB = VBPair.second;
Instruction *Term = OutputBB->getTerminator();
Term->eraseFromParent();
Term = EndBB->getTerminator();
moveBBContents(*OutputBB, *EndBB);
Term->moveBefore(*EndBB, EndBB->end());
OutputBB->eraseFromParent();
}
}
}
/// Fill the new function that will serve as the replacement function for all of
/// the extracted regions of a certain structure from the first region in the
/// list of regions. Replace this first region's extracted function with the
/// new overall function.
///
/// \param [in] M - The module we are outlining from.
/// \param [in] CurrentGroup - The group of regions to be outlined.
/// \param [in,out] OutputStoreBBs - The output blocks for each different
/// set of stores needed for the different functions.
/// \param [in,out] FuncsToRemove - Extracted functions to erase from module
/// once outlining is complete.
/// \param [in] OutputMappings - Extracted functions to erase from module
/// once outlining is complete.
static void fillOverallFunction(
Module &M, OutlinableGroup &CurrentGroup,
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs,
std::vector<Function *> &FuncsToRemove,
const DenseMap<Value *, Value *> &OutputMappings) {
OutlinableRegion *CurrentOS = CurrentGroup.Regions[0];
// Move first extracted function's instructions into new function.
LLVM_DEBUG(dbgs() << "Move instructions from "
<< *CurrentOS->ExtractedFunction << " to instruction "
<< *CurrentGroup.OutlinedFunction << "\n");
moveFunctionData(*CurrentOS->ExtractedFunction,
*CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs);
// Transfer the attributes from the function to the new function.
for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs())
CurrentGroup.OutlinedFunction->addFnAttr(A);
// Create a new set of output blocks for the first extracted function.
DenseMap<Value *, BasicBlock *> NewBBs;
createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs,
CurrentGroup.OutlinedFunction, "output_block_0");
CurrentOS->OutputBlockNum = 0;
replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true);
replaceConstants(*CurrentOS);
// We first identify if any output blocks are empty, if they are we remove
// them. We then create a branch instruction to the basic block to the return
// block for the function for each non empty output block.
if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) {
OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) {
DenseMap<Value *, BasicBlock *>::iterator VBBIt =
CurrentGroup.EndBBs.find(VToBB.first);
BasicBlock *EndBB = VBBIt->second;
BranchInst::Create(EndBB, VToBB.second);
OutputStoreBBs.back().insert(VToBB);
}
}
// Replace the call to the extracted function with the outlined function.
CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
// We only delete the extracted functions at the end since we may need to
// reference instructions contained in them for mapping purposes.
FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
}
void IROutliner::deduplicateExtractedSections(
Module &M, OutlinableGroup &CurrentGroup,
std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) {
createFunction(M, CurrentGroup, OutlinedFunctionNum);
std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs;
OutlinableRegion *CurrentOS;
fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove,
OutputMappings);
std::vector<Value *> SortedKeys;
for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) {
CurrentOS = CurrentGroup.Regions[Idx];
AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction,
*CurrentOS->ExtractedFunction);
// Create a set of BasicBlocks, one for each return block, to hold the
// needed store instructions.
DenseMap<Value *, BasicBlock *> NewBBs;
createAndInsertBasicBlocks(
CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction,
"output_block_" + Twine(static_cast<unsigned>(Idx)));
replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings);
alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs,
CurrentGroup.EndBBs, OutputMappings,
OutputStoreBBs);
CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
}
// Create a switch statement to handle the different output schemes.
createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs);
OutlinedFunctionNum++;
}
/// Checks that the next instruction in the InstructionDataList matches the
/// next instruction in the module. If they do not, there could be the
/// possibility that extra code has been inserted, and we must ignore it.
///
/// \param ID - The IRInstructionData to check the next instruction of.
/// \returns true if the InstructionDataList and actual instruction match.
static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) {
// We check if there is a discrepancy between the InstructionDataList
// and the actual next instruction in the module. If there is, it means
// that an extra instruction was added, likely by the CodeExtractor.
