1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
|
# Defining Dialect Attributes and Types
This document is a quickstart to defining dialect specific extensions to the
[attribute](../LangRef.md/#attributes) and [type](../LangRef.md/#type-system) systems in
MLIR. The main part of this tutorial focuses on defining types, but the
instructions are nearly identical for defining attributes.
See [MLIR specification](../LangRef.md) for more information about MLIR, the
structure of the IR, operations, etc.
## Types
Types in MLIR (like attributes, locations, and many other things) are
value-typed. This means that instances of `Type` are passed around by-value, as
opposed to by-pointer or by-reference. The `Type` class in itself acts as a
wrapper around an internal storage object that is uniqued within an instance of
an `MLIRContext`.
### Defining the type class
As described above, `Type` objects in MLIR are value-typed and rely on having an
implicit internal storage object that holds the actual data for the type. When
defining a new `Type` it isn't always necessary to define a new storage class.
So before defining the derived `Type`, it's important to know which of the two
classes of `Type` we are defining:
Some types are _singleton_ in nature, meaning they have no parameters and only
ever have one instance, like the [`index` type](../Dialects/Builtin.md/#indextype).
Other types are _parametric_, and contain additional information that
differentiates different instances of the same `Type`. For example the
[`integer` type](../Dialects/Builtin.md/#integertype) contains a bitwidth, with `i8` and
`i16` representing different instances of
[`integer` type](../Dialects/Builtin.md/#integertype). _Parametric_ may also contain a
mutable component, which can be used, for example, to construct self-referring
recursive types. The mutable component _cannot_ be used to differentiate
instances of a type class, so usually such types contain other parametric
components that serve to identify them.
#### Singleton types
For singleton types, we can jump straight into defining the derived type class.
Given that only one instance of such types may exist, there is no need to
provide our own storage class.
```c++
/// This class defines a simple parameterless singleton type. All derived types
/// must inherit from the CRTP class 'Type::TypeBase'. It takes as template
/// parameters the concrete type (SimpleType), the base class to use (Type),
/// the internal storage class (the default TypeStorage here), and an optional
/// set of type traits and interfaces(detailed below).
class SimpleType : public Type::TypeBase<SimpleType, Type, TypeStorage> {
public:
/// Inherit some necessary constructors from 'TypeBase'.
using Base::Base;
/// The `TypeBase` class provides the following utility methods for
/// constructing instances of this type:
/// static SimpleType get(MLIRContext *ctx);
};
```
#### Parametric types
Parametric types are those with additional construction or uniquing constraints,
that allow for representing multiple different instances of a single class. As
such, these types require defining a type storage class to contain the
parametric data.
##### Defining a type storage
Type storage objects contain all of the data necessary to construct and unique a
parametric type instance. The storage classes must obey the following:
* Inherit from the base type storage class `TypeStorage`.
* Define a type alias, `KeyTy`, that maps to a type that uniquely identifies
an instance of the derived type.
* Provide a construction method that is used to allocate a new instance of the
storage class.
- `static Storage *construct(TypeStorageAllocator &, const KeyTy &key)`
* Provide a comparison method between the storage and `KeyTy`.
- `bool operator==(const KeyTy &) const`
* Provide a method to generate the `KeyTy` from a list of arguments passed to
the uniquer. (Note: This is only necessary if the `KeyTy` cannot be default
constructed from these arguments).
- `static KeyTy getKey(Args...&& args)`
* Provide a method to hash an instance of the `KeyTy`. (Note: This is not
necessary if an `llvm::DenseMapInfo<KeyTy>` specialization exists)
- `static llvm::hash_code hashKey(const KeyTy &)`
Let's look at an example:
```c++
/// Here we define a storage class for a ComplexType, that holds a non-zero
/// integer and an integer type.
struct ComplexTypeStorage : public TypeStorage {
ComplexTypeStorage(unsigned nonZeroParam, Type integerType)
: nonZeroParam(nonZeroParam), integerType(integerType) {}
/// The hash key for this storage is a pair of the integer and type params.
using KeyTy = std::pair<unsigned, Type>;
/// Define the comparison function for the key type.
bool operator==(const KeyTy &key) const {
return key == KeyTy(nonZeroParam, integerType);
}
/// Define a hash function for the key type.
