1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
|
//===- SCF.cpp - Structured Control Flow Operations -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Transforms/InliningUtils.h"
using namespace mlir;
using namespace mlir::scf;
#include "mlir/Dialect/SCF/SCFOpsDialect.cpp.inc"
//===----------------------------------------------------------------------===//
// SCFDialect Dialect Interfaces
//===----------------------------------------------------------------------===//
namespace {
struct SCFInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
// We don't have any special restrictions on what can be inlined into
// destination regions (e.g. while/conditional bodies). Always allow it.
bool isLegalToInline(Region *dest, Region *src, bool wouldBeCloned,
BlockAndValueMapping &valueMapping) const final {
return true;
}
// Operations in scf dialect are always legal to inline since they are
// pure.
bool isLegalToInline(Operation *, Region *, bool,
BlockAndValueMapping &) const final {
return true;
}
// Handle the given inlined terminator by replacing it with a new operation
// as necessary. Required when the region has only one block.
void handleTerminator(Operation *op,
ArrayRef<Value> valuesToRepl) const final {
auto retValOp = dyn_cast<scf::YieldOp>(op);
if (!retValOp)
return;
for (auto retValue : llvm::zip(valuesToRepl, retValOp.getOperands())) {
std::get<0>(retValue).replaceAllUsesWith(std::get<1>(retValue));
}
}
};
} // namespace
//===----------------------------------------------------------------------===//
// SCFDialect
//===----------------------------------------------------------------------===//
void SCFDialect::initialize() {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/SCF/SCFOps.cpp.inc"
>();
addInterfaces<SCFInlinerInterface>();
}
/// Default callback for IfOp builders. Inserts a yield without arguments.
void mlir::scf::buildTerminatedBody(OpBuilder &builder, Location loc) {
builder.create<scf::YieldOp>(loc);
}
//===----------------------------------------------------------------------===//
// ExecuteRegionOp
//===----------------------------------------------------------------------===//
/// Replaces the given op with the contents of the given single-block region,
/// using the operands of the block terminator to replace operation results.
static void replaceOpWithRegion(PatternRewriter &rewriter, Operation *op,
Region ®ion, ValueRange blockArgs = {}) {
assert(llvm::hasSingleElement(region) && "expected single-region block");
Block *block = ®ion.front();
Operation *terminator = block->getTerminator();
ValueRange results = terminator->getOperands();
rewriter.mergeBlockBefore(block, op, blockArgs);
rewriter.replaceOp(op, results);
rewriter.eraseOp(terminator);
}
///
/// (ssa-id `=`)? `execute_region` `->` function-result-type `{`
/// block+
/// `}`
///
/// Example:
/// scf.execute_region -> i32 {
/// %idx = load %rI[%i] : memref<128xi32>
/// return %idx : i32
/// }
///
static ParseResult parseExecuteRegionOp(OpAsmParser &parser,
OperationState &result) {
if (parser.parseOptionalArrowTypeList(result.types))
return failure();
// Introduce the body region and parse it.
Region *body = result.addRegion();
if (parser.parseRegion(*body, /*arguments=*/{}, /*argTypes=*/{}) ||
parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
static void print(OpAsmPrinter &p, ExecuteRegionOp op) {
p.printOptionalArrowTypeList(op.getResultTypes());
p << ' ';
p.printRegion(op.getRegion(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/true);
p.printOptionalAttrDict(op->getAttrs());
}
static LogicalResult verify(ExecuteRegionOp op) {
if (op.getRegion().empty())
return op.emitOpError("region needs to have at least one block");
if (op.getRegion().front().getNumArguments() > 0)
return op.emitOpError("region cannot have any arguments");
return success();
}
// Inline an ExecuteRegionOp if it only contains one block.
// "test.foo"() : () -> ()
// %v = scf.execute_region -> i64 {
// %x = "test.val"() : () -> i64
// scf.yield %x : i64
// }
// "test.bar"(%v) : (i64) -> ()
//
// becomes
//
// "test.foo"() : () -> ()
// %x = "test.val"() : () -> i64
// "test.bar"(%x) : (i64) -> ()
//
struct SingleBlockExecuteInliner : public OpRewritePattern<ExecuteRegionOp> {
using OpRewritePattern<ExecuteRegionOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ExecuteRegionOp op,
PatternRewriter &rewriter) const override {
if (!llvm::hasSingleElement(op.getRegion()))
return failure();
replaceOpWithRegion(rewriter, op, op.getRegion());
return success();
}
};
// Inline an ExecuteRegionOp if its parent can contain multiple blocks.
// TODO generalize the conditions for operations which can be inlined into.
// func @func_execute_region_elim() {
// "test.foo"() : () -> ()
// %v = scf.execute_region -> i64 {
// %c = "test.cmp"() : () -> i1
// cond_br %c, ^bb2, ^bb3
// ^bb2:
// %x = "test.val1"() : () -> i64
// br ^bb4(%x : i64)
// ^bb3:
// %y = "test.val2"() : () -> i64
// br ^bb4(%y : i64)
// ^bb4(%z : i64):
// scf.yield %z : i64
// }
// "test.bar"(%v) : (i64) -> ()
// return
// }
//
// becomes
//
// func @func_execute_region_elim() {
// "test.foo"() : () -> ()
// %c = "test.cmp"() : () -> i1
// cond_br %c, ^bb1, ^bb2
// ^bb1: // pred: ^bb0
// %x = "test.val1"() : () -> i64
// br ^bb3(%x : i64)
// ^bb2: // pred: ^bb0
// %y = "test.val2"() : () -> i64
// br ^bb3(%y : i64)
// ^bb3(%z: i64): // 2 preds: ^bb1, ^bb2
// "test.bar"(%z) : (i64) -> ()
// return
// }
//
struct MultiBlockExecuteInliner : public OpRewritePattern<ExecuteRegionOp> {
using OpRewritePattern<ExecuteRegionOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ExecuteRegionOp op,
PatternRewriter &rewriter) const override {
if (!isa<FuncOp, ExecuteRegionOp>(op->getParentOp()))
return failure();
Block *prevBlock = op->getBlock();
Block *postBlock = rewriter.splitBlock(prevBlock, op->getIterator());
rewriter.setInsertionPointToEnd(prevBlock);
rewriter.create<BranchOp>(op.getLoc(), &op.getRegion().front());
for (Block &blk : op.getRegion()) {
if (YieldOp yieldOp = dyn_cast<YieldOp>(blk.getTerminator())) {
rewriter.setInsertionPoint(yieldOp);
rewriter.create<BranchOp>(yieldOp.getLoc(), postBlock,
yieldOp.getResults());
rewriter.eraseOp(yieldOp);
}
}
rewriter.inlineRegionBefore(op.getRegion(), postBlock);
SmallVector<Value> blockArgs;
for (auto res : op.getResults())
blockArgs.push_back(postBlock->addArgument(res.getType(), res.getLoc()));
rewriter.replaceOp(op, blockArgs);
return success();
}
};
void ExecuteRegionOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<SingleBlockExecuteInliner, MultiBlockExecuteInliner>(context);
}
//===----------------------------------------------------------------------===//
// ConditionOp
//===----------------------------------------------------------------------===//
MutableOperandRange
ConditionOp::getMutableSuccessorOperands(Optional<unsigned> index) {
// Pass all operands except the condition to the successor region.
return getArgsMutable();
}
//===----------------------------------------------------------------------===//
// ForOp
//===----------------------------------------------------------------------===//
void ForOp::build(OpBuilder &builder, OperationState &result, Value lb,
Value ub, Value step, ValueRange iterArgs,
BodyBuilderFn bodyBuilder) {
result.addOperands({lb, ub, step});
result.addOperands(iterArgs);
for (Value v : iterArgs)
result.addTypes(v.getType());
Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block);
Block &bodyBlock = bodyRegion->front();
bodyBlock.addArgument(builder.getIndexType(), result.location);
for (Value v : iterArgs)
bodyBlock.addArgument(v.getType(), v.getLoc());
// Create the default terminator if the builder is not provided and if the
// iteration arguments are not provided. Otherwise, leave this to the caller
// because we don't know which values to return from the loop.
if (iterArgs.empty() && !bodyBuilder) {
ForOp::ensureTerminator(*bodyRegion, builder, result.location);
} else if (bodyBuilder) {
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&bodyBlock);
bodyBuilder(builder, result.location, bodyBlock.getArgument(0),
bodyBlock.getArguments().drop_front());
}
}
static LogicalResult verify(ForOp op) {
if (auto cst = op.getStep().getDefiningOp<arith::ConstantIndexOp>())
if (cst.value() <= 0)
return op.emitOpError("constant step operand must be positive");
// Check that the body defines as single block argument for the induction
// variable.
auto *body = op.getBody();
if (!body->getArgument(0).getType().isIndex())
return op.emitOpError(
"expected body first argument to be an index argument for "
"the induction variable");
auto opNumResults = op.getNumResults();
if (opNumResults == 0)
return success();
// If ForOp defines values, check that the number and types of
// the defined values match ForOp initial iter operands and backedge
// basic block arguments.
if (op.getNumIterOperands() != opNumResults)
return op.emitOpError(
"mismatch in number of loop-carried values and defined values");
if (op.getNumRegionIterArgs() != opNumResults)
return op.emitOpError(
"mismatch in number of basic block args and defined values");
auto iterOperands = op.getIterOperands();
auto iterArgs = op.getRegionIterArgs();
auto opResults = op.getResults();
unsigned i = 0;
for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
if (std::get<0>(e).getType() != std::get<2>(e).getType())
return op.emitOpError() << "types mismatch between " << i
<< "th iter operand and defined value";
if (std::get<1>(e).getType() != std::get<2>(e).getType())
return op.emitOpError() << "types mismatch between " << i
<< "th iter region arg and defined value";
i++;
}
return RegionBranchOpInterface::verifyTypes(op);
}
/// Prints the initialization list in the form of
/// <prefix>(%inner = %outer, %inner2 = %outer2, <...>)
/// where 'inner' values are assumed to be region arguments and 'outer' values
/// are regular SSA values.
static void printInitializationList(OpAsmPrinter &p,
Block::BlockArgListType blocksArgs,
ValueRange initializers,
StringRef prefix = "") {
assert(blocksArgs.size() == initializers.size() &&
"expected same length of arguments and initializers");
if (initializers.empty())
return;
p << prefix << '(';
llvm::interleaveComma(llvm::zip(blocksArgs, initializers), p, [&](auto it) {
p << std::get<0>(it) << " = " << std::get<1>(it);
});
p << ")";
}
static void print(OpAsmPrinter &p, ForOp op) {
p << " " << op.getInductionVar() << " = " << op.getLowerBound() << " to "
<< op.getUpperBound() << " step " << op.getStep();
printInitializationList(p, op.getRegionIterArgs(), op.getIterOperands(),
" iter_args");
if (!op.getIterOperands().empty())
p << " -> (" << op.getIterOperands().getTypes() << ')';
p << ' ';
p.printRegion(op.getRegion(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/op.hasIterOperands());
p.printOptionalAttrDict(op->getAttrs());
}
static ParseResult parseForOp(OpAsmParser &parser, OperationState &result) {
auto &builder = parser.getBuilder();
OpAsmParser::OperandType inductionVariable, lb, ub, step;
// Parse the induction variable followed by '='.
if (parser.parseRegionArgument(inductionVariable) || parser.parseEqual())
return failure();
// Parse loop bounds.