// Since we do not have any similarity data about this particular
// instruction, we cannot confidently outline it, and must discard this
// candidate.
IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator());
Instruction *NextIDLInst = NextIDIt->Inst;
Instruction *NextModuleInst = nullptr;
if (!ID.Inst->isTerminator())
NextModuleInst = ID.Inst->getNextNonDebugInstruction();
else if (NextIDLInst != nullptr)
NextModuleInst =
&*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin();
if (NextIDLInst && NextIDLInst != NextModuleInst)
return false;
return true;
}
bool IROutliner::isCompatibleWithAlreadyOutlinedCode(
const OutlinableRegion &Region) {
IRSimilarityCandidate *IRSC = Region.Candidate;
unsigned StartIdx = IRSC->getStartIdx();
unsigned EndIdx = IRSC->getEndIdx();
// A check to make sure that we are not about to attempt to outline something
// that has already been outlined.
for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
if (Outlined.contains(Idx))
return false;
// We check if the recorded instruction matches the actual next instruction,
// if it does not, we fix it in the InstructionDataList.
if (!Region.Candidate->backInstruction()->isTerminator()) {
Instruction *NewEndInst =
Region.Candidate->backInstruction()->getNextNonDebugInstruction();
assert(NewEndInst && "Next instruction is a nullptr?");
if (Region.Candidate->end()->Inst != NewEndInst) {
IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate())
IRInstructionData(*NewEndInst,
InstructionClassifier.visit(*NewEndInst), *IDL);
// Insert the first IRInstructionData of the new region after the
// last IRInstructionData of the IRSimilarityCandidate.
IDL->insert(Region.Candidate->end(), *NewEndIRID);
}
}
return none_of(*IRSC, [this](IRInstructionData &ID) {
if (!nextIRInstructionDataMatchesNextInst(ID))
return true;
return !this->InstructionClassifier.visit(ID.Inst);
});
}
void IROutliner::pruneIncompatibleRegions(
std::vector<IRSimilarityCandidate> &CandidateVec,
OutlinableGroup &CurrentGroup) {
bool PreviouslyOutlined;
// Sort from beginning to end, so the IRSimilarityCandidates are in order.
stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS,
const IRSimilarityCandidate &RHS) {
return LHS.getStartIdx() < RHS.getStartIdx();
});
IRSimilarityCandidate &FirstCandidate = CandidateVec[0];
// Since outlining a call and a branch instruction will be the same as only
// outlinining a call instruction, we ignore it as a space saving.
if (FirstCandidate.getLength() == 2) {
if (isa<CallInst>(FirstCandidate.front()->Inst) &&
isa<BranchInst>(FirstCandidate.back()->Inst))
return;
}
unsigned CurrentEndIdx = 0;
for (IRSimilarityCandidate &IRSC : CandidateVec) {
PreviouslyOutlined = false;
unsigned StartIdx = IRSC.getStartIdx();
unsigned EndIdx = IRSC.getEndIdx();
for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
if (Outlined.contains(Idx)) {
PreviouslyOutlined = true;
break;
}
if (PreviouslyOutlined)
continue;
// Check over the instructions, and if the basic block has its address
// taken for use somewhere else, we do not outline that block.
bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){
return ID.Inst->getParent()->hasAddressTaken();
});
if (BBHasAddressTaken)
continue;
if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() &&
!OutlineFromLinkODRs)
continue;
// Greedily prune out any regions that will overlap with already chosen
// regions.
if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx)
continue;
bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) {
if (!nextIRInstructionDataMatchesNextInst(ID))
return true;
return !this->InstructionClassifier.visit(ID.Inst);
});
if (BadInst)
continue;
OutlinableRegion *OS = new (RegionAllocator.Allocate())
OutlinableRegion(IRSC, CurrentGroup);
CurrentGroup.Regions.push_back(OS);
CurrentEndIdx = EndIdx;
}
}
InstructionCost
IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) {
InstructionCost RegionBenefit = 0;
for (OutlinableRegion *Region : CurrentGroup.Regions) {
TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
// We add the number of instructions in the region to the benefit as an
// estimate as to how much will be removed.
