File: SCF.cpp

package info (click to toggle)
llvm-toolchain-14 1%3A14.0.6-12
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,496,180 kB
  • sloc: cpp: 5,593,972; ansic: 986,872; asm: 585,869; python: 184,223; objc: 72,530; lisp: 31,119; f90: 27,793; javascript: 9,780; pascal: 9,762; sh: 9,482; perl: 7,468; ml: 5,432; awk: 3,523; makefile: 2,538; xml: 953; cs: 573; fortran: 567
file content (2565 lines) | stat: -rw-r--r-- 97,647 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
//===- SCF.cpp - Structured Control Flow Operations -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Transforms/InliningUtils.h"

using namespace mlir;
using namespace mlir::scf;

#include "mlir/Dialect/SCF/SCFOpsDialect.cpp.inc"

//===----------------------------------------------------------------------===//
// SCFDialect Dialect Interfaces
//===----------------------------------------------------------------------===//

namespace {
struct SCFInlinerInterface : public DialectInlinerInterface {
  using DialectInlinerInterface::DialectInlinerInterface;
  // We don't have any special restrictions on what can be inlined into
  // destination regions (e.g. while/conditional bodies). Always allow it.
  bool isLegalToInline(Region *dest, Region *src, bool wouldBeCloned,
                       BlockAndValueMapping &valueMapping) const final {
    return true;
  }
  // Operations in scf dialect are always legal to inline since they are
  // pure.
  bool isLegalToInline(Operation *, Region *, bool,
                       BlockAndValueMapping &) const final {
    return true;
  }
  // Handle the given inlined terminator by replacing it with a new operation
  // as necessary. Required when the region has only one block.
  void handleTerminator(Operation *op,
                        ArrayRef<Value> valuesToRepl) const final {
    auto retValOp = dyn_cast<scf::YieldOp>(op);
    if (!retValOp)
      return;

    for (auto retValue : llvm::zip(valuesToRepl, retValOp.getOperands())) {
      std::get<0>(retValue).replaceAllUsesWith(std::get<1>(retValue));
    }
  }
};
} // namespace

//===----------------------------------------------------------------------===//
// SCFDialect
//===----------------------------------------------------------------------===//

void SCFDialect::initialize() {
  addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/SCF/SCFOps.cpp.inc"
      >();
  addInterfaces<SCFInlinerInterface>();
}

/// Default callback for IfOp builders. Inserts a yield without arguments.
void mlir::scf::buildTerminatedBody(OpBuilder &builder, Location loc) {
  builder.create<scf::YieldOp>(loc);
}

//===----------------------------------------------------------------------===//
// ExecuteRegionOp
//===----------------------------------------------------------------------===//

/// Replaces the given op with the contents of the given single-block region,
/// using the operands of the block terminator to replace operation results.
static void replaceOpWithRegion(PatternRewriter &rewriter, Operation *op,
                                Region &region, ValueRange blockArgs = {}) {
  assert(llvm::hasSingleElement(region) && "expected single-region block");
  Block *block = &region.front();
  Operation *terminator = block->getTerminator();
  ValueRange results = terminator->getOperands();
  rewriter.mergeBlockBefore(block, op, blockArgs);
  rewriter.replaceOp(op, results);
  rewriter.eraseOp(terminator);
}

///
/// (ssa-id `=`)? `execute_region` `->` function-result-type `{`
///    block+
/// `}`
///
/// Example:
///   scf.execute_region -> i32 {
///     %idx = load %rI[%i] : memref<128xi32>
///     return %idx : i32
///   }
///
static ParseResult parseExecuteRegionOp(OpAsmParser &parser,
                                        OperationState &result) {
  if (parser.parseOptionalArrowTypeList(result.types))
    return failure();

  // Introduce the body region and parse it.
  Region *body = result.addRegion();
  if (parser.parseRegion(*body, /*arguments=*/{}, /*argTypes=*/{}) ||
      parser.parseOptionalAttrDict(result.attributes))
    return failure();

  return success();
}

static void print(OpAsmPrinter &p, ExecuteRegionOp op) {
  p.printOptionalArrowTypeList(op.getResultTypes());

  p << ' ';
  p.printRegion(op.getRegion(),
                /*printEntryBlockArgs=*/false,
                /*printBlockTerminators=*/true);

  p.printOptionalAttrDict(op->getAttrs());
}

static LogicalResult verify(ExecuteRegionOp op) {
  if (op.getRegion().empty())
    return op.emitOpError("region needs to have at least one block");
  if (op.getRegion().front().getNumArguments() > 0)
    return op.emitOpError("region cannot have any arguments");
  return success();
}

// Inline an ExecuteRegionOp if it only contains one block.
//     "test.foo"() : () -> ()
//      %v = scf.execute_region -> i64 {
//        %x = "test.val"() : () -> i64
//        scf.yield %x : i64
//      }
//      "test.bar"(%v) : (i64) -> ()
//
//  becomes
//
//     "test.foo"() : () -> ()
//     %x = "test.val"() : () -> i64
//     "test.bar"(%x) : (i64) -> ()
//
struct SingleBlockExecuteInliner : public OpRewritePattern<ExecuteRegionOp> {
  using OpRewritePattern<ExecuteRegionOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(ExecuteRegionOp op,
                                PatternRewriter &rewriter) const override {
    if (!llvm::hasSingleElement(op.getRegion()))
      return failure();
    replaceOpWithRegion(rewriter, op, op.getRegion());
    return success();
  }
};

// Inline an ExecuteRegionOp if its parent can contain multiple blocks.
// TODO generalize the conditions for operations which can be inlined into.
// func @func_execute_region_elim() {
//     "test.foo"() : () -> ()
//     %v = scf.execute_region -> i64 {
//       %c = "test.cmp"() : () -> i1
//       cond_br %c, ^bb2, ^bb3
//     ^bb2:
//       %x = "test.val1"() : () -> i64
//       br ^bb4(%x : i64)
//     ^bb3:
//       %y = "test.val2"() : () -> i64
//       br ^bb4(%y : i64)
//     ^bb4(%z : i64):
//       scf.yield %z : i64
//     }
//     "test.bar"(%v) : (i64) -> ()
//   return
// }
//
//  becomes
//
// func @func_execute_region_elim() {
//    "test.foo"() : () -> ()
//    %c = "test.cmp"() : () -> i1
//    cond_br %c, ^bb1, ^bb2
//  ^bb1:  // pred: ^bb0
//    %x = "test.val1"() : () -> i64
//    br ^bb3(%x : i64)
//  ^bb2:  // pred: ^bb0
//    %y = "test.val2"() : () -> i64
//    br ^bb3(%y : i64)
//  ^bb3(%z: i64):  // 2 preds: ^bb1, ^bb2
//    "test.bar"(%z) : (i64) -> ()
//    return
//  }
//
struct MultiBlockExecuteInliner : public OpRewritePattern<ExecuteRegionOp> {
  using OpRewritePattern<ExecuteRegionOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(ExecuteRegionOp op,
                                PatternRewriter &rewriter) const override {
    if (!isa<FuncOp, ExecuteRegionOp>(op->getParentOp()))
      return failure();