Type indexType = builder.getIndexType();
if (parser.parseOperand(lb) ||
parser.resolveOperand(lb, indexType, result.operands) ||
parser.parseKeyword("to") || parser.parseOperand(ub) ||
parser.resolveOperand(ub, indexType, result.operands) ||
parser.parseKeyword("step") || parser.parseOperand(step) ||
parser.resolveOperand(step, indexType, result.operands))
return failure();
// Parse the optional initial iteration arguments.
SmallVector<OpAsmParser::OperandType, 4> regionArgs, operands;
SmallVector<Type, 4> argTypes;
regionArgs.push_back(inductionVariable);
if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
// Parse assignment list and results type list.
if (parser.parseAssignmentList(regionArgs, operands) ||
parser.parseArrowTypeList(result.types))
return failure();
// Resolve input operands.
for (auto operandType : llvm::zip(operands, result.types))
if (parser.resolveOperand(std::get<0>(operandType),
std::get<1>(operandType), result.operands))
return failure();
}
// Induction variable.
argTypes.push_back(indexType);
// Loop carried variables
argTypes.append(result.types.begin(), result.types.end());
// Parse the body region.
Region *body = result.addRegion();
if (regionArgs.size() != argTypes.size())
return parser.emitError(
parser.getNameLoc(),
"mismatch in number of loop-carried values and defined values");
if (parser.parseRegion(*body, regionArgs, argTypes))
return failure();
ForOp::ensureTerminator(*body, builder, result.location);
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
Region &ForOp::getLoopBody() { return getRegion(); }
bool ForOp::isDefinedOutsideOfLoop(Value value) {
return !getRegion().isAncestor(value.getParentRegion());
}
LogicalResult ForOp::moveOutOfLoop(ArrayRef<Operation *> ops) {
for (auto *op : ops)
op->moveBefore(*this);
return success();
}
ForOp mlir::scf::getForInductionVarOwner(Value val) {
auto ivArg = val.dyn_cast<BlockArgument>();
if (!ivArg)
return ForOp();
assert(ivArg.getOwner() && "unlinked block argument");
auto *containingOp = ivArg.getOwner()->getParentOp();
return dyn_cast_or_null<ForOp>(containingOp);
}
/// Return operands used when entering the region at 'index'. These operands
/// correspond to the loop iterator operands, i.e., those excluding the
/// induction variable. LoopOp only has one region, so 0 is the only valid value
/// for `index`.
OperandRange ForOp::getSuccessorEntryOperands(unsigned index) {
assert(index == 0 && "invalid region index");
// The initial operands map to the loop arguments after the induction
// variable.
return getInitArgs();
}
/// Given the region at `index`, or the parent operation if `index` is None,
/// return the successor regions. These are the regions that may be selected
/// during the flow of control. `operands` is a set of optional attributes that
/// correspond to a constant value for each operand, or null if that operand is
/// not a constant.
void ForOp::getSuccessorRegions(Optional<unsigned> index,
ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> ®ions) {
// If the predecessor is the ForOp, branch into the body using the iterator
// arguments.
if (!index.hasValue()) {
regions.push_back(RegionSuccessor(&getLoopBody(), getRegionIterArgs()));
return;
}
// Otherwise, the loop may branch back to itself or the parent operation.
assert(index.getValue() == 0 && "expected loop region");
regions.push_back(RegionSuccessor(&getLoopBody(), getRegionIterArgs()));
regions.push_back(RegionSuccessor(getResults()));
}
LoopNest mlir::scf::buildLoopNest(
OpBuilder &builder, Location loc, ValueRange lbs, ValueRange ubs,
ValueRange steps, ValueRange iterArgs,
function_ref<ValueVector(OpBuilder &, Location, ValueRange, ValueRange)>
bodyBuilder) {
assert(lbs.size() == ubs.size() &&
"expected the same number of lower and upper bounds");
assert(lbs.size() == steps.size() &&
"expected the same number of lower bounds and steps");
// If there are no bounds, call the body-building function and return early.
if (lbs.empty()) {
ValueVector results =
bodyBuilder ? bodyBuilder(builder, loc, ValueRange(), iterArgs)
: ValueVector();
assert(results.size() == iterArgs.size() &&
"loop nest body must return as many values as loop has iteration "
"arguments");
return LoopNest();
}
// First, create the loop structure iteratively using the body-builder
// callback of `ForOp::build`. Do not create `YieldOp`s yet.
OpBuilder::InsertionGuard guard(builder);
SmallVector<scf::ForOp, 4> loops;
SmallVector<Value, 4> ivs;
loops.reserve(lbs.size());
ivs.reserve(lbs.size());
ValueRange currentIterArgs = iterArgs;
Location currentLoc = loc;
for (unsigned i = 0, e = lbs.size(); i < e; ++i) {
auto loop = builder.create<scf::ForOp>(
currentLoc, lbs[i], ubs[i], steps[i], currentIterArgs,
[&](OpBuilder &nestedBuilder, Location nestedLoc, Value iv,
ValueRange args) {
ivs.push_back(iv);
// It is safe to store ValueRange args because it points to block
// arguments of a loop operation that we also own.
currentIterArgs = args;
currentLoc = nestedLoc;
});
// Set the builder to point to the body of the newly created loop. We don't
// do this in the callback because the builder is reset when the callback
// returns.
builder.setInsertionPointToStart(loop.getBody());
loops.push_back(loop);
}
// For all loops but the innermost, yield the results of the nested loop.
for (unsigned i = 0, e = loops.size() - 1; i < e; ++i) {
builder.setInsertionPointToEnd(loops[i].getBody());
builder.create<scf::YieldOp>(loc, loops[i + 1].getResults());
}
// In the body of the innermost loop, call the body building function if any
// and yield its results.
builder.setInsertionPointToStart(loops.back().getBody());
ValueVector results = bodyBuilder
? bodyBuilder(builder, currentLoc, ivs,
loops.back().getRegionIterArgs())
: ValueVector();
assert(results.size() == iterArgs.size() &&
"loop nest body must return as many values as loop has iteration "
"arguments");
builder.setInsertionPointToEnd(loops.back().getBody());
builder.create<scf::YieldOp>(loc, results);
// Return the loops.
LoopNest res;
res.loops.assign(loops.begin(), loops.end());
return res;
}
LoopNest mlir::scf::buildLoopNest(
OpBuilder &builder, Location loc, ValueRange lbs, ValueRange ubs,
ValueRange steps,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
// Delegate to the main function by wrapping the body builder.
return buildLoopNest(builder, loc, lbs, ubs, steps, llvm::None,
[&bodyBuilder](OpBuilder &nestedBuilder,
Location nestedLoc, ValueRange ivs,
ValueRange) -> ValueVector {
if (bodyBuilder)
bodyBuilder(nestedBuilder, nestedLoc, ivs);
return {};
});
}
namespace {
// Fold away ForOp iter arguments when:
// 1) The op yields the iter arguments.
// 2) The iter arguments have no use and the corresponding outer region
// iterators (inputs) are yielded.
// 3) The iter arguments have no use and the corresponding (operation) results
// have no use.
//
// These arguments must be defined outside of
// the ForOp region and can just be forwarded after simplifying the op inits,
// yields and returns.
//
// The implementation uses `mergeBlockBefore` to steal the content of the
// original ForOp and avoid cloning.
struct ForOpIterArgsFolder : public OpRewritePattern<scf::ForOp> {
using OpRewritePattern<scf::ForOp>::OpRewritePattern;
LogicalResult matchAndRewrite(scf::ForOp forOp,
PatternRewriter &rewriter) const final {
bool canonicalize = false;
Block &block = forOp.getRegion().front();
auto yieldOp = cast<scf::YieldOp>(block.getTerminator());
// An internal flat vector of block transfer
// arguments `newBlockTransferArgs` keeps the 1-1 mapping of original to
// transformed block argument mappings. This plays the role of a
// BlockAndValueMapping for the particular use case of calling into
// `mergeBlockBefore`.
SmallVector<bool, 4> keepMask;
keepMask.reserve(yieldOp.getNumOperands());
SmallVector<Value, 4> newBlockTransferArgs, newIterArgs, newYieldValues,
newResultValues;
newBlockTransferArgs.reserve(1 + forOp.getNumIterOperands());
newBlockTransferArgs.push_back(Value()); // iv placeholder with null value
newIterArgs.reserve(forOp.getNumIterOperands());
newYieldValues.reserve(yieldOp.getNumOperands());
newResultValues.reserve(forOp.getNumResults());
for (auto it : llvm::zip(forOp.getIterOperands(), // iter from outside
forOp.getRegionIterArgs(), // iter inside region
forOp.getResults(), // op results
yieldOp.getOperands() // iter yield
)) {
// Forwarded is `true` when:
// 1) The region `iter` argument is yielded.
// 2) The region `iter` argument has no use, and the corresponding iter
// operand (input) is yielded.
// 3) The region `iter` argument has no use, and the corresponding op
// result has no use.
bool forwarded = ((std::get<1>(it) == std::get<3>(it)) ||
(std::get<1>(it).use_empty() &&
(std::get<0>(it) == std::get<3>(it) ||
std::get<2>(it).use_empty())));
keepMask.push_back(!forwarded);
canonicalize |= forwarded;
if (forwarded) {
newBlockTransferArgs.push_back(std::get<0>(it));
newResultValues.push_back(std::get<0>(it));
continue;
}
newIterArgs.push_back(std::get<0>(it));
newYieldValues.push_back(std::get<3>(it));
newBlockTransferArgs.push_back(Value()); // placeholder with null value
newResultValues.push_back(Value()); // placeholder with null value
}
if (!canonicalize)
return failure();
scf::ForOp newForOp = rewriter.create<scf::ForOp>(
forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(),
forOp.getStep(), newIterArgs);
Block &newBlock = newForOp.getRegion().front();
// Replace the null placeholders with newly constructed values.
newBlockTransferArgs[0] = newBlock.getArgument(0); // iv
for (unsigned idx = 0, collapsedIdx = 0, e = newResultValues.size();
idx != e; ++idx) {
Value &blockTransferArg = newBlockTransferArgs[1 + idx];
Value &newResultVal = newResultValues[idx];
assert((blockTransferArg && newResultVal) ||
(!blockTransferArg && !newResultVal));
if (!blockTransferArg) {
blockTransferArg = newForOp.getRegionIterArgs()[collapsedIdx];
newResultVal = newForOp.getResult(collapsedIdx++);
}
}
Block &oldBlock = forOp.getRegion().front();
assert(oldBlock.getNumArguments() == newBlockTransferArgs.size() &&
"unexpected argument size mismatch");
// No results case: the scf::ForOp builder already created a zero
// result terminator. Merge before this terminator and just get rid of the
// original terminator that has been merged in.
if (newIterArgs.empty()) {
auto newYieldOp = cast<scf::YieldOp>(newBlock.getTerminator());
rewriter.mergeBlockBefore(&oldBlock, newYieldOp, newBlockTransferArgs);
rewriter.eraseOp(newBlock.getTerminator()->getPrevNode());
rewriter.replaceOp(forOp, newResultValues);
return success();
}
// No terminator case: merge and rewrite the merged terminator.