RegionBenefit += Region->getBenefit(TTI);
LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit
<< " saved instructions to overfall benefit.\n");
}
return RegionBenefit;
}
/// For the \p OutputCanon number passed in find the value represented by this
/// canonical number. If it is from a PHINode, we pick the first incoming
/// value and return that Value instead.
///
/// \param Region - The OutlinableRegion to get the Value from.
/// \param OutputCanon - The canonical number to find the Value from.
/// \returns The Value represented by a canonical number \p OutputCanon in \p
/// Region.
static Value *findOutputValueInRegion(OutlinableRegion &Region,
unsigned OutputCanon) {
OutlinableGroup &CurrentGroup = *Region.Parent;
// If the value is greater than the value in the tracker, we have a
// PHINode and will instead use one of the incoming values to find the
// type.
if (OutputCanon > CurrentGroup.PHINodeGVNTracker) {
auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon);
assert(It != CurrentGroup.PHINodeGVNToGVNs.end() &&
"Could not find GVN set for PHINode number!");
assert(It->second.second.size() > 0 && "PHINode does not have any values!");
OutputCanon = *It->second.second.begin();
}
Optional<unsigned> OGVN = Region.Candidate->fromCanonicalNum(OutputCanon);
assert(OGVN.hasValue() && "Could not find GVN for Canonical Number?");
Optional<Value *> OV = Region.Candidate->fromGVN(*OGVN);
assert(OV.hasValue() && "Could not find value for GVN?");
return *OV;
}
InstructionCost
IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) {
InstructionCost OverallCost = 0;
for (OutlinableRegion *Region : CurrentGroup.Regions) {
TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
// Each output incurs a load after the call, so we add that to the cost.
for (unsigned OutputCanon : Region->GVNStores) {
Value *V = findOutputValueInRegion(*Region, OutputCanon);
InstructionCost LoadCost =
TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
TargetTransformInfo::TCK_CodeSize);
LLVM_DEBUG(dbgs() << "Adding: " << LoadCost
<< " instructions to cost for output of type "
<< *V->getType() << "\n");
OverallCost += LoadCost;
}
}
return OverallCost;
}
/// Find the extra instructions needed to handle any output values for the
/// region.
///
/// \param [in] M - The Module to outline from.
/// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze.
/// \param [in] TTI - The TargetTransformInfo used to collect information for
/// new instruction costs.
/// \returns the additional cost to handle the outputs.
static InstructionCost findCostForOutputBlocks(Module &M,
OutlinableGroup &CurrentGroup,
TargetTransformInfo &TTI) {
InstructionCost OutputCost = 0;
unsigned NumOutputBranches = 0;
OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0];
IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate;
DenseSet<BasicBlock *> CandidateBlocks;
Candidate.getBasicBlocks(CandidateBlocks);
// Count the number of different output branches that point to blocks outside
// of the region.
DenseSet<BasicBlock *> FoundBlocks;
for (IRInstructionData &ID : Candidate) {
if (!isa<BranchInst>(ID.Inst))
continue;
for (Value *V : ID.OperVals) {
BasicBlock *BB = static_cast<BasicBlock *>(V);
DenseSet<BasicBlock *>::iterator CBIt = CandidateBlocks.find(BB);
if (CBIt != CandidateBlocks.end() || FoundBlocks.contains(BB))
continue;
FoundBlocks.insert(BB);
NumOutputBranches++;
}
}
CurrentGroup.BranchesToOutside = NumOutputBranches;
for (const ArrayRef<unsigned> &OutputUse :
CurrentGroup.OutputGVNCombinations) {
for (unsigned OutputCanon : OutputUse) {
Value *V = findOutputValueInRegion(FirstRegion, OutputCanon);
InstructionCost StoreCost =
TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
TargetTransformInfo::TCK_CodeSize);
// An instruction cost is added for each store set that needs to occur for
// various output combinations inside the function, plus a branch to
// return to the exit block.