/// Note: This isn't necessary because std::pair, unsigned, and Type all have
/// hash functions already available.
static llvm::hash_code hashKey(const KeyTy &key) {
return llvm::hash_combine(key.first, key.second);
}
/// Define a construction function for the key type.
/// Note: This isn't necessary because KeyTy can be directly constructed with
/// the given parameters.
static KeyTy getKey(unsigned nonZeroParam, Type integerType) {
return KeyTy(nonZeroParam, integerType);
}
/// Define a construction method for creating a new instance of this storage.
static ComplexTypeStorage *construct(TypeStorageAllocator &allocator,
const KeyTy &key) {
return new (allocator.allocate<ComplexTypeStorage>())
ComplexTypeStorage(key.first, key.second);
}
/// The parametric data held by the storage class.
unsigned nonZeroParam;
Type integerType;
};
```
##### Type class definition
Now that the storage class has been created, the derived type class can be
defined. This structure is similar to [singleton types](#singleton-types),
except that a bit more of the functionality provided by `Type::TypeBase` is put
to use.
```c++
/// This class defines a parametric type. All derived types must inherit from
/// the CRTP class 'Type::TypeBase'. It takes as template parameters the
/// concrete type (ComplexType), the base class to use (Type), the storage
/// class (ComplexTypeStorage), and an optional set of traits and
/// interfaces(detailed below).
class ComplexType : public Type::TypeBase<ComplexType, Type,
ComplexTypeStorage> {
public:
/// Inherit some necessary constructors from 'TypeBase'.
using Base::Base;
/// This method is used to get an instance of the 'ComplexType'. This method
/// asserts that all of the construction invariants were satisfied. To
/// gracefully handle failed construction, getChecked should be used instead.
static ComplexType get(unsigned param, Type type) {
// Call into a helper 'get' method in 'TypeBase' to get a uniqued instance
// of this type. All parameters to the storage class are passed after the
// context.
return Base::get(type.getContext(), param, type);
}
/// This method is used to get an instance of the 'ComplexType'. If any of the
/// construction invariants are invalid, errors are emitted with the provided
/// `emitError` function and a null type is returned.
/// Note: This method is completely optional.
static ComplexType getChecked(function_ref<InFlightDiagnostic()> emitError,
unsigned param, Type type) {
// Call into a helper 'getChecked' method in 'TypeBase' to get a uniqued
// instance of this type. All parameters to the storage class are passed
// after the context.
return Base::getChecked(emitError, type.getContext(), param, type);
}
/// This method is used to verify the construction invariants passed into the
/// 'get' and 'getChecked' methods. Note: This method is completely optional.
static LogicalResult verify(function_ref<InFlightDiagnostic()> emitError,
unsigned param, Type type) {
// Our type only allows non-zero parameters.
if (param == 0)
return emitError() << "non-zero parameter passed to 'ComplexType'";
// Our type also expects an integer type.
if (!type.isa<IntegerType>())
return emitError() << "non integer-type passed to 'ComplexType'";
return success();
}
/// Return the parameter value.
unsigned getParameter() {
// 'getImpl' returns a pointer to our internal storage instance.
return getImpl()->nonZeroParam;
}
/// Return the integer parameter type.
IntegerType getParameterType() {
// 'getImpl' returns a pointer to our internal storage instance.
return getImpl()->integerType;
}
};
```
#### Mutable types
Types with a mutable component are special instances of parametric types that
allow for mutating certain parameters after construction.
##### Defining a type storage
In addition to the requirements for the type storage class for parametric types,
the storage class for types with a mutable component must additionally obey the
following.
* The mutable component must not participate in the storage `KeyTy`.