    Block *prevBlock = op->getBlock();
    Block *postBlock = rewriter.splitBlock(prevBlock, op->getIterator());
    rewriter.setInsertionPointToEnd(prevBlock);

    rewriter.create<BranchOp>(op.getLoc(), &op.getRegion().front());

    for (Block &blk : op.getRegion()) {
      if (YieldOp yieldOp = dyn_cast<YieldOp>(blk.getTerminator())) {
        rewriter.setInsertionPoint(yieldOp);
        rewriter.create<BranchOp>(yieldOp.getLoc(), postBlock,
                                  yieldOp.getResults());
        rewriter.eraseOp(yieldOp);
      }
    }

    rewriter.inlineRegionBefore(op.getRegion(), postBlock);
    SmallVector<Value> blockArgs;

    for (auto res : op.getResults())
      blockArgs.push_back(postBlock->addArgument(res.getType(), res.getLoc()));

    rewriter.replaceOp(op, blockArgs);
    return success();
  }
};

void ExecuteRegionOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                                  MLIRContext *context) {
  results.add<SingleBlockExecuteInliner, MultiBlockExecuteInliner>(context);
}

//===----------------------------------------------------------------------===//
// ConditionOp
//===----------------------------------------------------------------------===//

MutableOperandRange
ConditionOp::getMutableSuccessorOperands(Optional<unsigned> index) {
  // Pass all operands except the condition to the successor region.
  return getArgsMutable();
}

//===----------------------------------------------------------------------===//
// ForOp
//===----------------------------------------------------------------------===//

void ForOp::build(OpBuilder &builder, OperationState &result, Value lb,
                  Value ub, Value step, ValueRange iterArgs,
                  BodyBuilderFn bodyBuilder) {
  result.addOperands({lb, ub, step});
  result.addOperands(iterArgs);
  for (Value v : iterArgs)
    result.addTypes(v.getType());
  Region *bodyRegion = result.addRegion();
  bodyRegion->push_back(new Block);
  Block &bodyBlock = bodyRegion->front();
  bodyBlock.addArgument(builder.getIndexType(), result.location);
  for (Value v : iterArgs)
    bodyBlock.addArgument(v.getType(), v.getLoc());

  // Create the default terminator if the builder is not provided and if the
  // iteration arguments are not provided. Otherwise, leave this to the caller
  // because we don't know which values to return from the loop.
  if (iterArgs.empty() && !bodyBuilder) {
    ForOp::ensureTerminator(*bodyRegion, builder, result.location);
  } else if (bodyBuilder) {
    OpBuilder::InsertionGuard guard(builder);
    builder.setInsertionPointToStart(&bodyBlock);
    bodyBuilder(builder, result.location, bodyBlock.getArgument(0),
                bodyBlock.getArguments().drop_front());
  }
}

static LogicalResult verify(ForOp op) {
  if (auto cst = op.getStep().getDefiningOp<arith::ConstantIndexOp>())
    if (cst.value() <= 0)
      return op.emitOpError("constant step operand must be positive");

  // Check that the body defines as single block argument for the induction
  // variable.
  auto *body = op.getBody();
  if (!body->getArgument(0).getType().isIndex())
    return op.emitOpError(
        "expected body first argument to be an index argument for "
        "the induction variable");

  auto opNumResults = op.getNumResults();
  if (opNumResults == 0)
    return success();
  // If ForOp defines values, check that the number and types of
  // the defined values match ForOp initial iter operands and backedge
  // basic block arguments.
  if (op.getNumIterOperands() != opNumResults)
    return op.emitOpError(
        "mismatch in number of loop-carried values and defined values");
  if (op.getNumRegionIterArgs() != opNumResults)
    return op.emitOpError(
        "mismatch in number of basic block args and defined values");
  auto iterOperands = op.getIterOperands();
  auto iterArgs = op.getRegionIterArgs();
  auto opResults = op.getResults();
  unsigned i = 0;
  for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
    if (std::get<0>(e).getType() != std::get<2>(e).getType())
      return op.emitOpError() << "types mismatch between " << i
                              << "th iter operand and defined value";
    if (std::get<1>(e).getType() != std::get<2>(e).getType())
      return op.emitOpError() << "types mismatch between " << i
                              << "th iter region arg and defined value";

    i++;
  }

  return RegionBranchOpInterface::verifyTypes(op);
}

/// Prints the initialization list in the form of
///   <prefix>(%inner = %outer, %inner2 = %outer2, <...>)
/// where 'inner' values are assumed to be region arguments and 'outer' values
/// are regular SSA values.
static void printInitializationList(OpAsmPrinter &p,
                                    Block::BlockArgListType blocksArgs,
                                    ValueRange initializers,
                                    StringRef prefix = "") {
  assert(blocksArgs.size() == initializers.size() &&
         "expected same length of arguments and initializers");
  if (initializers.empty())
    return;

  p << prefix << '(';
  llvm::interleaveComma(llvm::zip(blocksArgs, initializers), p, [&](auto it) {
    p << std::get<0>(it) << " = " << std::get<1>(it);
  });
  p << ")";
}

static void print(OpAsmPrinter &p, ForOp op) {
  p << " " << op.getInductionVar() << " = " << op.getLowerBound() << " to "
    << op.getUpperBound() << " step " << op.getStep();

  printInitializationList(p, op.getRegionIterArgs(), op.getIterOperands(),
                          " iter_args");
  if (!op.getIterOperands().empty())
    p << " -> (" << op.getIterOperands().getTypes() << ')';
  p << ' ';
  p.printRegion(op.getRegion(),
                /*printEntryBlockArgs=*/false,
                /*printBlockTerminators=*/op.hasIterOperands());
  p.printOptionalAttrDict(op->getAttrs());
}

static ParseResult parseForOp(OpAsmParser &parser, OperationState &result) {
  auto &builder = parser.getBuilder();
  OpAsmParser::OperandType inductionVariable, lb, ub, step;
  // Parse the induction variable followed by '='.
  if (parser.parseRegionArgument(inductionVariable) || parser.parseEqual())
    return failure();

  // Parse loop bounds.
  Type indexType = builder.getIndexType();
  if (parser.parseOperand(lb) ||
      parser.resolveOperand(lb, indexType, result.operands) ||
      parser.parseKeyword("to") || parser.parseOperand(ub) ||
      parser.resolveOperand(ub, indexType, result.operands) ||
      parser.parseKeyword("step") || parser.parseOperand(step) ||
      parser.resolveOperand(step, indexType, result.operands))
    return failure();