auto cloneFilteredTerminator = [&](scf::YieldOp mergedTerminator) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(mergedTerminator);
SmallVector<Value, 4> filteredOperands;
filteredOperands.reserve(newResultValues.size());
for (unsigned idx = 0, e = keepMask.size(); idx < e; ++idx)
if (keepMask[idx])
filteredOperands.push_back(mergedTerminator.getOperand(idx));
rewriter.create<scf::YieldOp>(mergedTerminator.getLoc(),
filteredOperands);
};
rewriter.mergeBlocks(&oldBlock, &newBlock, newBlockTransferArgs);
auto mergedYieldOp = cast<scf::YieldOp>(newBlock.getTerminator());
cloneFilteredTerminator(mergedYieldOp);
rewriter.eraseOp(mergedYieldOp);
rewriter.replaceOp(forOp, newResultValues);
return success();
}
};
/// Rewriting pattern that erases loops that are known not to iterate and
/// replaces single-iteration loops with their bodies.
struct SimplifyTrivialLoops : public OpRewritePattern<ForOp> {
using OpRewritePattern<ForOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ForOp op,
PatternRewriter &rewriter) const override {
// If the upper bound is the same as the lower bound, the loop does not
// iterate, just remove it.
if (op.getLowerBound() == op.getUpperBound()) {
rewriter.replaceOp(op, op.getIterOperands());
return success();
}
auto lb = op.getLowerBound().getDefiningOp<arith::ConstantOp>();
auto ub = op.getUpperBound().getDefiningOp<arith::ConstantOp>();
if (!lb || !ub)
return failure();
// If the loop is known to have 0 iterations, remove it.
llvm::APInt lbValue = lb.getValue().cast<IntegerAttr>().getValue();
llvm::APInt ubValue = ub.getValue().cast<IntegerAttr>().getValue();
if (lbValue.sge(ubValue)) {
rewriter.replaceOp(op, op.getIterOperands());
return success();
}
auto step = op.getStep().getDefiningOp<arith::ConstantOp>();
if (!step)
return failure();
// If the loop is known to have 1 iteration, inline its body and remove the
// loop.
llvm::APInt stepValue = step.getValue().cast<IntegerAttr>().getValue();
if ((lbValue + stepValue).sge(ubValue)) {
SmallVector<Value, 4> blockArgs;
blockArgs.reserve(op.getNumIterOperands() + 1);
blockArgs.push_back(op.getLowerBound());
llvm::append_range(blockArgs, op.getIterOperands());
replaceOpWithRegion(rewriter, op, op.getLoopBody(), blockArgs);
return success();
}
return failure();
}
};
/// Perform a replacement of one iter OpOperand of an scf.for to the
/// `replacement` value which is expected to be the source of a tensor.cast.
/// tensor.cast ops are inserted inside the block to account for the type cast.
static ForOp replaceTensorCastForOpIterArg(PatternRewriter &rewriter,
OpOperand &operand,
Value replacement) {
Type oldType = operand.get().getType(), newType = replacement.getType();
assert(oldType.isa<RankedTensorType>() && newType.isa<RankedTensorType>() &&
"expected ranked tensor types");
// 1. Create new iter operands, exactly 1 is replaced.
ForOp forOp = cast<ForOp>(operand.getOwner());
assert(operand.getOperandNumber() >= forOp.getNumControlOperands() &&
"expected an iter OpOperand");
if (operand.get().getType() == replacement.getType())
return forOp;
SmallVector<Value> newIterOperands;
for (OpOperand &opOperand : forOp.getIterOpOperands()) {
if (opOperand.getOperandNumber() == operand.getOperandNumber()) {
newIterOperands.push_back(replacement);
continue;
}
newIterOperands.push_back(opOperand.get());
}
// 2. Create the new forOp shell.
scf::ForOp newForOp = rewriter.create<scf::ForOp>(
forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(),
forOp.getStep(), newIterOperands);
Block &newBlock = newForOp.getRegion().front();
SmallVector<Value, 4> newBlockTransferArgs(newBlock.getArguments().begin(),
newBlock.getArguments().end());
// 3. Inject an incoming cast op at the beginning of the block for the bbArg
// corresponding to the `replacement` value.
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(&newBlock, newBlock.begin());
BlockArgument newRegionIterArg = newForOp.getRegionIterArgForOpOperand(
newForOp->getOpOperand(operand.getOperandNumber()));
Value castIn = rewriter.create<tensor::CastOp>(newForOp.getLoc(), oldType,
newRegionIterArg);
newBlockTransferArgs[newRegionIterArg.getArgNumber()] = castIn;
// 4. Steal the old block ops, mapping to the newBlockTransferArgs.
Block &oldBlock = forOp.getRegion().front();
rewriter.mergeBlocks(&oldBlock, &newBlock, newBlockTransferArgs);
// 5. Inject an outgoing cast op at the end of the block and yield it instead.
auto clonedYieldOp = cast<scf::YieldOp>(newBlock.getTerminator());
rewriter.setInsertionPoint(clonedYieldOp);
unsigned yieldIdx =
newRegionIterArg.getArgNumber() - forOp.getNumInductionVars();
Value castOut = rewriter.create<tensor::CastOp>(
newForOp.getLoc(), newType, clonedYieldOp.getOperand(yieldIdx));
SmallVector<Value> newYieldOperands = clonedYieldOp.getOperands();
newYieldOperands[yieldIdx] = castOut;
rewriter.create<scf::YieldOp>(newForOp.getLoc(), newYieldOperands);
rewriter.eraseOp(clonedYieldOp);
// 6. Inject an outgoing cast op after the forOp.
rewriter.setInsertionPointAfter(newForOp);
SmallVector<Value> newResults = newForOp.getResults();
newResults[yieldIdx] = rewriter.create<tensor::CastOp>(
newForOp.getLoc(), oldType, newResults[yieldIdx]);
return newForOp;
}
/// Fold scf.for iter_arg/result pairs that go through incoming/ougoing
/// a tensor.cast op pair so as to pull the tensor.cast inside the scf.for:
///
/// ```
/// %0 = tensor.cast %t0 : tensor<32x1024xf32> to tensor<?x?xf32>
/// %1 = scf.for %i = %c0 to %c1024 step %c32 iter_args(%iter_t0 = %0)
/// -> (tensor<?x?xf32>) {
/// %2 = call @do(%iter_t0) : (tensor<?x?xf32>) -> tensor<?x?xf32>
/// scf.yield %2 : tensor<?x?xf32>
/// }
/// %2 = tensor.cast %1 : tensor<?x?xf32> to tensor<32x1024xf32>
/// use_of(%2)
/// ```
///
/// folds into:
///
/// ```
/// %0 = scf.for %arg2 = %c0 to %c1024 step %c32 iter_args(%arg3 = %arg0)
/// -> (tensor<32x1024xf32>) {
/// %2 = tensor.cast %arg3 : tensor<32x1024xf32> to tensor<?x?xf32>
/// %3 = call @do(%2) : (tensor<?x?xf32>) -> tensor<?x?xf32>
/// %4 = tensor.cast %3 : tensor<?x?xf32> to tensor<32x1024xf32>
/// scf.yield %4 : tensor<32x1024xf32>
/// }
/// use_of(%0)
/// ```
struct ForOpTensorCastFolder : public OpRewritePattern<ForOp> {
using OpRewritePattern<ForOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ForOp op,
PatternRewriter &rewriter) const override {
for (auto it : llvm::zip(op.getIterOpOperands(), op.getResults())) {
OpOperand &iterOpOperand = std::get<0>(it);
auto incomingCast = iterOpOperand.get().getDefiningOp<tensor::CastOp>();
if (!incomingCast)
continue;
if (!std::get<1>(it).hasOneUse())
continue;
auto outgoingCastOp =
dyn_cast<tensor::CastOp>(*std::get<1>(it).user_begin());
if (!outgoingCastOp)
continue;
// Must be a tensor.cast op pair with matching types.
if (outgoingCastOp.getResult().getType() !=
incomingCast.source().getType())
continue;
// Create a new ForOp with that iter operand replaced.
auto newForOp = replaceTensorCastForOpIterArg(rewriter, iterOpOperand,
incomingCast.source());
// Insert outgoing cast and use it to replace the corresponding result.
rewriter.setInsertionPointAfter(newForOp);
SmallVector<Value> replacements = newForOp.getResults();
unsigned returnIdx =
iterOpOperand.getOperandNumber() - op.getNumControlOperands();
replacements[returnIdx] = rewriter.create<tensor::CastOp>(
op.getLoc(), incomingCast.dest().getType(), replacements[returnIdx]);
rewriter.replaceOp(op, replacements);
return success();
}
return failure();
}
};
/// Canonicalize the iter_args of an scf::ForOp that involve a
/// `bufferization.to_tensor` and for which only the last loop iteration is
/// actually visible outside of the loop. The canonicalization looks for a
/// pattern such as:
/// ```
/// %t0 = ... : tensor_type
/// %0 = scf.for ... iter_args(%bb0 : %t0) -> (tensor_type) {
/// ...
/// // %m is either buffer_cast(%bb00) or defined above the loop
/// %m... : memref_type
/// ... // uses of %m with potential inplace updates
/// %new_tensor = bufferization.to_tensor %m : memref_type
/// ...
/// scf.yield %new_tensor : tensor_type
/// }
/// ```
///
/// `%bb0` may have either 0 or 1 use. If it has 1 use it must be exactly a
/// `%m = buffer_cast %bb0` op that feeds into the yielded
/// `bufferization.to_tensor` op.
///
/// If no aliasing write to the memref `%m`, from which `%new_tensor`is loaded,
/// occurs between `bufferization.to_tensor and yield then the value %0
/// visible outside of the loop is the last `bufferization.to_tensor`
/// produced in the loop.
///
/// For now, we approximate the absence of aliasing by only supporting the case
/// when the bufferization.to_tensor is the operation immediately preceding
/// the yield.
//
/// The canonicalization rewrites the pattern as:
/// ```
/// // %m is either a buffer_cast or defined above
/// %m... : memref_type
/// scf.for ... iter_args(%bb0 : %t0) -> (tensor_type) {
/// ... // uses of %m with potential inplace updates
/// scf.yield %bb0: tensor_type
/// }
/// %0 = bufferization.to_tensor %m : memref_type
/// ```
///
/// A later bbArg canonicalization will further rewrite as:
/// ```
/// // %m is either a buffer_cast or defined above
/// %m... : memref_type
/// scf.for ... { // no iter_args
/// ... // uses of %m with potential inplace updates
/// }
/// %0 = bufferization.to_tensor %m : memref_type
/// ```
struct LastTensorLoadCanonicalization : public OpRewritePattern<ForOp> {
using OpRewritePattern<ForOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ForOp forOp,
PatternRewriter &rewriter) const override {
assert(std::next(forOp.getRegion().begin()) == forOp.getRegion().end() &&
"unexpected multiple blocks");
Location loc = forOp.getLoc();
DenseMap<Value, Value> replacements;
for (BlockArgument bbArg : forOp.getRegionIterArgs()) {
unsigned idx = bbArg.getArgNumber() - /*numIv=*/1;
auto yieldOp =
cast<scf::YieldOp>(forOp.getRegion().front().getTerminator());
Value yieldVal = yieldOp->getOperand(idx);
auto tensorLoadOp = yieldVal.getDefiningOp<bufferization::ToTensorOp>();
bool isTensor = bbArg.getType().isa<TensorType>();
bufferization::ToMemrefOp tensorToMemref;
// Either bbArg has no use or it has a single buffer_cast use.
if (bbArg.hasOneUse())
tensorToMemref =
dyn_cast<bufferization::ToMemrefOp>(*bbArg.getUsers().begin());
if (!isTensor || !tensorLoadOp || (!bbArg.use_empty() && !tensorToMemref))
continue;
// If tensorToMemref is present, it must feed into the `ToTensorOp`.
if (tensorToMemref && tensorLoadOp.memref() != tensorToMemref)
continue;
// TODO: Any aliasing write of tensorLoadOp.memref() nested under `forOp`
// must be before `ToTensorOp` in the block so that the lastWrite
// property is not subject to additional side-effects.