LLVM_DEBUG(dbgs() << "Adding: " << StoreCost
<< " instructions to cost for output of type "
<< *V->getType() << "\n");
OutputCost += StoreCost * NumOutputBranches;
}
InstructionCost BranchCost =
TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for"
<< " a branch instruction\n");
OutputCost += BranchCost * NumOutputBranches;
}
// If there is more than one output scheme, we must have a comparison and
// branch for each different item in the switch statement.
if (CurrentGroup.OutputGVNCombinations.size() > 1) {
InstructionCost ComparisonCost = TTI.getCmpSelInstrCost(
Instruction::ICmp, Type::getInt32Ty(M.getContext()),
Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE,
TargetTransformInfo::TCK_CodeSize);
InstructionCost BranchCost =
TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size();
InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks;
LLVM_DEBUG(dbgs() << "Adding: " << TotalCost
<< " instructions for each switch case for each different"
<< " output path in a function\n");
OutputCost += TotalCost * NumOutputBranches;
}
return OutputCost;
}
void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) {
InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup);
CurrentGroup.Benefit += RegionBenefit;
LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n");
InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup);
CurrentGroup.Cost += OutputReloadCost;
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
InstructionCost AverageRegionBenefit =
RegionBenefit / CurrentGroup.Regions.size();
unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size();
unsigned NumRegions = CurrentGroup.Regions.size();
TargetTransformInfo &TTI =
getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction());
// We add one region to the cost once, to account for the instructions added
// inside of the newly created function.
LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit
<< " instructions to cost for body of new function.\n");
CurrentGroup.Cost += AverageRegionBenefit;
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
// For each argument, we must add an instruction for loading the argument
// out of the register and into a value inside of the newly outlined function.
LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
<< " instructions to cost for each argument in the new"
<< " function.\n");
CurrentGroup.Cost +=
OverallArgumentNum * TargetTransformInfo::TCC_Basic;
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
// Each argument needs to either be loaded into a register or onto the stack.
// Some arguments will only be loaded into the stack once the argument
// registers are filled.
LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
<< " instructions to cost for each argument in the new"
<< " function " << NumRegions << " times for the "
<< "needed argument handling at the call site.\n");
CurrentGroup.Cost +=
2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions;
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI);
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
}
void IROutliner::updateOutputMapping(OutlinableRegion &Region,
ArrayRef<Value *> Outputs,
LoadInst *LI) {
// For and load instructions following the call
Value *Operand = LI->getPointerOperand();
Optional<unsigned> OutputIdx = None;
// Find if the operand it is an output register.
for (unsigned ArgIdx = Region.NumExtractedInputs;
ArgIdx < Region.Call->arg_size(); ArgIdx++) {
if (Operand == Region.Call->getArgOperand(ArgIdx)) {
OutputIdx = ArgIdx - Region.NumExtractedInputs;
break;
}
}
// If we found an output register, place a mapping of the new value
// to the original in the mapping.
if (!OutputIdx.hasValue())
return;
if (OutputMappings.find(Outputs[OutputIdx.getValue()]) ==
OutputMappings.end()) {
LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to "
<< *Outputs[OutputIdx.getValue()] << "\n");
OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.getValue()]));
} else {
Value *Orig = OutputMappings.find(Outputs[OutputIdx.getValue()])->second;
LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to "
<< *Outputs[OutputIdx.getValue()] << "\n");
OutputMappings.insert(std::make_pair(LI, Orig));
}
}
bool IROutliner::extractSection(OutlinableRegion &Region) {
SetVector<Value *> ArgInputs, Outputs, SinkCands;
assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!");
BasicBlock *InitialStart = Region.StartBB;
Function *OrigF = Region.StartBB->getParent();
CodeExtractorAnalysisCache CEAC(*OrigF);
Region.ExtractedFunction =
Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs);
// If the extraction was successful, find the BasicBlock, and reassign the
// OutlinableRegion blocks
if (!Region.ExtractedFunction) {
LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB
<< "\n");
Region.reattachCandidate();
return false;
}
// Get the block containing the called branch, and reassign the blocks as
// necessary. If the original block still exists, it is because we ended on
// a branch instruction, and so we move the contents into the block before
// and assign the previous block correctly.