  // Parse the optional initial iteration arguments.
  SmallVector<OpAsmParser::OperandType, 4> regionArgs, operands;
  SmallVector<Type, 4> argTypes;
  regionArgs.push_back(inductionVariable);

  if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
    // Parse assignment list and results type list.
    if (parser.parseAssignmentList(regionArgs, operands) ||
        parser.parseArrowTypeList(result.types))
      return failure();
    // Resolve input operands.
    for (auto operandType : llvm::zip(operands, result.types))
      if (parser.resolveOperand(std::get<0>(operandType),
                                std::get<1>(operandType), result.operands))
        return failure();
  }
  // Induction variable.
  argTypes.push_back(indexType);
  // Loop carried variables
  argTypes.append(result.types.begin(), result.types.end());
  // Parse the body region.
  Region *body = result.addRegion();
  if (regionArgs.size() != argTypes.size())
    return parser.emitError(
        parser.getNameLoc(),
        "mismatch in number of loop-carried values and defined values");

  if (parser.parseRegion(*body, regionArgs, argTypes))
    return failure();

  ForOp::ensureTerminator(*body, builder, result.location);

  // Parse the optional attribute list.
  if (parser.parseOptionalAttrDict(result.attributes))
    return failure();

  return success();
}

Region &ForOp::getLoopBody() { return getRegion(); }

bool ForOp::isDefinedOutsideOfLoop(Value value) {
  return !getRegion().isAncestor(value.getParentRegion());
}

LogicalResult ForOp::moveOutOfLoop(ArrayRef<Operation *> ops) {
  for (auto *op : ops)
    op->moveBefore(*this);
  return success();
}

ForOp mlir::scf::getForInductionVarOwner(Value val) {
  auto ivArg = val.dyn_cast<BlockArgument>();
  if (!ivArg)
    return ForOp();
  assert(ivArg.getOwner() && "unlinked block argument");
  auto *containingOp = ivArg.getOwner()->getParentOp();
  return dyn_cast_or_null<ForOp>(containingOp);
}

/// Return operands used when entering the region at 'index'. These operands
/// correspond to the loop iterator operands, i.e., those excluding the
/// induction variable. LoopOp only has one region, so 0 is the only valid value
/// for `index`.
OperandRange ForOp::getSuccessorEntryOperands(unsigned index) {
  assert(index == 0 && "invalid region index");

  // The initial operands map to the loop arguments after the induction
  // variable.
  return getInitArgs();
}

/// Given the region at `index`, or the parent operation if `index` is None,
/// return the successor regions. These are the regions that may be selected
/// during the flow of control. `operands` is a set of optional attributes that
/// correspond to a constant value for each operand, or null if that operand is
/// not a constant.
void ForOp::getSuccessorRegions(Optional<unsigned> index,
                                ArrayRef<Attribute> operands,
                                SmallVectorImpl<RegionSuccessor> &regions) {
  // If the predecessor is the ForOp, branch into the body using the iterator
  // arguments.
  if (!index.hasValue()) {
    regions.push_back(RegionSuccessor(&getLoopBody(), getRegionIterArgs()));
    return;
  }

  // Otherwise, the loop may branch back to itself or the parent operation.
  assert(index.getValue() == 0 && "expected loop region");
  regions.push_back(RegionSuccessor(&getLoopBody(), getRegionIterArgs()));
  regions.push_back(RegionSuccessor(getResults()));
}

LoopNest mlir::scf::buildLoopNest(
    OpBuilder &builder, Location loc, ValueRange lbs, ValueRange ubs,
    ValueRange steps, ValueRange iterArgs,
    function_ref<ValueVector(OpBuilder &, Location, ValueRange, ValueRange)>
        bodyBuilder) {
  assert(lbs.size() == ubs.size() &&
         "expected the same number of lower and upper bounds");
  assert(lbs.size() == steps.size() &&
         "expected the same number of lower bounds and steps");

  // If there are no bounds, call the body-building function and return early.
  if (lbs.empty()) {
    ValueVector results =
        bodyBuilder ? bodyBuilder(builder, loc, ValueRange(), iterArgs)
                    : ValueVector();
    assert(results.size() == iterArgs.size() &&
           "loop nest body must return as many values as loop has iteration "
           "arguments");
    return LoopNest();
  }

  // First, create the loop structure iteratively using the body-builder
  // callback of `ForOp::build`. Do not create `YieldOp`s yet.
  OpBuilder::InsertionGuard guard(builder);
  SmallVector<scf::ForOp, 4> loops;
  SmallVector<Value, 4> ivs;
  loops.reserve(lbs.size());
  ivs.reserve(lbs.size());
  ValueRange currentIterArgs = iterArgs;
  Location currentLoc = loc;
  for (unsigned i = 0, e = lbs.size(); i < e; ++i) {
    auto loop = builder.create<scf::ForOp>(
        currentLoc, lbs[i], ubs[i], steps[i], currentIterArgs,
        [&](OpBuilder &nestedBuilder, Location nestedLoc, Value iv,
            ValueRange args) {
          ivs.push_back(iv);
          // It is safe to store ValueRange args because it points to block
          // arguments of a loop operation that we also own.
          currentIterArgs = args;
          currentLoc = nestedLoc;
        });
    // Set the builder to point to the body of the newly created loop. We don't
    // do this in the callback because the builder is reset when the callback
    // returns.
    builder.setInsertionPointToStart(loop.getBody());
    loops.push_back(loop);
  }

  // For all loops but the innermost, yield the results of the nested loop.
  for (unsigned i = 0, e = loops.size() - 1; i < e; ++i) {
    builder.setInsertionPointToEnd(loops[i].getBody());
    builder.create<scf::YieldOp>(loc, loops[i + 1].getResults());
  }

  // In the body of the innermost loop, call the body building function if any
  // and yield its results.
  builder.setInsertionPointToStart(loops.back().getBody());
  ValueVector results = bodyBuilder
                            ? bodyBuilder(builder, currentLoc, ivs,
                                          loops.back().getRegionIterArgs())
                            : ValueVector();
  assert(results.size() == iterArgs.size() &&
         "loop nest body must return as many values as loop has iteration "
         "arguments");
  builder.setInsertionPointToEnd(loops.back().getBody());
  builder.create<scf::YieldOp>(loc, results);

  // Return the loops.
  LoopNest res;
  res.loops.assign(loops.begin(), loops.end());
  return res;
}

LoopNest mlir::scf::buildLoopNest(
    OpBuilder &builder, Location loc, ValueRange lbs, ValueRange ubs,
    ValueRange steps,
    function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
  // Delegate to the main function by wrapping the body builder.
  return buildLoopNest(builder, loc, lbs, ubs, steps, llvm::None,
                       [&bodyBuilder](OpBuilder &nestedBuilder,
                                      Location nestedLoc, ValueRange ivs,
                                      ValueRange) -> ValueVector {
                         if (bodyBuilder)
                           bodyBuilder(nestedBuilder, nestedLoc, ivs);
                         return {};
                       });
}

namespace {
// Fold away ForOp iter arguments when:
// 1) The op yields the iter arguments.
// 2) The iter arguments have no use and the corresponding outer region
// iterators (inputs) are yielded.
// 3) The iter arguments have no use and the corresponding (operation) results
// have no use.
//
// These arguments must be defined outside of
// the ForOp region and can just be forwarded after simplifying the op inits,
// yields and returns.
//
// The implementation uses `mergeBlockBefore` to steal the content of the
// original ForOp and avoid cloning.
struct ForOpIterArgsFolder : public OpRewritePattern<scf::ForOp> {
  using OpRewritePattern<scf::ForOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(scf::ForOp forOp,
                                PatternRewriter &rewriter) const final {
    bool canonicalize = false;
    Block &block = forOp.getRegion().front();
    auto yieldOp = cast<scf::YieldOp>(block.getTerminator());