// For now, we only support the case when ToTensorOp appears
// immediately before the terminator.
if (tensorLoadOp->getNextNode() != yieldOp)
continue;
// Clone the optional tensorToMemref before forOp.
if (tensorToMemref) {
rewriter.setInsertionPoint(forOp);
rewriter.replaceOpWithNewOp<bufferization::ToMemrefOp>(
tensorToMemref, tensorToMemref.memref().getType(),
tensorToMemref.tensor());
}
// Clone the tensorLoad after forOp.
rewriter.setInsertionPointAfter(forOp);
Value newTensorLoad = rewriter.create<bufferization::ToTensorOp>(
loc, tensorLoadOp.memref());
Value forOpResult = forOp.getResult(bbArg.getArgNumber() - /*iv=*/1);
replacements.insert(std::make_pair(forOpResult, newTensorLoad));
// Make the terminator just yield the bbArg, the old tensorLoadOp + the
// old bbArg (that is now directly yielded) will canonicalize away.
rewriter.startRootUpdate(yieldOp);
yieldOp.setOperand(idx, bbArg);
rewriter.finalizeRootUpdate(yieldOp);
}
if (replacements.empty())
return failure();
// We want to replace a subset of the results of `forOp`. rewriter.replaceOp
// replaces the whole op and erase it unconditionally. This is wrong for
// `forOp` as it generally contains ops with side effects.
// Instead, use `rewriter.replaceOpWithIf`.
SmallVector<Value> newResults;
newResults.reserve(forOp.getNumResults());
for (Value v : forOp.getResults()) {
auto it = replacements.find(v);
newResults.push_back((it != replacements.end()) ? it->second : v);
}
unsigned idx = 0;
rewriter.replaceOpWithIf(forOp, newResults, [&](OpOperand &op) {
return op.get() != newResults[idx++];
});
return success();
}
};
} // namespace
void ForOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ForOpIterArgsFolder, SimplifyTrivialLoops,
LastTensorLoadCanonicalization, ForOpTensorCastFolder>(context);
}
//===----------------------------------------------------------------------===//
// IfOp
//===----------------------------------------------------------------------===//
bool mlir::scf::insideMutuallyExclusiveBranches(Operation *a, Operation *b) {
assert(a && "expected non-empty operation");
assert(b && "expected non-empty operation");
IfOp ifOp = a->getParentOfType<IfOp>();
while (ifOp) {
// Check if b is inside ifOp. (We already know that a is.)
if (ifOp->isProperAncestor(b))
// b is contained in ifOp. a and b are in mutually exclusive branches if
// they are in different blocks of ifOp.
return static_cast<bool>(ifOp.thenBlock()->findAncestorOpInBlock(*a)) !=
static_cast<bool>(ifOp.thenBlock()->findAncestorOpInBlock(*b));
// Check next enclosing IfOp.
ifOp = ifOp->getParentOfType<IfOp>();
}
// Could not find a common IfOp among a's and b's ancestors.
return false;
}
void IfOp::build(OpBuilder &builder, OperationState &result, Value cond,
bool withElseRegion) {
build(builder, result, /*resultTypes=*/llvm::None, cond, withElseRegion);
}
void IfOp::build(OpBuilder &builder, OperationState &result,
TypeRange resultTypes, Value cond, bool withElseRegion) {
auto addTerminator = [&](OpBuilder &nested, Location loc) {
if (resultTypes.empty())
IfOp::ensureTerminator(*nested.getInsertionBlock()->getParent(), nested,
loc);
};
build(builder, result, resultTypes, cond, addTerminator,
withElseRegion ? addTerminator
: function_ref<void(OpBuilder &, Location)>());
}
void IfOp::build(OpBuilder &builder, OperationState &result,
TypeRange resultTypes, Value cond,
function_ref<void(OpBuilder &, Location)> thenBuilder,
function_ref<void(OpBuilder &, Location)> elseBuilder) {
assert(thenBuilder && "the builder callback for 'then' must be present");
result.addOperands(cond);
result.addTypes(resultTypes);
OpBuilder::InsertionGuard guard(builder);
Region *thenRegion = result.addRegion();
builder.createBlock(thenRegion);
thenBuilder(builder, result.location);
Region *elseRegion = result.addRegion();
if (!elseBuilder)
return;
builder.createBlock(elseRegion);
elseBuilder(builder, result.location);
}
void IfOp::build(OpBuilder &builder, OperationState &result, Value cond,
function_ref<void(OpBuilder &, Location)> thenBuilder,
function_ref<void(OpBuilder &, Location)> elseBuilder) {
build(builder, result, TypeRange(), cond, thenBuilder, elseBuilder);
}
static LogicalResult verify(IfOp op) {
if (op.getNumResults() != 0 && op.getElseRegion().empty())
return op.emitOpError("must have an else block if defining values");
return RegionBranchOpInterface::verifyTypes(op);
}
static ParseResult parseIfOp(OpAsmParser &parser, OperationState &result) {
// Create the regions for 'then'.
result.regions.reserve(2);
Region *thenRegion = result.addRegion();
Region *elseRegion = result.addRegion();
auto &builder = parser.getBuilder();
OpAsmParser::OperandType cond;
Type i1Type = builder.getIntegerType(1);
if (parser.parseOperand(cond) ||
parser.resolveOperand(cond, i1Type, result.operands))
return failure();
// Parse optional results type list.
if (parser.parseOptionalArrowTypeList(result.types))
return failure();
// Parse the 'then' region.
if (parser.parseRegion(*thenRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
IfOp::ensureTerminator(*thenRegion, parser.getBuilder(), result.location);
// If we find an 'else' keyword then parse the 'else' region.
if (!parser.parseOptionalKeyword("else")) {
if (parser.parseRegion(*elseRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
IfOp::ensureTerminator(*elseRegion, parser.getBuilder(), result.location);
}
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
static void print(OpAsmPrinter &p, IfOp op) {
bool printBlockTerminators = false;
p << " " << op.getCondition();
if (!op.getResults().empty()) {
p << " -> (" << op.getResultTypes() << ")";
// Print yield explicitly if the op defines values.
printBlockTerminators = true;
}
p << ' ';
p.printRegion(op.getThenRegion(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/printBlockTerminators);
// Print the 'else' regions if it exists and has a block.
auto &elseRegion = op.getElseRegion();
if (!elseRegion.empty()) {
p << " else ";
p.printRegion(elseRegion,
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/printBlockTerminators);
}
p.printOptionalAttrDict(op->getAttrs());
}
/// Given the region at `index`, or the parent operation if `index` is None,
/// return the successor regions. These are the regions that may be selected
/// during the flow of control. `operands` is a set of optional attributes that
/// correspond to a constant value for each operand, or null if that operand is
/// not a constant.
void IfOp::getSuccessorRegions(Optional<unsigned> index,
ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> ®ions) {
// The `then` and the `else` region branch back to the parent operation.
if (index.hasValue()) {
regions.push_back(RegionSuccessor(getResults()));
return;
}
// Don't consider the else region if it is empty.
Region *elseRegion = &this->getElseRegion();
if (elseRegion->empty())
elseRegion = nullptr;
// Otherwise, the successor is dependent on the condition.
bool condition;
if (auto condAttr = operands.front().dyn_cast_or_null<IntegerAttr>()) {
condition = condAttr.getValue().isOneValue();
} else {
// If the condition isn't constant, both regions may be executed.
regions.push_back(RegionSuccessor(&getThenRegion()));
// If the else region does not exist, it is not a viable successor.
if (elseRegion)
regions.push_back(RegionSuccessor(elseRegion));
return;
}
// Add the successor regions using the condition.
regions.push_back(RegionSuccessor(condition ? &getThenRegion() : elseRegion));
}
LogicalResult IfOp::fold(ArrayRef<Attribute> operands,
SmallVectorImpl<OpFoldResult> &results) {
// if (!c) then A() else B() -> if c then B() else A()
if (getElseRegion().empty())
return failure();
arith::XOrIOp xorStmt = getCondition().getDefiningOp<arith::XOrIOp>();
if (!xorStmt)
return failure();
if (!matchPattern(xorStmt.getRhs(), m_One()))
return failure();
getConditionMutable().assign(xorStmt.getLhs());
Block *thenBlock = &getThenRegion().front();
// It would be nicer to use iplist::swap, but that has no implemented
// callbacks See: https://llvm.org/doxygen/ilist_8h_source.html#l00224
getThenRegion().getBlocks().splice(getThenRegion().getBlocks().begin(),
getElseRegion().getBlocks());
getElseRegion().getBlocks().splice(getElseRegion().getBlocks().begin(),
getThenRegion().getBlocks(), thenBlock);
return success();
}
void IfOp::getRegionInvocationBounds(
ArrayRef<Attribute> operands,
SmallVectorImpl<InvocationBounds> &invocationBounds) {
if (auto cond = operands[0].dyn_cast_or_null<BoolAttr>()) {
// If the condition is known, then one region is known to be executed once
// and the other zero times.
invocationBounds.emplace_back(0, cond.getValue() ? 1 : 0);
invocationBounds.emplace_back(0, cond.getValue() ? 0 : 1);
} else {
// Non-constant condition. Each region may be executed 0 or 1 times.
invocationBounds.assign(2, {0, 1});
}
}
namespace {
// Pattern to remove unused IfOp results.
struct RemoveUnusedResults : public OpRewritePattern<IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
void transferBody(Block *source, Block *dest, ArrayRef<OpResult> usedResults,
PatternRewriter &rewriter) const {
// Move all operations to the destination block.
rewriter.mergeBlocks(source, dest);
// Replace the yield op by one that returns only the used values.
auto yieldOp = cast<scf::YieldOp>(dest->getTerminator());
SmallVector<Value, 4> usedOperands;
llvm::transform(usedResults, std::back_inserter(usedOperands),
[&](OpResult result) {
return yieldOp.getOperand(result.getResultNumber());
});
rewriter.updateRootInPlace(yieldOp,
[&]() { yieldOp->setOperands(usedOperands); });
}
LogicalResult matchAndRewrite(IfOp op,
PatternRewriter &rewriter) const override {
// Compute the list of used results.
SmallVector<OpResult, 4> usedResults;
llvm::copy_if(op.getResults(), std::back_inserter(usedResults),
[](OpResult result) { return !result.use_empty(); });
// Replace the operation if only a subset of its results have uses.
if (usedResults.size() == op.getNumResults())
return failure();
// Compute the result types of the replacement operation.