* Provide a mutation method that is used to modify an existing instance of the
storage. This method modifies the mutable component based on arguments,
using `allocator` for any newly dynamically-allocated storage, and indicates
whether the modification was successful.
- `LogicalResult mutate(StorageAllocator &allocator, Args ...&& args)`
Let's define a simple storage for recursive types, where a type is identified by
its name and may contain another type including itself.
```c++
/// Here we define a storage class for a RecursiveType that is identified by its
/// name and contains another type.
struct RecursiveTypeStorage : public TypeStorage {
/// The type is uniquely identified by its name. Note that the contained type
/// is _not_ a part of the key.
using KeyTy = StringRef;
/// Construct the storage from the type name. Explicitly initialize the
/// containedType to nullptr, which is used as marker for the mutable
/// component being not yet initialized.
RecursiveTypeStorage(StringRef name) : name(name), containedType(nullptr) {}
/// Define the comparison function.
bool operator==(const KeyTy &key) const { return key == name; }
/// Define a construction method for creating a new instance of the storage.
static RecursiveTypeStorage *construct(StorageAllocator &allocator,
const KeyTy &key) {
// Note that the key string is copied into the allocator to ensure it
// remains live as long as the storage itself.
return new (allocator.allocate<RecursiveTypeStorage>())
RecursiveTypeStorage(allocator.copyInto(key));
}
/// Define a mutation method for changing the type after it is created. In
/// many cases, we only want to set the mutable component once and reject
/// any further modification, which can be achieved by returning failure from
/// this function.
LogicalResult mutate(StorageAllocator &, Type body) {
// If the contained type has been initialized already, and the call tries
// to change it, reject the change.
if (containedType && containedType != body)
return failure();
// Change the body successfully.
containedType = body;
return success();
}
StringRef name;
Type containedType;
};
```
##### Type class definition
Having defined the storage class, we can define the type class itself.
`Type::TypeBase` provides a `mutate` method that forwards its arguments to the
`mutate` method of the storage and ensures the mutation happens safely.
```c++
class RecursiveType : public Type::TypeBase<RecursiveType, Type,
RecursiveTypeStorage> {
public:
/// Inherit parent constructors.
using Base::Base;
/// Creates an instance of the Recursive type. This only takes the type name
/// and returns the type with uninitialized body.
static RecursiveType get(MLIRContext *ctx, StringRef name) {
// Call into the base to get a uniqued instance of this type. The parameter
// (name) is passed after the context.
return Base::get(ctx, name);
}
/// Now we can change the mutable component of the type. This is an instance
/// method callable on an already existing RecursiveType.
void setBody(Type body) {
// Call into the base to mutate the type.
LogicalResult result = Base::mutate(body);
// Most types expect the mutation to always succeed, but types can implement
// custom logic for handling mutation failures.
assert(succeeded(result) &&
"attempting to change the body of an already-initialized type");
// Avoid unused-variable warning when building without assertions.
(void) result;
}
/// Returns the contained type, which may be null if it has not been
/// initialized yet.
Type getBody() {
return getImpl()->containedType;
}
/// Returns the name.
StringRef getName() {
return getImpl()->name;
}
};
```
### Registering types with a Dialect
Once the dialect types have been defined, they must then be registered with a
`Dialect`. This is done via a similar mechanism to
[operations](../LangRef.md/#operations), with the `addTypes` method. The one
distinct difference with operations, is that when a type is registered the
definition of its storage class must be visible.
```c++
struct MyDialect : public Dialect {
MyDialect(MLIRContext *context) : Dialect(/*name=*/"mydialect", context) {
/// Add these defined types to the dialect.
addTypes<SimpleType, ComplexType, RecursiveType>();
}
};
```
### Parsing and Printing
As a final step after registration, a dialect must override the `printType` and
`parseType` hooks. These enable native support for round-tripping the type in
the textual `.mlir`.