    // An internal flat vector of block transfer
    // arguments `newBlockTransferArgs` keeps the 1-1 mapping of original to
    // transformed block argument mappings. This plays the role of a
    // BlockAndValueMapping for the particular use case of calling into
    // `mergeBlockBefore`.
    SmallVector<bool, 4> keepMask;
    keepMask.reserve(yieldOp.getNumOperands());
    SmallVector<Value, 4> newBlockTransferArgs, newIterArgs, newYieldValues,
        newResultValues;
    newBlockTransferArgs.reserve(1 + forOp.getNumIterOperands());
    newBlockTransferArgs.push_back(Value()); // iv placeholder with null value
    newIterArgs.reserve(forOp.getNumIterOperands());
    newYieldValues.reserve(yieldOp.getNumOperands());
    newResultValues.reserve(forOp.getNumResults());
    for (auto it : llvm::zip(forOp.getIterOperands(),   // iter from outside
                             forOp.getRegionIterArgs(), // iter inside region
                             forOp.getResults(),        // op results
                             yieldOp.getOperands()      // iter yield
                             )) {
      // Forwarded is `true` when:
      // 1) The region `iter` argument is yielded.
      // 2) The region `iter` argument has no use, and the corresponding iter
      // operand (input) is yielded.
      // 3) The region `iter` argument has no use, and the corresponding op
      // result has no use.
      bool forwarded = ((std::get<1>(it) == std::get<3>(it)) ||
                        (std::get<1>(it).use_empty() &&
                         (std::get<0>(it) == std::get<3>(it) ||
                          std::get<2>(it).use_empty())));
      keepMask.push_back(!forwarded);
      canonicalize |= forwarded;
      if (forwarded) {
        newBlockTransferArgs.push_back(std::get<0>(it));
        newResultValues.push_back(std::get<0>(it));
        continue;
      }
      newIterArgs.push_back(std::get<0>(it));
      newYieldValues.push_back(std::get<3>(it));
      newBlockTransferArgs.push_back(Value()); // placeholder with null value
      newResultValues.push_back(Value());      // placeholder with null value
    }

    if (!canonicalize)
      return failure();

    scf::ForOp newForOp = rewriter.create<scf::ForOp>(
        forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(),
        forOp.getStep(), newIterArgs);
    Block &newBlock = newForOp.getRegion().front();

    // Replace the null placeholders with newly constructed values.
    newBlockTransferArgs[0] = newBlock.getArgument(0); // iv
    for (unsigned idx = 0, collapsedIdx = 0, e = newResultValues.size();
         idx != e; ++idx) {
      Value &blockTransferArg = newBlockTransferArgs[1 + idx];
      Value &newResultVal = newResultValues[idx];
      assert((blockTransferArg && newResultVal) ||
             (!blockTransferArg && !newResultVal));
      if (!blockTransferArg) {
        blockTransferArg = newForOp.getRegionIterArgs()[collapsedIdx];
        newResultVal = newForOp.getResult(collapsedIdx++);
      }
    }

    Block &oldBlock = forOp.getRegion().front();
    assert(oldBlock.getNumArguments() == newBlockTransferArgs.size() &&
           "unexpected argument size mismatch");

    // No results case: the scf::ForOp builder already created a zero
    // result terminator. Merge before this terminator and just get rid of the
    // original terminator that has been merged in.
    if (newIterArgs.empty()) {
      auto newYieldOp = cast<scf::YieldOp>(newBlock.getTerminator());
      rewriter.mergeBlockBefore(&oldBlock, newYieldOp, newBlockTransferArgs);
      rewriter.eraseOp(newBlock.getTerminator()->getPrevNode());
      rewriter.replaceOp(forOp, newResultValues);
      return success();
    }

    // No terminator case: merge and rewrite the merged terminator.
    auto cloneFilteredTerminator = [&](scf::YieldOp mergedTerminator) {
      OpBuilder::InsertionGuard g(rewriter);
      rewriter.setInsertionPoint(mergedTerminator);
      SmallVector<Value, 4> filteredOperands;
      filteredOperands.reserve(newResultValues.size());
      for (unsigned idx = 0, e = keepMask.size(); idx < e; ++idx)
        if (keepMask[idx])
          filteredOperands.push_back(mergedTerminator.getOperand(idx));
      rewriter.create<scf::YieldOp>(mergedTerminator.getLoc(),
                                    filteredOperands);
    };

    rewriter.mergeBlocks(&oldBlock, &newBlock, newBlockTransferArgs);
    auto mergedYieldOp = cast<scf::YieldOp>(newBlock.getTerminator());
    cloneFilteredTerminator(mergedYieldOp);
    rewriter.eraseOp(mergedYieldOp);
    rewriter.replaceOp(forOp, newResultValues);
    return success();
  }
};

/// Rewriting pattern that erases loops that are known not to iterate and
/// replaces single-iteration loops with their bodies.
struct SimplifyTrivialLoops : public OpRewritePattern<ForOp> {
  using OpRewritePattern<ForOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(ForOp op,
                                PatternRewriter &rewriter) const override {
    // If the upper bound is the same as the lower bound, the loop does not
    // iterate, just remove it.
    if (op.getLowerBound() == op.getUpperBound()) {
      rewriter.replaceOp(op, op.getIterOperands());
      return success();
    }

    auto lb = op.getLowerBound().getDefiningOp<arith::ConstantOp>();
    auto ub = op.getUpperBound().getDefiningOp<arith::ConstantOp>();
    if (!lb || !ub)
      return failure();

    // If the loop is known to have 0 iterations, remove it.
    llvm::APInt lbValue = lb.getValue().cast<IntegerAttr>().getValue();
    llvm::APInt ubValue = ub.getValue().cast<IntegerAttr>().getValue();
    if (lbValue.sge(ubValue)) {
      rewriter.replaceOp(op, op.getIterOperands());
      return success();
    }

    auto step = op.getStep().getDefiningOp<arith::ConstantOp>();
    if (!step)
      return failure();

    // If the loop is known to have 1 iteration, inline its body and remove the
    // loop.
    llvm::APInt stepValue = step.getValue().cast<IntegerAttr>().getValue();
    if ((lbValue + stepValue).sge(ubValue)) {
      SmallVector<Value, 4> blockArgs;
      blockArgs.reserve(op.getNumIterOperands() + 1);
      blockArgs.push_back(op.getLowerBound());
      llvm::append_range(blockArgs, op.getIterOperands());
      replaceOpWithRegion(rewriter, op, op.getLoopBody(), blockArgs);
      return success();
    }

    return failure();
  }
};