SmallVector<Type, 4> newTypes;
llvm::transform(usedResults, std::back_inserter(newTypes),
[](OpResult result) { return result.getType(); });
// Create a replacement operation with empty then and else regions.
auto emptyBuilder = [](OpBuilder &, Location) {};
auto newOp = rewriter.create<IfOp>(op.getLoc(), newTypes, op.getCondition(),
emptyBuilder, emptyBuilder);
// Move the bodies and replace the terminators (note there is a then and
// an else region since the operation returns results).
transferBody(op.getBody(0), newOp.getBody(0), usedResults, rewriter);
transferBody(op.getBody(1), newOp.getBody(1), usedResults, rewriter);
// Replace the operation by the new one.
SmallVector<Value, 4> repResults(op.getNumResults());
for (const auto &en : llvm::enumerate(usedResults))
repResults[en.value().getResultNumber()] = newOp.getResult(en.index());
rewriter.replaceOp(op, repResults);
return success();
}
};
struct RemoveStaticCondition : public OpRewritePattern<IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(IfOp op,
PatternRewriter &rewriter) const override {
auto constant = op.getCondition().getDefiningOp<arith::ConstantOp>();
if (!constant)
return failure();
if (constant.getValue().cast<BoolAttr>().getValue())
replaceOpWithRegion(rewriter, op, op.getThenRegion());
else if (!op.getElseRegion().empty())
replaceOpWithRegion(rewriter, op, op.getElseRegion());
else
rewriter.eraseOp(op);
return success();
}
};
struct ConvertTrivialIfToSelect : public OpRewritePattern<IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(IfOp op,
PatternRewriter &rewriter) const override {
if (op->getNumResults() == 0)
return failure();
if (!llvm::hasSingleElement(op.getThenRegion().front()) ||
!llvm::hasSingleElement(op.getElseRegion().front()))
return failure();
auto cond = op.getCondition();
auto thenYieldArgs =
cast<scf::YieldOp>(op.getThenRegion().front().getTerminator())
.getOperands();
auto elseYieldArgs =
cast<scf::YieldOp>(op.getElseRegion().front().getTerminator())
.getOperands();
SmallVector<Value> results(op->getNumResults());
assert(thenYieldArgs.size() == results.size());
assert(elseYieldArgs.size() == results.size());
for (const auto &it :
llvm::enumerate(llvm::zip(thenYieldArgs, elseYieldArgs))) {
Value trueVal = std::get<0>(it.value());
Value falseVal = std::get<1>(it.value());
if (trueVal == falseVal)
results[it.index()] = trueVal;
else
results[it.index()] =
rewriter.create<SelectOp>(op.getLoc(), cond, trueVal, falseVal);
}
rewriter.replaceOp(op, results);
return success();
}
};
/// Allow the true region of an if to assume the condition is true
/// and vice versa. For example:
///
/// scf.if %cmp {
/// print(%cmp)
/// }
///
/// becomes
///
/// scf.if %cmp {
/// print(true)
/// }
///
struct ConditionPropagation : public OpRewritePattern<IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(IfOp op,
PatternRewriter &rewriter) const override {
// Early exit if the condition is constant since replacing a constant
// in the body with another constant isn't a simplification.
if (op.getCondition().getDefiningOp<arith::ConstantOp>())
return failure();
bool changed = false;
mlir::Type i1Ty = rewriter.getI1Type();
// These variables serve to prevent creating duplicate constants
// and hold constant true or false values.
Value constantTrue = nullptr;
Value constantFalse = nullptr;
for (OpOperand &use :
llvm::make_early_inc_range(op.getCondition().getUses())) {
if (op.getThenRegion().isAncestor(use.getOwner()->getParentRegion())) {
changed = true;
if (!constantTrue)
constantTrue = rewriter.create<arith::ConstantOp>(
op.getLoc(), i1Ty, rewriter.getIntegerAttr(i1Ty, 1));
rewriter.updateRootInPlace(use.getOwner(),
[&]() { use.set(constantTrue); });
} else if (op.getElseRegion().isAncestor(
use.getOwner()->getParentRegion())) {
changed = true;
if (!constantFalse)
constantFalse = rewriter.create<arith::ConstantOp>(
op.getLoc(), i1Ty, rewriter.getIntegerAttr(i1Ty, 0));
rewriter.updateRootInPlace(use.getOwner(),
[&]() { use.set(constantFalse); });
}
}
return success(changed);
}
};
/// Remove any statements from an if that are equivalent to the condition
/// or its negation. For example:
///
/// %res:2 = scf.if %cmp {
/// yield something(), true
/// } else {
/// yield something2(), false
/// }
/// print(%res#1)
///
/// becomes
/// %res = scf.if %cmp {
/// yield something()
/// } else {
/// yield something2()
/// }
/// print(%cmp)
///
/// Additionally if both branches yield the same value, replace all uses
/// of the result with the yielded value.
///
/// %res:2 = scf.if %cmp {
/// yield something(), %arg1
/// } else {
/// yield something2(), %arg1
/// }
/// print(%res#1)
///
/// becomes
/// %res = scf.if %cmp {
/// yield something()
/// } else {
/// yield something2()
/// }
/// print(%arg1)
///
struct ReplaceIfYieldWithConditionOrValue : public OpRewritePattern<IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(IfOp op,
PatternRewriter &rewriter) const override {
// Early exit if there are no results that could be replaced.
if (op.getNumResults() == 0)
return failure();
auto trueYield =
cast<scf::YieldOp>(op.getThenRegion().back().getTerminator());
auto falseYield =
cast<scf::YieldOp>(op.getElseRegion().back().getTerminator());
rewriter.setInsertionPoint(op->getBlock(),
op.getOperation()->getIterator());
bool changed = false;
Type i1Ty = rewriter.getI1Type();
for (auto tup : llvm::zip(trueYield.getResults(), falseYield.getResults(),
op.getResults())) {
Value trueResult, falseResult, opResult;
std::tie(trueResult, falseResult, opResult) = tup;
if (trueResult == falseResult) {
if (!opResult.use_empty()) {
opResult.replaceAllUsesWith(trueResult);
changed = true;
}
continue;
}
auto trueYield = trueResult.getDefiningOp<arith::ConstantOp>();
if (!trueYield)
continue;
if (!trueYield.getType().isInteger(1))
continue;
auto falseYield = falseResult.getDefiningOp<arith::ConstantOp>();
if (!falseYield)
continue;
bool trueVal = trueYield.getValue().cast<BoolAttr>().getValue();
bool falseVal = falseYield.getValue().cast<BoolAttr>().getValue();
if (!trueVal && falseVal) {
if (!opResult.use_empty()) {
Value notCond = rewriter.create<arith::XOrIOp>(
op.getLoc(), op.getCondition(),
rewriter.create<arith::ConstantOp>(
op.getLoc(), i1Ty, rewriter.getIntegerAttr(i1Ty, 1)));
opResult.replaceAllUsesWith(notCond);
changed = true;
}
}
if (trueVal && !falseVal) {
if (!opResult.use_empty()) {
opResult.replaceAllUsesWith(op.getCondition());
changed = true;
}
}
}
return success(changed);
}
};
/// Merge any consecutive scf.if's with the same condition.
///
/// scf.if %cond {
/// firstCodeTrue();...
/// } else {
/// firstCodeFalse();...
/// }
/// %res = scf.if %cond {
/// secondCodeTrue();...
/// } else {
/// secondCodeFalse();...
/// }
///
/// becomes
/// %res = scf.if %cmp {
/// firstCodeTrue();...
/// secondCodeTrue();...
/// } else {
/// firstCodeFalse();...
/// secondCodeFalse();...
/// }
struct CombineIfs : public OpRewritePattern<IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(IfOp nextIf,
PatternRewriter &rewriter) const override {
Block *parent = nextIf->getBlock();
if (nextIf == &parent->front())
return failure();
auto prevIf = dyn_cast<IfOp>(nextIf->getPrevNode());
if (!prevIf)
return failure();
if (nextIf.getCondition() != prevIf.getCondition())
return failure();
// Don't permit merging if a result of the first if is used
// within the second.
if (llvm::any_of(prevIf->getUsers(),
[&](Operation *user) { return nextIf->isAncestor(user); }))
return failure();
SmallVector<Type> mergedTypes(prevIf.getResultTypes());
llvm::append_range(mergedTypes, nextIf.getResultTypes());
IfOp combinedIf = rewriter.create<IfOp>(
nextIf.getLoc(), mergedTypes, nextIf.getCondition(), /*hasElse=*/false);
rewriter.eraseBlock(&combinedIf.getThenRegion().back());
YieldOp thenYield = prevIf.thenYield();
YieldOp thenYield2 = nextIf.thenYield();
combinedIf.getThenRegion().getBlocks().splice(
combinedIf.getThenRegion().getBlocks().begin(),
prevIf.getThenRegion().getBlocks());
rewriter.mergeBlocks(nextIf.thenBlock(), combinedIf.thenBlock());
rewriter.setInsertionPointToEnd(combinedIf.thenBlock());
SmallVector<Value> mergedYields(thenYield.getOperands());
llvm::append_range(mergedYields, thenYield2.getOperands());
rewriter.create<YieldOp>(thenYield2.getLoc(), mergedYields);
rewriter.eraseOp(thenYield);
rewriter.eraseOp(thenYield2);
combinedIf.getElseRegion().getBlocks().splice(
combinedIf.getElseRegion().getBlocks().begin(),
prevIf.getElseRegion().getBlocks());
if (!nextIf.getElseRegion().empty()) {
if (combinedIf.getElseRegion().empty()) {
combinedIf.getElseRegion().getBlocks().splice(
combinedIf.getElseRegion().getBlocks().begin(),
nextIf.getElseRegion().getBlocks());
} else {
YieldOp elseYield = combinedIf.elseYield();
YieldOp elseYield2 = nextIf.elseYield();
rewriter.mergeBlocks(nextIf.elseBlock(), combinedIf.elseBlock());
rewriter.setInsertionPointToEnd(combinedIf.elseBlock());
SmallVector<Value> mergedElseYields(elseYield.getOperands());
llvm::append_range(mergedElseYields, elseYield2.getOperands());
rewriter.create<YieldOp>(elseYield2.getLoc(), mergedElseYields);
rewriter.eraseOp(elseYield);
rewriter.eraseOp(elseYield2);
}
}
SmallVector<Value> prevValues;
SmallVector<Value> nextValues;
for (const auto &pair : llvm::enumerate(combinedIf.getResults())) {
if (pair.index() < prevIf.getNumResults())
prevValues.push_back(pair.value());
else
nextValues.push_back(pair.value());
}
rewriter.replaceOp(prevIf, prevValues);
rewriter.replaceOp(nextIf, nextValues);
return success();
}
};
/// Pattern to remove an empty else branch.
struct RemoveEmptyElseBranch : public OpRewritePattern<IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(IfOp ifOp,
PatternRewriter &rewriter) const override {
// Cannot remove else region when there are operation results.
if (ifOp.getNumResults())
return failure();
Block *elseBlock = ifOp.elseBlock();
if (!elseBlock || !llvm::hasSingleElement(*elseBlock))
return failure();
auto newIfOp = rewriter.cloneWithoutRegions(ifOp);
rewriter.inlineRegionBefore(ifOp.getThenRegion(), newIfOp.getThenRegion(),
newIfOp.getThenRegion().begin());
rewriter.eraseOp(ifOp);
return success();
}
};
/// Convert nested `if`s into `arith.andi` + single `if`.