User *InstAsUser = Region.ExtractedFunction->user_back();
BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent();
Region.PrevBB = RewrittenBB->getSinglePredecessor();
assert(Region.PrevBB && "PrevBB is nullptr?");
if (Region.PrevBB == InitialStart) {
BasicBlock *NewPrev = InitialStart->getSinglePredecessor();
Instruction *BI = NewPrev->getTerminator();
BI->eraseFromParent();
moveBBContents(*InitialStart, *NewPrev);
Region.PrevBB = NewPrev;
InitialStart->eraseFromParent();
}
Region.StartBB = RewrittenBB;
Region.EndBB = RewrittenBB;
// The sequences of outlinable regions has now changed. We must fix the
// IRInstructionDataList for consistency. Although they may not be illegal
// instructions, they should not be compared with anything else as they
// should not be outlined in this round. So marking these as illegal is
// allowed.
IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
Instruction *BeginRewritten = &*RewrittenBB->begin();
Instruction *EndRewritten = &*RewrittenBB->begin();
Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData(
*BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL);
Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData(
*EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL);
// Insert the first IRInstructionData of the new region in front of the
// first IRInstructionData of the IRSimilarityCandidate.
IDL->insert(Region.Candidate->begin(), *Region.NewFront);
// Insert the first IRInstructionData of the new region after the
// last IRInstructionData of the IRSimilarityCandidate.
IDL->insert(Region.Candidate->end(), *Region.NewBack);
// Remove the IRInstructionData from the IRSimilarityCandidate.
IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end()));
assert(RewrittenBB != nullptr &&
"Could not find a predecessor after extraction!");
// Iterate over the new set of instructions to find the new call
// instruction.
for (Instruction &I : *RewrittenBB)
if (CallInst *CI = dyn_cast<CallInst>(&I)) {
if (Region.ExtractedFunction == CI->getCalledFunction())
Region.Call = CI;
} else if (LoadInst *LI = dyn_cast<LoadInst>(&I))
updateOutputMapping(Region, Outputs.getArrayRef(), LI);
Region.reattachCandidate();
return true;
}
unsigned IROutliner::doOutline(Module &M) {
// Find the possible similarity sections.
InstructionClassifier.EnableBranches = !DisableBranches;
InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls;
InstructionClassifier.EnableIntrinsics = !DisableIntrinsics;
IRSimilarityIdentifier &Identifier = getIRSI(M);
SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity();
// Sort them by size of extracted sections
unsigned OutlinedFunctionNum = 0;
// If we only have one SimilarityGroup in SimilarityCandidates, we do not have
// to sort them by the potential number of instructions to be outlined
if (SimilarityCandidates.size() > 1)
llvm::stable_sort(SimilarityCandidates,
[](const std::vector<IRSimilarityCandidate> &LHS,
const std::vector<IRSimilarityCandidate> &RHS) {
return LHS[0].getLength() * LHS.size() >
RHS[0].getLength() * RHS.size();
});
// Creating OutlinableGroups for each SimilarityCandidate to be used in
// each of the following for loops to avoid making an allocator.
std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size());
DenseSet<unsigned> NotSame;
std::vector<OutlinableGroup *> NegativeCostGroups;
std::vector<OutlinableRegion *> OutlinedRegions;
// Iterate over the possible sets of similarity.
unsigned PotentialGroupIdx = 0;
for (SimilarityGroup &CandidateVec : SimilarityCandidates) {
OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++];
// Remove entries that were previously outlined
pruneIncompatibleRegions(CandidateVec, CurrentGroup);
// We pruned the number of regions to 0 to 1, meaning that it's not worth
// trying to outlined since there is no compatible similar instance of this
// code.
if (CurrentGroup.Regions.size() < 2)
continue;
// Determine if there are any values that are the same constant throughout
// each section in the set.