```c++
class MyDialect : public Dialect {
public:
/// Parse an instance of a type registered to the dialect.
Type parseType(DialectAsmParser &parser) const override;
/// Print an instance of a type registered to the dialect.
void printType(Type type, DialectAsmPrinter &printer) const override;
};
```
These methods take an instance of a high-level parser or printer that allows for
easily implementing the necessary functionality. As described in the
[MLIR language reference](../LangRef.md/#dialect-types), dialect types are
generally represented as: `! dialect-namespace < type-data >`, with a pretty
form available under certain circumstances. The responsibility of our parser and
printer is to provide the `type-data` bits.
### Traits
Similarly to operations, `Type` classes may attach `Traits` that provide
additional mixin methods and other data. `Trait` classes may be specified via
the trailing template argument of the `Type::TypeBase` class. See the main
[`Trait`](../Traits.md) documentation for more information on defining and using
traits.
### Interfaces
Similarly to operations, `Type` classes may attach `Interfaces` to provide an
abstract interface into the type. See the main [`Interface`](../Interfaces.md)
documentation for more information on defining and using interfaces.
## Attributes
As stated in the introduction, the process for defining dialect attributes is
nearly identical to that of defining dialect types. That key difference is that
the things named `*Type` are generally now named `*Attr`.
* `Type::TypeBase` -> `Attribute::AttrBase`
* `TypeStorageAllocator` -> `AttributeStorageAllocator`
* `addTypes` -> `addAttributes`
Aside from that, all of the interfaces for uniquing and storage construction are
all the same.
## Defining Custom Parsers and Printers using Assembly Formats
Attributes and types defined in ODS with a mnemonic can define an
`assemblyFormat` to declaratively describe custom parsers and printers. The
assembly format consists of literals, variables, and directives.
* A literal is a keyword or valid punctuation enclosed in backticks, e.g.
`` `keyword` `` or `` `<` ``.
* A variable is a parameter name preceeded by a dollar sign, e.g. `$param0`,
which captures one attribute or type parameter.
* A directive is a keyword followed by an optional argument list that defines
special parser and printer behaviour.
```tablegen
// An example type with an assembly format.
def MyType : TypeDef<My_Dialect, "MyType"> {
// Define a mnemonic to allow the dialect's parser hook to call into the
// generated parser.
let mnemonic = "my_type";
// Define two parameters whose C++ types are indicated in string literals.
let parameters = (ins "int":$count, "AffineMap":$map);
// Define the assembly format. Surround the format with less `<` and greater
// `>` so that MLIR's printers use the pretty format.
let assemblyFormat = "`<` $count `,` `map` `=` $map `>`";
}
```
The declarative assembly format for `MyType` results in the following format
in the IR:
```mlir
!my_dialect.my_type<42, map = affine_map<(i, j) -> (j, i)>
```
### Parameter Parsing and Printing
For many basic parameter types, no additional work is needed to define how
these parameters are parsed or printed.
* The default printer for any parameter is `$_printer << $_self`,
where `$_self` is the C++ value of the parameter and `$_printer` is an
`AsmPrinter`.
* The default parser for a parameter is
`FieldParser<$cppClass>::parse($_parser)`, where `$cppClass` is the C++ type
of the parameter and `$_parser` is an `AsmParser`.
Printing and parsing behaviour can be added to additional C++ types by
overloading these functions or by defining a `parser` and `printer` in an ODS
parameter class.