///
/// scf.if %arg0 {
/// scf.if %arg1 {
/// ...
/// scf.yield
/// }
/// scf.yield
/// }
/// becomes
///
/// %0 = arith.andi %arg0, %arg1
/// scf.if %0 {
/// ...
/// scf.yield
/// }
struct CombineNestedIfs : public OpRewritePattern<IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(IfOp op,
PatternRewriter &rewriter) const override {
// Both `if` ops must not yield results and have only `then` block.
if (op->getNumResults() != 0 || op.elseBlock())
return failure();
auto nestedOps = op.thenBlock()->without_terminator();
// Nested `if` must be the only op in block.
if (!llvm::hasSingleElement(nestedOps))
return failure();
auto nestedIf = dyn_cast<IfOp>(*nestedOps.begin());
if (!nestedIf || nestedIf->getNumResults() != 0 || nestedIf.elseBlock())
return failure();
Location loc = op.getLoc();
Value newCondition = rewriter.create<arith::AndIOp>(
loc, op.getCondition(), nestedIf.getCondition());
auto newIf = rewriter.create<IfOp>(loc, newCondition);
Block *newIfBlock = newIf.thenBlock();
rewriter.eraseOp(newIfBlock->getTerminator());
rewriter.mergeBlocks(nestedIf.thenBlock(), newIfBlock);
rewriter.eraseOp(op);
return success();
}
};
} // namespace
void IfOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<CombineIfs, CombineNestedIfs, ConditionPropagation,
ConvertTrivialIfToSelect, RemoveEmptyElseBranch,
RemoveStaticCondition, RemoveUnusedResults,
ReplaceIfYieldWithConditionOrValue>(context);
}
Block *IfOp::thenBlock() { return &getThenRegion().back(); }
YieldOp IfOp::thenYield() { return cast<YieldOp>(&thenBlock()->back()); }
Block *IfOp::elseBlock() {
Region &r = getElseRegion();
if (r.empty())
return nullptr;
return &r.back();
}
YieldOp IfOp::elseYield() { return cast<YieldOp>(&elseBlock()->back()); }
//===----------------------------------------------------------------------===//
// ParallelOp
//===----------------------------------------------------------------------===//
void ParallelOp::build(
OpBuilder &builder, OperationState &result, ValueRange lowerBounds,
ValueRange upperBounds, ValueRange steps, ValueRange initVals,
function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
bodyBuilderFn) {
result.addOperands(lowerBounds);
result.addOperands(upperBounds);
result.addOperands(steps);
result.addOperands(initVals);
result.addAttribute(
ParallelOp::getOperandSegmentSizeAttr(),
builder.getI32VectorAttr({static_cast<int32_t>(lowerBounds.size()),
static_cast<int32_t>(upperBounds.size()),
static_cast<int32_t>(steps.size()),
static_cast<int32_t>(initVals.size())}));
result.addTypes(initVals.getTypes());
OpBuilder::InsertionGuard guard(builder);
unsigned numIVs = steps.size();
SmallVector<Type, 8> argTypes(numIVs, builder.getIndexType());
SmallVector<Location, 8> argLocs(numIVs, result.location);
Region *bodyRegion = result.addRegion();
Block *bodyBlock = builder.createBlock(bodyRegion, {}, argTypes, argLocs);
if (bodyBuilderFn) {
builder.setInsertionPointToStart(bodyBlock);
bodyBuilderFn(builder, result.location,
bodyBlock->getArguments().take_front(numIVs),
bodyBlock->getArguments().drop_front(numIVs));
}
ParallelOp::ensureTerminator(*bodyRegion, builder, result.location);
}
void ParallelOp::build(
OpBuilder &builder, OperationState &result, ValueRange lowerBounds,
ValueRange upperBounds, ValueRange steps,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn) {
// Only pass a non-null wrapper if bodyBuilderFn is non-null itself. Make sure
// we don't capture a reference to a temporary by constructing the lambda at
// function level.
auto wrappedBuilderFn = [&bodyBuilderFn](OpBuilder &nestedBuilder,
Location nestedLoc, ValueRange ivs,
ValueRange) {
bodyBuilderFn(nestedBuilder, nestedLoc, ivs);
};
function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)> wrapper;
if (bodyBuilderFn)
wrapper = wrappedBuilderFn;
build(builder, result, lowerBounds, upperBounds, steps, ValueRange(),
wrapper);
}
static LogicalResult verify(ParallelOp op) {
// Check that there is at least one value in lowerBound, upperBound and step.
// It is sufficient to test only step, because it is ensured already that the
// number of elements in lowerBound, upperBound and step are the same.
Operation::operand_range stepValues = op.getStep();
if (stepValues.empty())
return op.emitOpError(
"needs at least one tuple element for lowerBound, upperBound and step");
// Check whether all constant step values are positive.
for (Value stepValue : stepValues)
if (auto cst = stepValue.getDefiningOp<arith::ConstantIndexOp>())
if (cst.value() <= 0)
return op.emitOpError("constant step operand must be positive");
// Check that the body defines the same number of block arguments as the
// number of tuple elements in step.
Block *body = op.getBody();
if (body->getNumArguments() != stepValues.size())
return op.emitOpError()
<< "expects the same number of induction variables: "
<< body->getNumArguments()
<< " as bound and step values: " << stepValues.size();
for (auto arg : body->getArguments())
if (!arg.getType().isIndex())
return op.emitOpError(
"expects arguments for the induction variable to be of index type");
// Check that the yield has no results
Operation *yield = body->getTerminator();
if (yield->getNumOperands() != 0)
return yield->emitOpError() << "not allowed to have operands inside '"
<< ParallelOp::getOperationName() << "'";
// Check that the number of results is the same as the number of ReduceOps.
SmallVector<ReduceOp, 4> reductions(body->getOps<ReduceOp>());
auto resultsSize = op.getResults().size();
auto reductionsSize = reductions.size();
auto initValsSize = op.getInitVals().size();
if (resultsSize != reductionsSize)
return op.emitOpError()
<< "expects number of results: " << resultsSize
<< " to be the same as number of reductions: " << reductionsSize;
if (resultsSize != initValsSize)
return op.emitOpError()
<< "expects number of results: " << resultsSize
<< " to be the same as number of initial values: " << initValsSize;
// Check that the types of the results and reductions are the same.
for (auto resultAndReduce : llvm::zip(op.getResults(), reductions)) {
auto resultType = std::get<0>(resultAndReduce).getType();
auto reduceOp = std::get<1>(resultAndReduce);
auto reduceType = reduceOp.getOperand().getType();
if (resultType != reduceType)
return reduceOp.emitOpError()
<< "expects type of reduce: " << reduceType
<< " to be the same as result type: " << resultType;
}
return success();
}
static ParseResult parseParallelOp(OpAsmParser &parser,
OperationState &result) {
auto &builder = parser.getBuilder();
// Parse an opening `(` followed by induction variables followed by `)`
SmallVector<OpAsmParser::OperandType, 4> ivs;
if (parser.parseRegionArgumentList(ivs, /*requiredOperandCount=*/-1,
OpAsmParser::Delimiter::Paren))
return failure();
// Parse loop bounds.
SmallVector<OpAsmParser::OperandType, 4> lower;
if (parser.parseEqual() ||
parser.parseOperandList(lower, ivs.size(),
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(lower, builder.getIndexType(), result.operands))
return failure();
SmallVector<OpAsmParser::OperandType, 4> upper;
if (parser.parseKeyword("to") ||
parser.parseOperandList(upper, ivs.size(),
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(upper, builder.getIndexType(), result.operands))
return failure();
// Parse step values.
SmallVector<OpAsmParser::OperandType, 4> steps;
if (parser.parseKeyword("step") ||
parser.parseOperandList(steps, ivs.size(),
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(steps, builder.getIndexType(), result.operands))
return failure();
// Parse init values.
SmallVector<OpAsmParser::OperandType, 4> initVals;
if (succeeded(parser.parseOptionalKeyword("init"))) {
if (parser.parseOperandList(initVals, /*requiredOperandCount=*/-1,
OpAsmParser::Delimiter::Paren))
return failure();
}
// Parse optional results in case there is a reduce.
if (parser.parseOptionalArrowTypeList(result.types))
return failure();
// Now parse the body.
Region *body = result.addRegion();
SmallVector<Type, 4> types(ivs.size(), builder.getIndexType());
if (parser.parseRegion(*body, ivs, types))
return failure();
// Set `operand_segment_sizes` attribute.
result.addAttribute(
ParallelOp::getOperandSegmentSizeAttr(),
builder.getI32VectorAttr({static_cast<int32_t>(lower.size()),
static_cast<int32_t>(upper.size()),
static_cast<int32_t>(steps.size()),
static_cast<int32_t>(initVals.size())}));
// Parse attributes.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
if (!initVals.empty())
parser.resolveOperands(initVals, result.types, parser.getNameLoc(),
result.operands);
// Add a terminator if none was parsed.
ForOp::ensureTerminator(*body, builder, result.location);
return success();
}
static void print(OpAsmPrinter &p, ParallelOp op) {
p << " (" << op.getBody()->getArguments() << ") = (" << op.getLowerBound()
<< ") to (" << op.getUpperBound() << ") step (" << op.getStep() << ")";
if (!op.getInitVals().empty())
p << " init (" << op.getInitVals() << ")";
p.printOptionalArrowTypeList(op.getResultTypes());
p << ' ';
p.printRegion(op.getRegion(), /*printEntryBlockArgs=*/false);
p.printOptionalAttrDict(
op->getAttrs(), /*elidedAttrs=*/ParallelOp::getOperandSegmentSizeAttr());
}
Region &ParallelOp::getLoopBody() { return getRegion(); }
bool ParallelOp::isDefinedOutsideOfLoop(Value value) {
return !getRegion().isAncestor(value.getParentRegion());
}
LogicalResult ParallelOp::moveOutOfLoop(ArrayRef<Operation *> ops) {
for (auto *op : ops)
op->moveBefore(*this);
return success();
}
ParallelOp mlir::scf::getParallelForInductionVarOwner(Value val) {
auto ivArg = val.dyn_cast<BlockArgument>();
if (!ivArg)
return ParallelOp();
assert(ivArg.getOwner() && "unlinked block argument");
auto *containingOp = ivArg.getOwner()->getParentOp();
return dyn_cast<ParallelOp>(containingOp);
}
namespace {
// Collapse loop dimensions that perform a single iteration.
struct CollapseSingleIterationLoops : public OpRewritePattern<ParallelOp> {
using OpRewritePattern<ParallelOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ParallelOp op,
PatternRewriter &rewriter) const override {
BlockAndValueMapping mapping;
// Compute new loop bounds that omit all single-iteration loop dimensions.
