File: assignments.py

package info (click to toggle)
llvm-toolchain-14 1%3A14.0.6-20
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,496,436 kB
  • sloc: cpp: 5,593,990; ansic: 986,873; asm: 585,869; python: 184,223; objc: 72,530; lisp: 31,119; f90: 27,793; javascript: 9,780; pascal: 9,762; sh: 9,482; perl: 7,468; ml: 5,432; awk: 3,523; makefile: 2,547; xml: 953; cs: 573; fortran: 567
file content (88 lines) | stat: -rw-r--r-- 2,456 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# RUN: %PYTHON -m mlir.dialects.linalg.opdsl.dump_oplib --file %s | FileCheck %s

from mlir.dialects.linalg.opdsl.lang import *


# CHECK: ---
# CHECK-LABEL: matmul
# CHECK: assignments:
# CHECK:  -
# CHECK:    arg: C
# CHECK:    value:
# CHECK:      arith_fn:
# CHECK:        fn_name: add
# CHECK:        operands:
# CHECK:          arith_fn:
# CHECK:            fn_name: mul
# CHECK:            operands:
# CHECK:              type_fn:
# CHECK:                type_var: U
# CHECK:                operands:
# CHECK:                  scalar_arg: A
# CHECK:              type_fn:
# CHECK:                type_var: U
# CHECK:                operands:
# CHECK:                  scalar_arg: B
@linalg_structured_op
def matmul(
    A=TensorDef(T, S.M, S.K),
    B=TensorDef(T, S.K, S.N),
    C=TensorDef(U, S.M, S.N, output=True)):
  C[D.m, D.n] += TypeFn.cast(U, A[D.m, D.k]) * TypeFn.cast(U, B[D.k, D.n])


# CHECK: ---
# CHECK-LABEL: constants
# CHECK: assignments:
# CHECK:  -
# CHECK:    arg: O
# CHECK:      arith_fn:
# CHECK:        fn_name: sub
# CHECK:        operands:
# CHECK:          arith_fn:
# CHECK:            fn_name: add
# CHECK:            operands:
# CHECK:              type_fn:
# CHECK:                type_var: T
# CHECK:                operands:
# CHECK:                  scalar_const: '3.1415926535897931 : f64'
# CHECK:              type_fn:
# CHECK:                type_var: T
# CHECK:                operands:
# CHECK:                  scalar_const: '42 : i64'
# CHECK:          type_fn:
# CHECK:            type_var: T
# CHECK:            operands:
# CHECK:              scalar_const: '1.{{[0]*}}e+03 : f64'
@linalg_structured_op
def constants(O=TensorDef(T, S.M, S.K, output=True)):
  pi = TypeFn.cast(T, const(3.1415926535897931))
  cst42 = TypeFn.cast(T, const(42))
  cst1000 = TypeFn.cast(T, const(1e+3))
  O[D.m, D.n] = pi + cst42 - cst1000


# CHECK: ---
# CHECK-LABEL: indices
# CHECK: assignments:
# CHECK:  -
# CHECK:    arg: O
# CHECK:      arith_fn:
# CHECK:        fn_name: add
# CHECK:        operands:
# CHECK:          scalar_index: 1
# CHECK:          scalar_index: 0
@linalg_structured_op
def indices(O=TensorDef(T, S.M, S.K, output=True)):
  O[D.m, D.n] = index(D.n) + index(D.m)


# CHECK: ---
# CHECK-LABEL: fill
# CHECK: assignments:
# CHECK:  -
# CHECK:    arg: O
# CHECK:      scalar_arg: value
@linalg_structured_op
def fill(value=ScalarDef(T), O=TensorDef(T, S.M, S.K, output=True)):
  O[D.m, D.n] = value