/// Perform a replacement of one iter OpOperand of an scf.for to the
/// `replacement` value which is expected to be the source of a tensor.cast.
/// tensor.cast ops are inserted inside the block to account for the type cast.
static ForOp replaceTensorCastForOpIterArg(PatternRewriter &rewriter,
                                           OpOperand &operand,
                                           Value replacement) {
  Type oldType = operand.get().getType(), newType = replacement.getType();
  assert(oldType.isa<RankedTensorType>() && newType.isa<RankedTensorType>() &&
         "expected ranked tensor types");

  // 1. Create new iter operands, exactly 1 is replaced.
  ForOp forOp = cast<ForOp>(operand.getOwner());
  assert(operand.getOperandNumber() >= forOp.getNumControlOperands() &&
         "expected an iter OpOperand");
  if (operand.get().getType() == replacement.getType())
    return forOp;
  SmallVector<Value> newIterOperands;
  for (OpOperand &opOperand : forOp.getIterOpOperands()) {
    if (opOperand.getOperandNumber() == operand.getOperandNumber()) {
      newIterOperands.push_back(replacement);
      continue;
    }
    newIterOperands.push_back(opOperand.get());
  }

  // 2. Create the new forOp shell.
  scf::ForOp newForOp = rewriter.create<scf::ForOp>(
      forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(),
      forOp.getStep(), newIterOperands);
  Block &newBlock = newForOp.getRegion().front();
  SmallVector<Value, 4> newBlockTransferArgs(newBlock.getArguments().begin(),
                                             newBlock.getArguments().end());

  // 3. Inject an incoming cast op at the beginning of the block for the bbArg
  // corresponding to the `replacement` value.
  OpBuilder::InsertionGuard g(rewriter);
  rewriter.setInsertionPoint(&newBlock, newBlock.begin());
  BlockArgument newRegionIterArg = newForOp.getRegionIterArgForOpOperand(
      newForOp->getOpOperand(operand.getOperandNumber()));
  Value castIn = rewriter.create<tensor::CastOp>(newForOp.getLoc(), oldType,
                                                 newRegionIterArg);
  newBlockTransferArgs[newRegionIterArg.getArgNumber()] = castIn;

  // 4. Steal the old block ops, mapping to the newBlockTransferArgs.
  Block &oldBlock = forOp.getRegion().front();
  rewriter.mergeBlocks(&oldBlock, &newBlock, newBlockTransferArgs);

  // 5. Inject an outgoing cast op at the end of the block and yield it instead.
  auto clonedYieldOp = cast<scf::YieldOp>(newBlock.getTerminator());
  rewriter.setInsertionPoint(clonedYieldOp);
  unsigned yieldIdx =
      newRegionIterArg.getArgNumber() - forOp.getNumInductionVars();
  Value castOut = rewriter.create<tensor::CastOp>(
      newForOp.getLoc(), newType, clonedYieldOp.getOperand(yieldIdx));
  SmallVector<Value> newYieldOperands = clonedYieldOp.getOperands();
  newYieldOperands[yieldIdx] = castOut;
  rewriter.create<scf::YieldOp>(newForOp.getLoc(), newYieldOperands);
  rewriter.eraseOp(clonedYieldOp);

  // 6. Inject an outgoing cast op after the forOp.
  rewriter.setInsertionPointAfter(newForOp);
  SmallVector<Value> newResults = newForOp.getResults();
  newResults[yieldIdx] = rewriter.create<tensor::CastOp>(
      newForOp.getLoc(), oldType, newResults[yieldIdx]);

  return newForOp;
}

/// Fold scf.for iter_arg/result pairs that go through incoming/ougoing
/// a tensor.cast op pair so as to pull the tensor.cast inside the scf.for:
///
/// ```
///   %0 = tensor.cast %t0 : tensor<32x1024xf32> to tensor<?x?xf32>
///   %1 = scf.for %i = %c0 to %c1024 step %c32 iter_args(%iter_t0 = %0)
///      -> (tensor<?x?xf32>) {
///     %2 = call @do(%iter_t0) : (tensor<?x?xf32>) -> tensor<?x?xf32>
///     scf.yield %2 : tensor<?x?xf32>
///   }
///   %2 = tensor.cast %1 : tensor<?x?xf32> to tensor<32x1024xf32>
///   use_of(%2)
/// ```
///
/// folds into:
///
/// ```
///   %0 = scf.for %arg2 = %c0 to %c1024 step %c32 iter_args(%arg3 = %arg0)
///       -> (tensor<32x1024xf32>) {
///     %2 = tensor.cast %arg3 : tensor<32x1024xf32> to tensor<?x?xf32>
///     %3 = call @do(%2) : (tensor<?x?xf32>) -> tensor<?x?xf32>
///     %4 = tensor.cast %3 : tensor<?x?xf32> to tensor<32x1024xf32>
///     scf.yield %4 : tensor<32x1024xf32>
///   }
///   use_of(%0)
/// ```
struct ForOpTensorCastFolder : public OpRewritePattern<ForOp> {
  using OpRewritePattern<ForOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(ForOp op,
                                PatternRewriter &rewriter) const override {
    for (auto it : llvm::zip(op.getIterOpOperands(), op.getResults())) {
      OpOperand &iterOpOperand = std::get<0>(it);
      auto incomingCast = iterOpOperand.get().getDefiningOp<tensor::CastOp>();
      if (!incomingCast)
        continue;
      if (!std::get<1>(it).hasOneUse())
        continue;
      auto outgoingCastOp =
          dyn_cast<tensor::CastOp>(*std::get<1>(it).user_begin());
      if (!outgoingCastOp)
        continue;

      // Must be a tensor.cast op pair with matching types.
      if (outgoingCastOp.getResult().getType() !=
          incomingCast.source().getType())
        continue;

      // Create a new ForOp with that iter operand replaced.
      auto newForOp = replaceTensorCastForOpIterArg(rewriter, iterOpOperand,
                                                    incomingCast.source());

      // Insert outgoing cast and use it to replace the corresponding result.
      rewriter.setInsertionPointAfter(newForOp);
      SmallVector<Value> replacements = newForOp.getResults();
      unsigned returnIdx =
          iterOpOperand.getOperandNumber() - op.getNumControlOperands();
      replacements[returnIdx] = rewriter.create<tensor::CastOp>(
          op.getLoc(), incomingCast.dest().getType(), replacements[returnIdx]);
      rewriter.replaceOp(op, replacements);
      return success();
    }
    return failure();
  }
};