SmallVector<Value, 2> newLowerBounds;
SmallVector<Value, 2> newUpperBounds;
SmallVector<Value, 2> newSteps;
newLowerBounds.reserve(op.getLowerBound().size());
newUpperBounds.reserve(op.getUpperBound().size());
newSteps.reserve(op.getStep().size());
for (auto dim : llvm::zip(op.getLowerBound(), op.getUpperBound(),
op.getStep(), op.getInductionVars())) {
Value lowerBound, upperBound, step, iv;
std::tie(lowerBound, upperBound, step, iv) = dim;
// Collect the statically known loop bounds.
auto lowerBoundConstant =
dyn_cast_or_null<arith::ConstantIndexOp>(lowerBound.getDefiningOp());
auto upperBoundConstant =
dyn_cast_or_null<arith::ConstantIndexOp>(upperBound.getDefiningOp());
auto stepConstant =
dyn_cast_or_null<arith::ConstantIndexOp>(step.getDefiningOp());
// Replace the loop induction variable by the lower bound if the loop
// performs a single iteration. Otherwise, copy the loop bounds.
if (lowerBoundConstant && upperBoundConstant && stepConstant &&
(upperBoundConstant.value() - lowerBoundConstant.value()) > 0 &&
(upperBoundConstant.value() - lowerBoundConstant.value()) <=
stepConstant.value()) {
mapping.map(iv, lowerBound);
} else {
newLowerBounds.push_back(lowerBound);
newUpperBounds.push_back(upperBound);
newSteps.push_back(step);
}
}
// Exit if none of the loop dimensions perform a single iteration.
if (newLowerBounds.size() == op.getLowerBound().size())
return failure();
if (newLowerBounds.empty()) {
// All of the loop dimensions perform a single iteration. Inline
// loop body and nested ReduceOp's
SmallVector<Value> results;
results.reserve(op.getInitVals().size());
for (auto &bodyOp : op.getLoopBody().front().without_terminator()) {
auto reduce = dyn_cast<ReduceOp>(bodyOp);
if (!reduce) {
rewriter.clone(bodyOp, mapping);
continue;
}
Block &reduceBlock = reduce.getReductionOperator().front();
auto initValIndex = results.size();
mapping.map(reduceBlock.getArgument(0), op.getInitVals()[initValIndex]);
mapping.map(reduceBlock.getArgument(1),
mapping.lookupOrDefault(reduce.getOperand()));
for (auto &reduceBodyOp : reduceBlock.without_terminator())
rewriter.clone(reduceBodyOp, mapping);
auto result = mapping.lookupOrDefault(
cast<ReduceReturnOp>(reduceBlock.getTerminator()).getResult());
results.push_back(result);
}
rewriter.replaceOp(op, results);
return success();
}
// Replace the parallel loop by lower-dimensional parallel loop.
auto newOp =
rewriter.create<ParallelOp>(op.getLoc(), newLowerBounds, newUpperBounds,
newSteps, op.getInitVals(), nullptr);
// Clone the loop body and remap the block arguments of the collapsed loops
// (inlining does not support a cancellable block argument mapping).
rewriter.cloneRegionBefore(op.getRegion(), newOp.getRegion(),
newOp.getRegion().begin(), mapping);
rewriter.replaceOp(op, newOp.getResults());
return success();
}
};
/// Removes parallel loops in which at least one lower/upper bound pair consists
/// of the same values - such loops have an empty iteration domain.
struct RemoveEmptyParallelLoops : public OpRewritePattern<ParallelOp> {
using OpRewritePattern<ParallelOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ParallelOp op,
PatternRewriter &rewriter) const override {
for (auto dim : llvm::zip(op.getLowerBound(), op.getUpperBound())) {
if (std::get<0>(dim) == std::get<1>(dim)) {
rewriter.replaceOp(op, op.getInitVals());
return success();
}
}
return failure();
}
};
struct MergeNestedParallelLoops : public OpRewritePattern<ParallelOp> {
using OpRewritePattern<ParallelOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ParallelOp op,
PatternRewriter &rewriter) const override {
Block &outerBody = op.getLoopBody().front();
if (!llvm::hasSingleElement(outerBody.without_terminator()))
return failure();
auto innerOp = dyn_cast<ParallelOp>(outerBody.front());
if (!innerOp)
return failure();
auto hasVal = [](const auto &range, Value val) {
return llvm::find(range, val) != range.end();
};
for (auto val : outerBody.getArguments())
if (hasVal(innerOp.getLowerBound(), val) ||
hasVal(innerOp.getUpperBound(), val) ||
hasVal(innerOp.getStep(), val))
return failure();
// Reductions are not supported yet.
if (!op.getInitVals().empty() || !innerOp.getInitVals().empty())
return failure();
auto bodyBuilder = [&](OpBuilder &builder, Location /*loc*/,
ValueRange iterVals, ValueRange) {
Block &innerBody = innerOp.getLoopBody().front();
assert(iterVals.size() ==
(outerBody.getNumArguments() + innerBody.getNumArguments()));
BlockAndValueMapping mapping;
mapping.map(outerBody.getArguments(),
iterVals.take_front(outerBody.getNumArguments()));
mapping.map(innerBody.getArguments(),
iterVals.take_back(innerBody.getNumArguments()));
for (Operation &op : innerBody.without_terminator())
builder.clone(op, mapping);
};
auto concatValues = [](const auto &first, const auto &second) {
SmallVector<Value> ret;
ret.reserve(first.size() + second.size());
ret.assign(first.begin(), first.end());
ret.append(second.begin(), second.end());
return ret;
};
auto newLowerBounds =
concatValues(op.getLowerBound(), innerOp.getLowerBound());
auto newUpperBounds =
concatValues(op.getUpperBound(), innerOp.getUpperBound());
auto newSteps = concatValues(op.getStep(), innerOp.getStep());
rewriter.replaceOpWithNewOp<ParallelOp>(op, newLowerBounds, newUpperBounds,
newSteps, llvm::None, bodyBuilder);
return success();
}
};
} // namespace
void ParallelOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<CollapseSingleIterationLoops, RemoveEmptyParallelLoops,
MergeNestedParallelLoops>(context);
}
//===----------------------------------------------------------------------===//
// ReduceOp
//===----------------------------------------------------------------------===//
void ReduceOp::build(
OpBuilder &builder, OperationState &result, Value operand,
function_ref<void(OpBuilder &, Location, Value, Value)> bodyBuilderFn) {
auto type = operand.getType();
result.addOperands(operand);
OpBuilder::InsertionGuard guard(builder);
Region *bodyRegion = result.addRegion();
Block *body = builder.createBlock(bodyRegion, {}, ArrayRef<Type>{type, type},
{result.location, result.location});
if (bodyBuilderFn)
bodyBuilderFn(builder, result.location, body->getArgument(0),
body->getArgument(1));
}
static LogicalResult verify(ReduceOp op) {
// The region of a ReduceOp has two arguments of the same type as its operand.
auto type = op.getOperand().getType();
Block &block = op.getReductionOperator().front();
if (block.empty())
return op.emitOpError("the block inside reduce should not be empty");
if (block.getNumArguments() != 2 ||
llvm::any_of(block.getArguments(), [&](const BlockArgument &arg) {
return arg.getType() != type;
}))
return op.emitOpError()
<< "expects two arguments to reduce block of type " << type;
// Check that the block is terminated by a ReduceReturnOp.
if (!isa<ReduceReturnOp>(block.getTerminator()))
return op.emitOpError("the block inside reduce should be terminated with a "
"'scf.reduce.return' op");
return success();
}
static ParseResult parseReduceOp(OpAsmParser &parser, OperationState &result) {
// Parse an opening `(` followed by the reduced value followed by `)`
OpAsmParser::OperandType operand;
if (parser.parseLParen() || parser.parseOperand(operand) ||
parser.parseRParen())
return failure();
Type resultType;
// Parse the type of the operand (and also what reduce computes on).
if (parser.parseColonType(resultType) ||
parser.resolveOperand(operand, resultType, result.operands))
return failure();
// Now parse the body.
Region *body = result.addRegion();
if (parser.parseRegion(*body, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
return success();
}
static void print(OpAsmPrinter &p, ReduceOp op) {
p << "(" << op.getOperand() << ") ";
p << " : " << op.getOperand().getType() << ' ';
p.printRegion(op.getReductionOperator());
}
//===----------------------------------------------------------------------===//
// ReduceReturnOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ReduceReturnOp op) {
// The type of the return value should be the same type as the type of the
// operand of the enclosing ReduceOp.
auto reduceOp = cast<ReduceOp>(op->getParentOp());
Type reduceType = reduceOp.getOperand().getType();
if (reduceType != op.getResult().getType())
return op.emitOpError() << "needs to have type " << reduceType
<< " (the type of the enclosing ReduceOp)";
return success();
}
//===----------------------------------------------------------------------===//
// WhileOp
//===----------------------------------------------------------------------===//
OperandRange WhileOp::getSuccessorEntryOperands(unsigned index) {
assert(index == 0 &&
"WhileOp is expected to branch only to the first region");
return getInits();
}
ConditionOp WhileOp::getConditionOp() {
return cast<ConditionOp>(getBefore().front().getTerminator());
}
YieldOp WhileOp::getYieldOp() {
return cast<YieldOp>(getAfter().front().getTerminator());
}
Block::BlockArgListType WhileOp::getBeforeArguments() {
return getBefore().front().getArguments();
}
Block::BlockArgListType WhileOp::getAfterArguments() {
return getAfter().front().getArguments();
}
void WhileOp::getSuccessorRegions(Optional<unsigned> index,
ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> ®ions) {
(void)operands;
if (!index.hasValue()) {
regions.emplace_back(&getBefore(), getBefore().getArguments());
return;
}
assert(*index < 2 && "there are only two regions in a WhileOp");
if (*index == 0) {
regions.emplace_back(&getAfter(), getAfter().getArguments());
regions.emplace_back(getResults());
return;
}
regions.emplace_back(&getBefore(), getBefore().getArguments());
}
/// Parses a `while` op.