Example of overloading:
```c++
using MyParameter = std::pair<int, int>;
AsmPrinter &operator<<(AsmPrinter &printer, MyParameter param) {
printer << param.first << " * " << param.second;
}
template <> struct FieldParser<MyParameter> {
static FailureOr<MyParameter> parse(AsmParser &parser) {
int a, b;
if (parser.parseInteger(a) || parser.parseStar() ||
parser.parseInteger(b))
return failure();
return MyParameter(a, b);
}
};
```
Example of using ODS parameter classes:
```
def MyParameter : TypeParameter<"std::pair<int, int>", "pair of ints"> {
let printer = [{ $_printer << $_self.first << " * " << $_self.second }];
let parser = [{ [&] -> FailureOr<std::pair<int, int>> {
int a, b;
if ($_parser.parseInteger(a) || $_parser.parseStar() ||
$_parser.parseInteger(b))
return failure();
return std::make_pair(a, b);
}() }];
}
```
A type using this parameter with the assembly format `` `<` $myParam `>` ``
will look as follows in the IR:
```mlir
!my_dialect.my_type<42 * 24>
```
#### Non-POD Parameters
Parameters that aren't plain-old-data (e.g. references) may need to define a
`cppStorageType` to contain the data until it is copied into the allocator.
For example, `StringRefParameter` uses `std::string` as its storage type,
whereas `ArrayRefParameter` uses `SmallVector` as its storage type. The parsers
for these parameters are expected to return `FailureOr<$cppStorageType>`.
### Assembly Format Directives
Attribute and type assembly formats have the following directives:
* `params`: capture all parameters of an attribute or type.
* `qualified`: mark a parameter to be printed with its leading dialect and
mnemonic.
* `struct`: generate a "struct-like" parser and printer for a list of
key-value pairs.
#### `params` Directive
This directive is used to refer to all parameters of an attribute or type.
When used as a top-level directive, `params` generates a parser and printer for
a comma-separated list of the parameters. For example:
```tablegen
def MyPairType : TypeDef<My_Dialect, "MyPairType"> {
let parameters = (ins "int":$a, "int":$b);
let mnemonic = "pair";
let assemblyFormat = "`<` params `>`";
}
```
In the IR, this type will appear as:
```mlir
!my_dialect.pair<42, 24>
```
The `params` directive can also be passed to other directives, such as `struct`,
as an argument that refers to all parameters in place of explicitly listing all
parameters as variables.
#### `qualified` Directive
This directive can be used to wrap attribute or type parameters such that they
are printed in a fully qualified form, i.e., they include the dialect name and
mnemonic prefix.
For example:
```tablegen
def OuterType : TypeDef<My_Dialect, "MyOuterType"> {
let parameters = (ins MyPairType:$inner);
let mnemonic = "outer";
let assemblyFormat = "`<` pair `:` $inner `>`";
}
def OuterQualifiedType : TypeDef<My_Dialect, "MyOuterQualifiedType"> {
let parameters = (ins MyPairType:$inner);
let mnemonic = "outer_qual";
let assemblyFormat = "`<` pair `:` qualified($inner) `>`";
}
```
In the IR, the types will appear as:
```mlir
!my_dialect.outer<pair : <42, 24>>
!my_dialect.outer_qual<pair : !mydialect.pair<42, 24>>
```
#### `struct` Directive
The `struct` directive accepts a list of variables to capture and will generate
a parser and printer for a comma-separated list of key-value pairs. The
variables are printed in the order they are specified in the argument list **but
can be parsed in any order**. For example:
```tablegen
def MyStructType : TypeDef<My_Dialect, "MyStructType"> {
let parameters = (ins StringRefParameter<>:$sym_name,
"int":$a, "int":$b, "int":$c);
let mnemonic = "struct";
let assemblyFormat = "`<` $sym_name `->` struct($a, $b, $c) `>`";
}
```
In the IR, this type can appear with any permutation of the order of the
parameters captured in the directive.
```mlir
!my_dialect.struct<"foo" -> a = 1, b = 2, c = 3>
!my_dialect.struct<"foo" -> b = 2, c = 3, a = 1>
```
Passing `params` as the only argument to `struct` makes the directive capture
all the parameters of the attribute or type. For the same type above, an
assembly format of `` `<` struct(params) `>` `` will result in:
```mlir
!my_dialect.struct<b = 2, sym_name = "foo", c = 3, a = 1>
```
The order in which the parameters are printed is the order in which they are
declared in the attribute's or type's `parameter` list.
|