/// Canonicalize the iter_args of an scf::ForOp that involve a
/// `bufferization.to_tensor` and for which only the last loop iteration is
/// actually visible outside of the loop. The canonicalization looks for a
/// pattern such as:
/// ```
///    %t0 = ... : tensor_type
///    %0 = scf.for ... iter_args(%bb0 : %t0) -> (tensor_type) {
///      ...
///      // %m is either buffer_cast(%bb00) or defined above the loop
///      %m... : memref_type
///      ... // uses of %m with potential inplace updates
///      %new_tensor = bufferization.to_tensor %m : memref_type
///      ...
///      scf.yield %new_tensor : tensor_type
///    }
/// ```
///
/// `%bb0` may have either 0 or 1 use. If it has 1 use it must be exactly a
/// `%m = buffer_cast %bb0` op that feeds into the yielded
/// `bufferization.to_tensor` op.
///
/// If no aliasing write to the memref `%m`, from which `%new_tensor`is loaded,
/// occurs between `bufferization.to_tensor and yield then the value %0
/// visible outside of the loop is the last `bufferization.to_tensor`
/// produced in the loop.
///
/// For now, we approximate the absence of aliasing by only supporting the case
/// when the bufferization.to_tensor is the operation immediately preceding
/// the yield.
//
/// The canonicalization rewrites the pattern as:
/// ```
///    // %m is either a buffer_cast or defined above
///    %m... : memref_type
///    scf.for ... iter_args(%bb0 : %t0) -> (tensor_type) {
///      ... // uses of %m with potential inplace updates
///      scf.yield %bb0: tensor_type
///    }
///    %0 = bufferization.to_tensor %m : memref_type
/// ```
///
/// A later bbArg canonicalization will further rewrite as:
/// ```
///    // %m is either a buffer_cast or defined above
///    %m... : memref_type
///    scf.for ... { // no iter_args
///      ... // uses of %m with potential inplace updates
///    }
///    %0 = bufferization.to_tensor %m : memref_type
/// ```
struct LastTensorLoadCanonicalization : public OpRewritePattern<ForOp> {
  using OpRewritePattern<ForOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(ForOp forOp,
                                PatternRewriter &rewriter) const override {
    assert(std::next(forOp.getRegion().begin()) == forOp.getRegion().end() &&
           "unexpected multiple blocks");

    Location loc = forOp.getLoc();
    DenseMap<Value, Value> replacements;
    for (BlockArgument bbArg : forOp.getRegionIterArgs()) {
      unsigned idx = bbArg.getArgNumber() - /*numIv=*/1;
      auto yieldOp =
          cast<scf::YieldOp>(forOp.getRegion().front().getTerminator());
      Value yieldVal = yieldOp->getOperand(idx);
      auto tensorLoadOp = yieldVal.getDefiningOp<bufferization::ToTensorOp>();
      bool isTensor = bbArg.getType().isa<TensorType>();

      bufferization::ToMemrefOp tensorToMemref;
      // Either bbArg has no use or it has a single buffer_cast use.
      if (bbArg.hasOneUse())
        tensorToMemref =
            dyn_cast<bufferization::ToMemrefOp>(*bbArg.getUsers().begin());
      if (!isTensor || !tensorLoadOp || (!bbArg.use_empty() && !tensorToMemref))
        continue;
      // If tensorToMemref is present, it must feed into the `ToTensorOp`.
      if (tensorToMemref && tensorLoadOp.memref() != tensorToMemref)
        continue;
      // TODO: Any aliasing write of tensorLoadOp.memref() nested under `forOp`
      // must be before `ToTensorOp` in the block so that the lastWrite
      // property is not subject to additional side-effects.
      // For now, we only support the case when ToTensorOp appears
      // immediately before the terminator.
      if (tensorLoadOp->getNextNode() != yieldOp)
        continue;

      // Clone the optional tensorToMemref before forOp.
      if (tensorToMemref) {
        rewriter.setInsertionPoint(forOp);
        rewriter.replaceOpWithNewOp<bufferization::ToMemrefOp>(
            tensorToMemref, tensorToMemref.memref().getType(),
            tensorToMemref.tensor());
      }

      // Clone the tensorLoad after forOp.
      rewriter.setInsertionPointAfter(forOp);
      Value newTensorLoad = rewriter.create<bufferization::ToTensorOp>(
          loc, tensorLoadOp.memref());
      Value forOpResult = forOp.getResult(bbArg.getArgNumber() - /*iv=*/1);
      replacements.insert(std::make_pair(forOpResult, newTensorLoad));

      // Make the terminator just yield the bbArg, the old tensorLoadOp + the
      // old bbArg (that is now directly yielded) will canonicalize away.
      rewriter.startRootUpdate(yieldOp);
      yieldOp.setOperand(idx, bbArg);
      rewriter.finalizeRootUpdate(yieldOp);
    }
    if (replacements.empty())
      return failure();

    // We want to replace a subset of the results of `forOp`. rewriter.replaceOp
    // replaces the whole op and erase it unconditionally. This is wrong for
    // `forOp` as it generally contains ops with side effects.
    // Instead, use `rewriter.replaceOpWithIf`.
    SmallVector<Value> newResults;
    newResults.reserve(forOp.getNumResults());
    for (Value v : forOp.getResults()) {
      auto it = replacements.find(v);
      newResults.push_back((it != replacements.end()) ? it->second : v);
    }
    unsigned idx = 0;
    rewriter.replaceOpWithIf(forOp, newResults, [&](OpOperand &op) {
      return op.get() != newResults[idx++];
    });
    return success();
  }
};
} // namespace

void ForOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                        MLIRContext *context) {
  results.add<ForOpIterArgsFolder, SimplifyTrivialLoops,
              LastTensorLoadCanonicalization, ForOpTensorCastFolder>(context);
}

//===----------------------------------------------------------------------===//
// IfOp
//===----------------------------------------------------------------------===//

bool mlir::scf::insideMutuallyExclusiveBranches(Operation *a, Operation *b) {
  assert(a && "expected non-empty operation");
  assert(b && "expected non-empty operation");

  IfOp ifOp = a->getParentOfType<IfOp>();
  while (ifOp) {
    // Check if b is inside ifOp. (We already know that a is.)
    if (ifOp->isProperAncestor(b))
      // b is contained in ifOp. a and b are in mutually exclusive branches if
      // they are in different blocks of ifOp.
      return static_cast<bool>(ifOp.thenBlock()->findAncestorOpInBlock(*a)) !=
             static_cast<bool>(ifOp.thenBlock()->findAncestorOpInBlock(*b));
    // Check next enclosing IfOp.
    ifOp = ifOp->getParentOfType<IfOp>();
  }