NotSame.clear();
CurrentGroup.findSameConstants(NotSame);
if (CurrentGroup.IgnoreGroup)
continue;
// Create a CodeExtractor for each outlinable region. Identify inputs and
// outputs for each section using the code extractor and create the argument
// types for the Aggregate Outlining Function.
OutlinedRegions.clear();
for (OutlinableRegion *OS : CurrentGroup.Regions) {
// Break the outlinable region out of its parent BasicBlock into its own
// BasicBlocks (see function implementation).
OS->splitCandidate();
// There's a chance that when the region is split, extra instructions are
// added to the region. This makes the region no longer viable
// to be split, so we ignore it for outlining.
if (!OS->CandidateSplit)
continue;
SmallVector<BasicBlock *> BE;
DenseSet<BasicBlock *> BlocksInRegion;
OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
OS->CE = new (ExtractorAllocator.Allocate())
CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
false, "outlined");
findAddInputsOutputs(M, *OS, NotSame);
if (!OS->IgnoreRegion)
OutlinedRegions.push_back(OS);
// We recombine the blocks together now that we have gathered all the
// needed information.
OS->reattachCandidate();
}
CurrentGroup.Regions = std::move(OutlinedRegions);
if (CurrentGroup.Regions.empty())
continue;
CurrentGroup.collectGVNStoreSets(M);
if (CostModel)
findCostBenefit(M, CurrentGroup);
// If we are adhering to the cost model, skip those groups where the cost
// outweighs the benefits.
if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) {
OptimizationRemarkEmitter &ORE =
getORE(*CurrentGroup.Regions[0]->Candidate->getFunction());
ORE.emit([&]() {
IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize",
C->frontInstruction());
R << "did not outline "
<< ore::NV(std::to_string(CurrentGroup.Regions.size()))
<< " regions due to estimated increase of "
<< ore::NV("InstructionIncrease",
CurrentGroup.Cost - CurrentGroup.Benefit)
<< " instructions at locations ";
interleave(
CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
[&R](OutlinableRegion *Region) {
R << ore::NV(
"DebugLoc",
Region->Candidate->frontInstruction()->getDebugLoc());
},
[&R]() { R << " "; });
return R;
});
continue;
}
NegativeCostGroups.push_back(&CurrentGroup);
}
ExtractorAllocator.DestroyAll();
if (NegativeCostGroups.size() > 1)
stable_sort(NegativeCostGroups,
[](const OutlinableGroup *LHS, const OutlinableGroup *RHS) {
return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost;
});
std::vector<Function *> FuncsToRemove;
for (OutlinableGroup *CG : NegativeCostGroups) {
OutlinableGroup &CurrentGroup = *CG;
OutlinedRegions.clear();
for (OutlinableRegion *Region : CurrentGroup.Regions) {
// We check whether our region is compatible with what has already been
// outlined, and whether we need to ignore this item.
if (!isCompatibleWithAlreadyOutlinedCode(*Region))
continue;
OutlinedRegions.push_back(Region);
}
if (OutlinedRegions.size() < 2)
continue;
// Reestimate the cost and benefit of the OutlinableGroup. Continue only if
// we are still outlining enough regions to make up for the added cost.
