File: ops.py

package info (click to toggle)
llvm-toolchain-14 1%3A14.0.6-20
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,496,436 kB
  • sloc: cpp: 5,593,990; ansic: 986,873; asm: 585,869; python: 184,223; objc: 72,530; lisp: 31,119; f90: 27,793; javascript: 9,780; pascal: 9,762; sh: 9,482; perl: 7,468; ml: 5,432; awk: 3,523; makefile: 2,547; xml: 953; cs: 573; fortran: 567
file content (180 lines) | stat: -rw-r--r-- 6,414 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# RUN: %PYTHON %s | FileCheck %s

from mlir.ir import *
from mlir.dialects import builtin
from mlir.dialects import linalg
from mlir.dialects import std
from mlir.dialects import arith


def run(f):
  print("\nTEST:", f.__name__)
  f()
  return f


# CHECK-LABEL: TEST: testInitTensor
@run
def testInitTensor():
  with Context() as ctx, Location.unknown():
    module = Module.create()
    f32 = F32Type.get()
    with InsertionPoint(module.body):
      # CHECK-LABEL: func @static_sizes
      # CHECK: %0 = linalg.init_tensor [3, 4] : tensor<3x4xf32>
      @builtin.FuncOp.from_py_func()
      def static_sizes():
        return linalg.InitTensorOp([3, 4], f32)

      # CHECK-LABEL: func @dynamic_sizes
      # CHECK: %0 = linalg.init_tensor [%arg0, %arg1] : tensor<?x?xf32>
      @builtin.FuncOp.from_py_func(IndexType.get(), IndexType.get())
      def dynamic_sizes(d0, d1):
        return linalg.InitTensorOp([d0, d1], f32)

      # CHECK-LABEL: func @zero_d
      # CHECK: %0 = linalg.init_tensor [] : tensor<f32>
      @builtin.FuncOp.from_py_func()
      def zero_d():
        return linalg.InitTensorOp([], f32)

  print(module)


# CHECK-LABEL: TEST: testInitTensorStaticSizesAttribute
@run
def testInitTensorStaticSizesAttribute():
  with Context() as ctx, Location.unknown():
    module = Module.create()
    f32 = F32Type.get()
    with InsertionPoint(module.body):
      op = linalg.InitTensorOp([3, 4], f32)
      # CHECK: [3, 4]
      print(op.attributes["static_sizes"])


# CHECK-LABEL: TEST: testFill
@run
def testFill():
  with Context() as ctx, Location.unknown():
    module = Module.create()
    f32 = F32Type.get()
    with InsertionPoint(module.body):
      # CHECK-LABEL: func @fill_tensor
      #  CHECK-SAME:   %[[OUT:[0-9a-z]+]]: tensor<12x?xf32>
      #  CHECK-NEXT: %[[CST:.*]] = arith.constant 0.0{{.*}} : f32
      #  CHECK-NEXT: %[[RES:.*]] = linalg.fill(%[[CST]], %[[OUT]]) : f32, tensor<12x?xf32> -> tensor<12x?xf32>
      #  CHECK-NEXT: return %[[RES]] : tensor<12x?xf32>
      @builtin.FuncOp.from_py_func(RankedTensorType.get((12, -1), f32))
      def fill_tensor(out):
        zero = arith.ConstantOp(value=FloatAttr.get(f32, 0.), result=f32).result
        return linalg.FillOp(output=out, value=zero).result

      # CHECK-LABEL: func @fill_buffer
      #  CHECK-SAME:   %[[OUT:[0-9a-z]+]]: memref<12x?xf32>
      #  CHECK-NEXT: %[[CST:.*]] = arith.constant 0.0{{.*}} : f32
      #  CHECK-NEXT: linalg.fill(%[[CST]], %[[OUT]]) : f32, memref<12x?xf32>
      #  CHECK-NEXT: return
      @builtin.FuncOp.from_py_func(MemRefType.get((12, -1), f32))
      def fill_buffer(out):
        zero = arith.ConstantOp(value=FloatAttr.get(f32, 0.), result=f32).result
        linalg.FillOp(output=out, value=zero)

  print(module)