  // Could not find a common IfOp among a's and b's ancestors.
  return false;
}

void IfOp::build(OpBuilder &builder, OperationState &result, Value cond,
                 bool withElseRegion) {
  build(builder, result, /*resultTypes=*/llvm::None, cond, withElseRegion);
}

void IfOp::build(OpBuilder &builder, OperationState &result,
                 TypeRange resultTypes, Value cond, bool withElseRegion) {
  auto addTerminator = [&](OpBuilder &nested, Location loc) {
    if (resultTypes.empty())
      IfOp::ensureTerminator(*nested.getInsertionBlock()->getParent(), nested,
                             loc);
  };

  build(builder, result, resultTypes, cond, addTerminator,
        withElseRegion ? addTerminator
                       : function_ref<void(OpBuilder &, Location)>());
}

void IfOp::build(OpBuilder &builder, OperationState &result,
                 TypeRange resultTypes, Value cond,
                 function_ref<void(OpBuilder &, Location)> thenBuilder,
                 function_ref<void(OpBuilder &, Location)> elseBuilder) {
  assert(thenBuilder && "the builder callback for 'then' must be present");

  result.addOperands(cond);
  result.addTypes(resultTypes);

  OpBuilder::InsertionGuard guard(builder);
  Region *thenRegion = result.addRegion();
  builder.createBlock(thenRegion);
  thenBuilder(builder, result.location);

  Region *elseRegion = result.addRegion();
  if (!elseBuilder)
    return;

  builder.createBlock(elseRegion);
  elseBuilder(builder, result.location);
}

void IfOp::build(OpBuilder &builder, OperationState &result, Value cond,
                 function_ref<void(OpBuilder &, Location)> thenBuilder,
                 function_ref<void(OpBuilder &, Location)> elseBuilder) {
  build(builder, result, TypeRange(), cond, thenBuilder, elseBuilder);
}

static LogicalResult verify(IfOp op) {
  if (op.getNumResults() != 0 && op.getElseRegion().empty())
    return op.emitOpError("must have an else block if defining values");

  return RegionBranchOpInterface::verifyTypes(op);
}

static ParseResult parseIfOp(OpAsmParser &parser, OperationState &result) {
  // Create the regions for 'then'.
  result.regions.reserve(2);
  Region *thenRegion = result.addRegion();
  Region *elseRegion = result.addRegion();

  auto &builder = parser.getBuilder();
  OpAsmParser::OperandType cond;
  Type i1Type = builder.getIntegerType(1);
  if (parser.parseOperand(cond) ||
      parser.resolveOperand(cond, i1Type, result.operands))
    return failure();
  // Parse optional results type list.
  if (parser.parseOptionalArrowTypeList(result.types))
    return failure();
  // Parse the 'then' region.
  if (parser.parseRegion(*thenRegion, /*arguments=*/{}, /*argTypes=*/{}))
    return failure();
  IfOp::ensureTerminator(*thenRegion, parser.getBuilder(), result.location);

  // If we find an 'else' keyword then parse the 'else' region.
  if (!parser.parseOptionalKeyword("else")) {
    if (parser.parseRegion(*elseRegion, /*arguments=*/{}, /*argTypes=*/{}))
      return failure();
    IfOp::ensureTerminator(*elseRegion, parser.getBuilder(), result.location);
  }

  // Parse the optional attribute list.
  if (parser.parseOptionalAttrDict(result.attributes))
    return failure();
  return success();
}

static void print(OpAsmPrinter &p, IfOp op) {
  bool printBlockTerminators = false;

  p << " " << op.getCondition();
  if (!op.getResults().empty()) {
    p << " -> (" << op.getResultTypes() << ")";
    // Print yield explicitly if the op defines values.
    printBlockTerminators = true;
  }
  p << ' ';
  p.printRegion(op.getThenRegion(),
                /*printEntryBlockArgs=*/false,
                /*printBlockTerminators=*/printBlockTerminators);

  // Print the 'else' regions if it exists and has a block.
  auto &elseRegion = op.getElseRegion();
  if (!elseRegion.empty()) {
    p << " else ";
    p.printRegion(elseRegion,
                  /*printEntryBlockArgs=*/false,
                  /*printBlockTerminators=*/printBlockTerminators);
  }

  p.printOptionalAttrDict(op->getAttrs());
}

/// Given the region at `index`, or the parent operation if `index` is None,
/// return the successor regions. These are the regions that may be selected
/// during the flow of control. `operands` is a set of optional attributes that
/// correspond to a constant value for each operand, or null if that operand is
/// not a constant.
void IfOp::getSuccessorRegions(Optional<unsigned> index,
                               ArrayRef<Attribute> operands,
                               SmallVectorImpl<RegionSuccessor> &regions) {
  // The `then` and the `else` region branch back to the parent operation.
  if (index.hasValue()) {
    regions.push_back(RegionSuccessor(getResults()));
    return;
  }

  // Don't consider the else region if it is empty.
  Region *elseRegion = &this->getElseRegion();
  if (elseRegion->empty())
    elseRegion = nullptr;

  // Otherwise, the successor is dependent on the condition.
  bool condition;
  if (auto condAttr = operands.front().dyn_cast_or_null<IntegerAttr>()) {
    condition = condAttr.getValue().isOneValue();
  } else {
    // If the condition isn't constant, both regions may be executed.
    regions.push_back(RegionSuccessor(&getThenRegion()));
    // If the else region does not exist, it is not a viable successor.
    if (elseRegion)
      regions.push_back(RegionSuccessor(elseRegion));
    return;
  }

  // Add the successor regions using the condition.
  regions.push_back(RegionSuccessor(condition ? &getThenRegion() : elseRegion));
}

LogicalResult IfOp::fold(ArrayRef<Attribute> operands,
                         SmallVectorImpl<OpFoldResult> &results) {
  // if (!c) then A() else B() -> if c then B() else A()
  if (getElseRegion().empty())
    return failure();

  arith::XOrIOp xorStmt = getCondition().getDefiningOp<arith::XOrIOp>();
  if (!xorStmt)
    return failure();

  if (!matchPattern(xorStmt.getRhs(), m_One()))
    return failure();

  getConditionMutable().assign(xorStmt.getLhs());
  Block *thenBlock = &getThenRegion().front();
  // It would be nicer to use iplist::swap, but that has no implemented
  // callbacks See: https://llvm.org/doxygen/ilist_8h_source.html#l00224
  getThenRegion().getBlocks().splice(getThenRegion().getBlocks().begin(),
                                     getElseRegion().getBlocks());
  getElseRegion().getBlocks().splice(getElseRegion().getBlocks().begin(),
                                     getThenRegion().getBlocks(), thenBlock);
  return success();
}

void IfOp::getRegionInvocationBounds(
    ArrayRef<Attribute> operands,
    SmallVectorImpl<InvocationBounds> &invocationBounds) {
  if (auto cond = operands[0].dyn_cast_or_null<BoolAttr>()) {
    // If the condition is known, then one region is known to be executed once
    // and the other zero times.
    invocationBounds.emplace_back(0, cond.getValue() ? 1 : 0);
    invocationBounds.emplace_back(0, cond.getValue() ? 0 : 1);
  } else {
    // Non-constant condition. Each region may be executed 0 or 1 times.
    invocationBounds.assign(2, {0, 1});
  }
}

namespace {
// Pattern to remove unused IfOp results.
struct RemoveUnusedResults : public OpRewritePattern<IfOp> {
  using OpRewritePattern<IfOp>::OpRewritePattern;

  void transferBody(Block *source, Block *dest, ArrayRef<OpResult> usedResults,
                    PatternRewriter &rewriter) const {
    // Move all operations to the destination block.
    rewriter.mergeBlocks(source, dest);
    // Replace the yield op by one that returns only the used values.
    auto yieldOp = cast<scf::YieldOp>(dest->getTerminator());
    SmallVector<Value, 4> usedOperands;
    llvm::transform(usedResults, std::back_inserter(usedOperands),
                    [&](OpResult result) {
                      return yieldOp.getOperand(result.getResultNumber());
                    });
    rewriter.updateRootInPlace(yieldOp,
                               [&]() { yieldOp->setOperands(usedOperands); });
  }