CurrentGroup.Regions = std::move(OutlinedRegions);
if (CostModel) {
CurrentGroup.Benefit = 0;
CurrentGroup.Cost = 0;
findCostBenefit(M, CurrentGroup);
if (CurrentGroup.Cost >= CurrentGroup.Benefit)
continue;
}
OutlinedRegions.clear();
for (OutlinableRegion *Region : CurrentGroup.Regions) {
Region->splitCandidate();
if (!Region->CandidateSplit)
continue;
OutlinedRegions.push_back(Region);
}
CurrentGroup.Regions = std::move(OutlinedRegions);
if (CurrentGroup.Regions.size() < 2) {
for (OutlinableRegion *R : CurrentGroup.Regions)
R->reattachCandidate();
continue;
}
LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost
<< " and benefit " << CurrentGroup.Benefit << "\n");
// Create functions out of all the sections, and mark them as outlined.
OutlinedRegions.clear();
for (OutlinableRegion *OS : CurrentGroup.Regions) {
SmallVector<BasicBlock *> BE;
DenseSet<BasicBlock *> BlocksInRegion;
OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
OS->CE = new (ExtractorAllocator.Allocate())
CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
false, "outlined");
bool FunctionOutlined = extractSection(*OS);
if (FunctionOutlined) {
unsigned StartIdx = OS->Candidate->getStartIdx();
unsigned EndIdx = OS->Candidate->getEndIdx();
for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
Outlined.insert(Idx);
OutlinedRegions.push_back(OS);
}
}
LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size()
<< " with benefit " << CurrentGroup.Benefit
<< " and cost " << CurrentGroup.Cost << "\n");
CurrentGroup.Regions = std::move(OutlinedRegions);
if (CurrentGroup.Regions.empty())
continue;
OptimizationRemarkEmitter &ORE =
getORE(*CurrentGroup.Regions[0]->Call->getFunction());
ORE.emit([&]() {
IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst);
R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size()))
<< " regions with decrease of "
<< ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost)
<< " instructions at locations ";
interleave(
CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
[&R](OutlinableRegion *Region) {
R << ore::NV("DebugLoc",
Region->Candidate->frontInstruction()->getDebugLoc());
},
[&R]() { R << " "; });
return R;
});
deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove,
OutlinedFunctionNum);
}
for (Function *F : FuncsToRemove)
F->eraseFromParent();
return OutlinedFunctionNum;
}
bool IROutliner::run(Module &M) {
CostModel = !NoCostModel;
OutlineFromLinkODRs = EnableLinkOnceODRIROutlining;
return doOutline(M) > 0;
}
// Pass Manager Boilerplate
namespace {
class IROutlinerLegacyPass : public ModulePass {
public:
static char ID;
IROutlinerLegacyPass() : ModulePass(ID) {
initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<IRSimilarityIdentifierWrapperPass>();
}
bool runOnModule(Module &M) override;
};
} // namespace
bool IROutlinerLegacyPass::runOnModule(Module &M) {
if (skipModule(M))
return false;
std::unique_ptr<OptimizationRemarkEmitter> ORE;
auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & {
ORE.reset(new OptimizationRemarkEmitter(&F));
return *ORE.get();
};
auto GTTI = [this](Function &F) -> TargetTransformInfo & {
return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
};
auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & {
return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI();
};
return IROutliner(GTTI, GIRSI, GORE).run(M);
}
PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) {
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
std::function<TargetTransformInfo &(Function &)> GTTI =
[&FAM](Function &F) -> TargetTransformInfo & {
return FAM.getResult<TargetIRAnalysis>(F);
};
std::function<IRSimilarityIdentifier &(Module &)> GIRSI =
[&AM](Module &M) -> IRSimilarityIdentifier & {
return AM.getResult<IRSimilarityAnalysis>(M);
};
std::unique_ptr<OptimizationRemarkEmitter> ORE;
std::function<OptimizationRemarkEmitter &(Function &)> GORE =
[&ORE](Function &F) -> OptimizationRemarkEmitter & {
ORE.reset(new OptimizationRemarkEmitter(&F));
return *ORE.get();
};
if (IROutliner(GTTI, GIRSI, GORE).run(M))
return PreservedAnalyses::none();
return PreservedAnalyses::all();
}
char IROutlinerLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,
false)
INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,
false)
ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); }
|