///
/// op ::= `scf.while` assignments `:` function-type region `do` region
/// `attributes` attribute-dict
/// initializer ::= /* empty */ | `(` assignment-list `)`
/// assignment-list ::= assignment | assignment `,` assignment-list
/// assignment ::= ssa-value `=` ssa-value
static ParseResult parseWhileOp(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::OperandType, 4> regionArgs, operands;
Region *before = result.addRegion();
Region *after = result.addRegion();
OptionalParseResult listResult =
parser.parseOptionalAssignmentList(regionArgs, operands);
if (listResult.hasValue() && failed(listResult.getValue()))
return failure();
FunctionType functionType;
SMLoc typeLoc = parser.getCurrentLocation();
if (failed(parser.parseColonType(functionType)))
return failure();
result.addTypes(functionType.getResults());
if (functionType.getNumInputs() != operands.size()) {
return parser.emitError(typeLoc)
<< "expected as many input types as operands "
<< "(expected " << operands.size() << " got "
<< functionType.getNumInputs() << ")";
}
// Resolve input operands.
if (failed(parser.resolveOperands(operands, functionType.getInputs(),
parser.getCurrentLocation(),
result.operands)))
return failure();
return failure(
parser.parseRegion(*before, regionArgs, functionType.getInputs()) ||
parser.parseKeyword("do") || parser.parseRegion(*after) ||
parser.parseOptionalAttrDictWithKeyword(result.attributes));
}
/// Prints a `while` op.
static void print(OpAsmPrinter &p, scf::WhileOp op) {
printInitializationList(p, op.getBefore().front().getArguments(),
op.getInits(), " ");
p << " : ";
p.printFunctionalType(op.getInits().getTypes(), op.getResults().getTypes());
p << ' ';
p.printRegion(op.getBefore(), /*printEntryBlockArgs=*/false);
p << " do ";
p.printRegion(op.getAfter());
p.printOptionalAttrDictWithKeyword(op->getAttrs());
}
/// Verifies that two ranges of types match, i.e. have the same number of
/// entries and that types are pairwise equals. Reports errors on the given
/// operation in case of mismatch.
template <typename OpTy>
static LogicalResult verifyTypeRangesMatch(OpTy op, TypeRange left,
TypeRange right, StringRef message) {
if (left.size() != right.size())
return op.emitOpError("expects the same number of ") << message;
for (unsigned i = 0, e = left.size(); i < e; ++i) {
if (left[i] != right[i]) {
InFlightDiagnostic diag = op.emitOpError("expects the same types for ")
<< message;
diag.attachNote() << "for argument " << i << ", found " << left[i]
<< " and " << right[i];
return diag;
}
}
return success();
}
/// Verifies that the first block of the given `region` is terminated by a
/// YieldOp. Reports errors on the given operation if it is not the case.
template <typename TerminatorTy>
static TerminatorTy verifyAndGetTerminator(scf::WhileOp op, Region ®ion,
StringRef errorMessage) {
Operation *terminatorOperation = region.front().getTerminator();
if (auto yield = dyn_cast_or_null<TerminatorTy>(terminatorOperation))
return yield;
auto diag = op.emitOpError(errorMessage);
if (terminatorOperation)
diag.attachNote(terminatorOperation->getLoc()) << "terminator here";
return nullptr;
}
static LogicalResult verify(scf::WhileOp op) {
if (failed(RegionBranchOpInterface::verifyTypes(op)))
return failure();
auto beforeTerminator = verifyAndGetTerminator<scf::ConditionOp>(
op, op.getBefore(),
"expects the 'before' region to terminate with 'scf.condition'");
if (!beforeTerminator)
return failure();
auto afterTerminator = verifyAndGetTerminator<scf::YieldOp>(
op, op.getAfter(),
"expects the 'after' region to terminate with 'scf.yield'");
return success(afterTerminator != nullptr);
}
namespace {
/// Replace uses of the condition within the do block with true, since otherwise
/// the block would not be evaluated.
///
/// scf.while (..) : (i1, ...) -> ... {
/// %condition = call @evaluate_condition() : () -> i1
/// scf.condition(%condition) %condition : i1, ...
/// } do {
/// ^bb0(%arg0: i1, ...):
/// use(%arg0)
/// ...
///
/// becomes
/// scf.while (..) : (i1, ...) -> ... {
/// %condition = call @evaluate_condition() : () -> i1
/// scf.condition(%condition) %condition : i1, ...
/// } do {
/// ^bb0(%arg0: i1, ...):
/// use(%true)
/// ...
struct WhileConditionTruth : public OpRewritePattern<WhileOp> {
using OpRewritePattern<WhileOp>::OpRewritePattern;
LogicalResult matchAndRewrite(WhileOp op,
PatternRewriter &rewriter) const override {
auto term = op.getConditionOp();
// These variables serve to prevent creating duplicate constants
// and hold constant true or false values.
Value constantTrue = nullptr;
bool replaced = false;
for (auto yieldedAndBlockArgs :
llvm::zip(term.getArgs(), op.getAfterArguments())) {
if (std::get<0>(yieldedAndBlockArgs) == term.getCondition()) {
if (!std::get<1>(yieldedAndBlockArgs).use_empty()) {
if (!constantTrue)
constantTrue = rewriter.create<arith::ConstantOp>(
op.getLoc(), term.getCondition().getType(),
rewriter.getBoolAttr(true));
std::get<1>(yieldedAndBlockArgs).replaceAllUsesWith(constantTrue);
replaced = true;
}
}
}
return success(replaced);
}
};
/// Remove WhileOp results that are also unused in 'after' block.
///
/// %0:2 = scf.while () : () -> (i32, i64) {
/// %condition = "test.condition"() : () -> i1
/// %v1 = "test.get_some_value"() : () -> i32
/// %v2 = "test.get_some_value"() : () -> i64
/// scf.condition(%condition) %v1, %v2 : i32, i64
/// } do {
/// ^bb0(%arg0: i32, %arg1: i64):
/// "test.use"(%arg0) : (i32) -> ()
/// scf.yield
/// }
/// return %0#0 : i32
///
/// becomes
/// %0 = scf.while () : () -> (i32) {
/// %condition = "test.condition"() : () -> i1
/// %v1 = "test.get_some_value"() : () -> i32
/// %v2 = "test.get_some_value"() : () -> i64
/// scf.condition(%condition) %v1 : i32
/// } do {
/// ^bb0(%arg0: i32):
/// "test.use"(%arg0) : (i32) -> ()
/// scf.yield
/// }
/// return %0 : i32
struct WhileUnusedResult : public OpRewritePattern<WhileOp> {
using OpRewritePattern<WhileOp>::OpRewritePattern;
LogicalResult matchAndRewrite(WhileOp op,
PatternRewriter &rewriter) const override {
auto term = op.getConditionOp();
auto afterArgs = op.getAfterArguments();
auto termArgs = term.getArgs();
// Collect results mapping, new terminator args and new result types.
SmallVector<unsigned> newResultsIndices;
SmallVector<Type> newResultTypes;
SmallVector<Value> newTermArgs;
SmallVector<Location> newArgLocs;
bool needUpdate = false;
for (const auto &it :
llvm::enumerate(llvm::zip(op.getResults(), afterArgs, termArgs))) {
auto i = static_cast<unsigned>(it.index());
Value result = std::get<0>(it.value());
Value afterArg = std::get<1>(it.value());
Value termArg = std::get<2>(it.value());
if (result.use_empty() && afterArg.use_empty()) {
needUpdate = true;
} else {
newResultsIndices.emplace_back(i);
newTermArgs.emplace_back(termArg);
newResultTypes.emplace_back(result.getType());
newArgLocs.emplace_back(result.getLoc());
}
}
if (!needUpdate)
return failure();
{
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(term);
rewriter.replaceOpWithNewOp<ConditionOp>(term, term.getCondition(),
newTermArgs);
}
auto newWhile =
rewriter.create<WhileOp>(op.getLoc(), newResultTypes, op.getInits());
Block &newAfterBlock = *rewriter.createBlock(
&newWhile.getAfter(), /*insertPt*/ {}, newResultTypes, newArgLocs);
// Build new results list and new after block args (unused entries will be
// null).
SmallVector<Value> newResults(op.getNumResults());
SmallVector<Value> newAfterBlockArgs(op.getNumResults());
for (const auto &it : llvm::enumerate(newResultsIndices)) {
newResults[it.value()] = newWhile.getResult(it.index());
newAfterBlockArgs[it.value()] = newAfterBlock.getArgument(it.index());
}
rewriter.inlineRegionBefore(op.getBefore(), newWhile.getBefore(),
newWhile.getBefore().begin());
Block &afterBlock = op.getAfter().front();
rewriter.mergeBlocks(&afterBlock, &newAfterBlock, newAfterBlockArgs);
rewriter.replaceOp(op, newResults);
return success();
}
};
/// Replace operations equivalent to the condition in the do block with true,
/// since otherwise the block would not be evaluated.
///
/// scf.while (..) : (i32, ...) -> ... {
/// %z = ... : i32
/// %condition = cmpi pred %z, %a
/// scf.condition(%condition) %z : i32, ...
/// } do {
/// ^bb0(%arg0: i32, ...):
/// %condition2 = cmpi pred %arg0, %a
/// use(%condition2)
/// ...
///
/// becomes
/// scf.while (..) : (i32, ...) -> ... {
/// %z = ... : i32
/// %condition = cmpi pred %z, %a
/// scf.condition(%condition) %z : i32, ...
/// } do {
/// ^bb0(%arg0: i32, ...):
/// use(%true)
/// ...
struct WhileCmpCond : public OpRewritePattern<scf::WhileOp> {
using OpRewritePattern<scf::WhileOp>::OpRewritePattern;
LogicalResult matchAndRewrite(scf::WhileOp op,
PatternRewriter &rewriter) const override {
using namespace scf;
auto cond = op.getConditionOp();
auto cmp = cond.getCondition().getDefiningOp<arith::CmpIOp>();
if (!cmp)
return failure();
bool changed = false;
for (auto tup :
llvm::zip(cond.getArgs(), op.getAfter().front().getArguments())) {
for (size_t opIdx = 0; opIdx < 2; opIdx++) {
if (std::get<0>(tup) != cmp.getOperand(opIdx))
continue;
for (OpOperand &u :
llvm::make_early_inc_range(std::get<1>(tup).getUses())) {
auto cmp2 = dyn_cast<arith::CmpIOp>(u.getOwner());
if (!cmp2)
continue;
// For a binary operator 1-opIdx gets the other side.
if (cmp2.getOperand(1 - opIdx) != cmp.getOperand(1 - opIdx))
continue;
bool samePredicate;
if (cmp2.getPredicate() == cmp.getPredicate())
samePredicate = true;
else if (cmp2.getPredicate() ==
arith::invertPredicate(cmp.getPredicate()))
samePredicate = false;
else
continue;
rewriter.replaceOpWithNewOp<arith::ConstantIntOp>(cmp2, samePredicate,
1);
changed = true;
}
}
}
return success(changed);
}
};
struct WhileUnusedArg : public OpRewritePattern<WhileOp> {
using OpRewritePattern<WhileOp>::OpRewritePattern;
LogicalResult matchAndRewrite(WhileOp op,
PatternRewriter &rewriter) const override {
if (!llvm::any_of(op.getBeforeArguments(),
[](Value arg) { return arg.use_empty(); }))
return failure();
YieldOp yield = op.getYieldOp();
// Collect results mapping, new terminator args and new result types.
SmallVector<Value> newYields;
SmallVector<Value> newInits;
SmallVector<unsigned> argsToErase;
for (const auto &it : llvm::enumerate(llvm::zip(
op.getBeforeArguments(), yield.getOperands(), op.getInits()))) {
Value beforeArg = std::get<0>(it.value());
Value yieldValue = std::get<1>(it.value());
Value initValue = std::get<2>(it.value());
if (beforeArg.use_empty()) {
argsToErase.push_back(it.index());
} else {
newYields.emplace_back(yieldValue);
newInits.emplace_back(initValue);
}
}
if (argsToErase.empty())
return failure();
rewriter.startRootUpdate(op);
op.getBefore().front().eraseArguments(argsToErase);
rewriter.finalizeRootUpdate(op);
WhileOp replacement =
rewriter.create<WhileOp>(op.getLoc(), op.getResultTypes(), newInits);
replacement.getBefore().takeBody(op.getBefore());
replacement.getAfter().takeBody(op.getAfter());
rewriter.replaceOp(op, replacement.getResults());
rewriter.setInsertionPoint(yield);
rewriter.replaceOpWithNewOp<YieldOp>(yield, newYields);
return success();
}
};
} // namespace
void WhileOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.insert<WhileConditionTruth, WhileUnusedResult, WhileCmpCond,
WhileUnusedArg>(context);
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/SCF/SCFOps.cpp.inc"
|