# CHECK-LABEL: TEST: testNamedStructuredOpCustomForm
@run
def testNamedStructuredOpCustomForm():
  with Context() as ctx, Location.unknown():
    module = Module.create()
    f32 = F32Type.get()
    with InsertionPoint(module.body):

      @builtin.FuncOp.from_py_func(
          RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8),
                                                                   f32))
      def named_form(lhs, rhs):
        init_result = linalg.InitTensorOp([4, 8], f32)
        # First check the named form with custom format
        #      CHECK: linalg.matmul
        #  CHECK-NOT: linalg.memoized_indexing_maps
        # CHECK-SAME:    ins(%{{.*}} : tensor<4x16xf32>, tensor<16x8xf32>)
        # CHECK-SAME:   outs(%{{.*}} : tensor<4x8xf32>)
        # CHECK-SAME:   -> tensor<4x8xf32>
        # CHECK-NEXT: return
        return linalg.matmul(lhs, rhs, outs=[init_result.result])

  print(module)


# CHECK-LABEL: TEST: testNamedStructuredOpGenericForm
@run
def testNamedStructuredOpGenericForm():
  with Context() as ctx, Location.unknown():
    module = Module.create()
    f32 = F32Type.get()
    with InsertionPoint(module.body):

      @builtin.FuncOp.from_py_func(
          RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8),
                                                                   f32))
      def named_form(lhs, rhs):
        init_result = linalg.InitTensorOp([4, 8], f32)
        #      CHECK: "linalg.matmul"(%{{.*}})
        # CHECK-NEXT:  ^bb0(%{{.*}}: f32, %{{.*}}: f32, %{{.*}}: f32):
        # CHECK-NEXT:    arith.mulf{{.*}} (f32, f32) -> f32
        # CHECK-NEXT:    arith.addf{{.*}} (f32, f32) -> f32
        # CHECK-NEXT:    linalg.yield{{.*}} (f32) -> ()
        # CHECK-NEXT:    {linalg.memoized_indexing_maps{{.*}}operand_segment_sizes = dense<[2, 1]> : vector<2xi32>} :
        # CHECK-SAME: (tensor<4x16xf32>, tensor<16x8xf32>, tensor<4x8xf32>) -> tensor<4x8xf32>
        return linalg.matmul(lhs, rhs, outs=[init_result.result])

  module.operation.print(print_generic_op_form=True)


# CHECK-LABEL: TEST: testNamedStructuredAsGenericOp
@run
def testNamedStructuredAsGenericOp():
  with Context() as ctx, Location.unknown():
    module = Module.create()
    f32 = F32Type.get()
    with InsertionPoint(module.body):

      @builtin.FuncOp.from_py_func(
          RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8),
                                                                   f32))
      def generic_form(lhs, rhs):
        init_result = linalg.InitTensorOp([4, 8], f32)
        # CHECK: linalg.generic
        return linalg.matmul(
            lhs, rhs, outs=[init_result.result], emit_generic=True)

  print(module)


# CHECK-LABEL: TEST: testOpResultFromOtherOp
@run
def testOpResultFromOtherOp():
  with Context(), Location.unknown():
    module = Module.create()
    f32 = F32Type.get()
    with InsertionPoint(module.body):

      @builtin.FuncOp.from_py_func(
          RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8),
                                                                   f32))
      def pass_an_op_directly(arg0, arg1):
        one = arith.ConstantOp(F32Type.get(), 1.0)
        # CHECK: %[[LHS:.*]] = linalg.fill
        lhs = linalg.FillOp(arg0, one)
        # CHECK: %[[RHS:.*]] = linalg.fill
        rhs = linalg.FillOp(arg1, one)
        # CHECK: %[[INIT:.*]] = linalg.init_tensor
        init = linalg.InitTensorOp([4, 8], f32)
        # CHECK: linalg.matmul
        # CHECK: ins(%[[LHS]], %[[RHS]]
        # CHECK: outs(%[[INIT]]
        return linalg.matmul(lhs, rhs, outs=init)

  print(module)