  LogicalResult matchAndRewrite(IfOp op,
                                PatternRewriter &rewriter) const override {
    // Compute the list of used results.
    SmallVector<OpResult, 4> usedResults;
    llvm::copy_if(op.getResults(), std::back_inserter(usedResults),
                  [](OpResult result) { return !result.use_empty(); });

    // Replace the operation if only a subset of its results have uses.
    if (usedResults.size() == op.getNumResults())
      return failure();

    // Compute the result types of the replacement operation.
    SmallVector<Type, 4> newTypes;
    llvm::transform(usedResults, std::back_inserter(newTypes),
                    [](OpResult result) { return result.getType(); });

    // Create a replacement operation with empty then and else regions.
    auto emptyBuilder = [](OpBuilder &, Location) {};
    auto newOp = rewriter.create<IfOp>(op.getLoc(), newTypes, op.getCondition(),
                                       emptyBuilder, emptyBuilder);

    // Move the bodies and replace the terminators (note there is a then and
    // an else region since the operation returns results).
    transferBody(op.getBody(0), newOp.getBody(0), usedResults, rewriter);
    transferBody(op.getBody(1), newOp.getBody(1), usedResults, rewriter);

    // Replace the operation by the new one.
    SmallVector<Value, 4> repResults(op.getNumResults());
    for (const auto &en : llvm::enumerate(usedResults))
      repResults[en.value().getResultNumber()] = newOp.getResult(en.index());
    rewriter.replaceOp(op, repResults);
    return success();
  }
};

struct RemoveStaticCondition : public OpRewritePattern<IfOp> {
  using OpRewritePattern<IfOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(IfOp op,
                                PatternRewriter &rewriter) const override {
    auto constant = op.getCondition().getDefiningOp<arith::ConstantOp>();
    if (!constant)
      return failure();

    if (constant.getValue().cast<BoolAttr>().getValue())
      replaceOpWithRegion(rewriter, op, op.getThenRegion());
    else if (!op.getElseRegion().empty())
      replaceOpWithRegion(rewriter, op, op.getElseRegion());
    else
      rewriter.eraseOp(op);

    return success();
  }
};

struct ConvertTrivialIfToSelect : public OpRewritePattern<IfOp> {
  using OpRewritePattern<IfOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(IfOp op,
                                PatternRewriter &rewriter) const override {
    if (op->getNumResults() == 0)
      return failure();

    if (!llvm::hasSingleElement(op.getThenRegion().front()) ||
        !llvm::hasSingleElement(op.getElseRegion().front()))
      return failure();

    auto cond = op.getCondition();
    auto thenYieldArgs =
        cast<scf::YieldOp>(op.getThenRegion().front().getTerminator())
            .getOperands();
    auto elseYieldArgs =
        cast<scf::YieldOp>(op.getElseRegion().front().getTerminator())
            .getOperands();
    SmallVector<Value> results(op->getNumResults());
    assert(thenYieldArgs.size() == results.size());
    assert(elseYieldArgs.size() == results.size());
    for (const auto &it :
         llvm::enumerate(llvm::zip(thenYieldArgs, elseYieldArgs))) {
      Value trueVal = std::get<0>(it.value());
      Value falseVal = std::get<1>(it.value());
      if (trueVal == falseVal)
        results[it.index()] = trueVal;
      else
        results[it.index()] =
            rewriter.create<SelectOp>(op.getLoc(), cond, trueVal, falseVal);
    }

    rewriter.replaceOp(op, results);
    return success();
  }
};

/// Allow the true region of an if to assume the condition is true
/// and vice versa. For example:
///
///   scf.if %cmp {
///      print(%cmp)
///   }
///
///  becomes
///
///   scf.if %cmp {
///      print(true)
///   }
///
struct ConditionPropagation : public OpRewritePattern<IfOp> {
  using OpRewritePattern<IfOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(IfOp op,
                                PatternRewriter &rewriter) const override {
    // Early exit if the condition is constant since replacing a constant
    // in the body with another constant isn't a simplification.
    if (op.getCondition().getDefiningOp<arith::ConstantOp>())
      return failure();

    bool changed = false;
    mlir::Type i1Ty = rewriter.getI1Type();

    // These variables serve to prevent creating duplicate constants
    // and hold constant true or false values.
    Value constantTrue = nullptr;
    Value constantFalse = nullptr;

    for (OpOperand &use :
         llvm::make_early_inc_range(op.getCondition().getUses())) {
      if (op.getThenRegion().isAncestor(use.getOwner()->getParentRegion())) {
        changed = true;

        if (!constantTrue)
          constantTrue = rewriter.create<arith::ConstantOp>(
              op.getLoc(), i1Ty, rewriter.getIntegerAttr(i1Ty, 1));

        rewriter.updateRootInPlace(use.getOwner(),
                                   [&]() { use.set(constantTrue); });
      } else if (op.getElseRegion().isAncestor(
                     use.getOwner()->getParentRegion())) {
        changed = true;

        if (!constantFalse)
          constantFalse = rewriter.create<arith::ConstantOp>(
              op.getLoc(), i1Ty, rewriter.getIntegerAttr(i1Ty, 0));

        rewriter.updateRootInPlace(use.getOwner(),
                                   [&]() { use.set(constantFalse); });
      }
    }

    return success(changed);
  }
};

/// Remove any statements from an if that are equivalent to the condition
/// or its negation. For example:
///
///    %res:2 = scf.if %cmp {
///       yield something(), true
///    } else {
///       yield something2(), false
///    }
///    print(%res#1)
///
///  becomes
///    %res = scf.if %cmp {
///       yield something()
///    } else {
///       yield something2()
///    }
///    print(%cmp)
///
/// Additionally if both branches yield the same value, replace all uses
/// of the result with the yielded value.
///
///    %res:2 = scf.if %cmp {
///       yield something(), %arg1
///    } else {
///       yield something2(), %arg1
///    }
///    print(%res#1)
///
///  becomes
///    %res = scf.if %cmp {
///       yield something()
///    } else {
///       yield something2()
///    }
///    print(%arg1)
///
struct ReplaceIfYieldWithConditionOrValue : public OpRewritePattern<IfOp> {
  using OpRewritePattern<IfOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(IfOp op,
                                PatternRewriter &rewriter) const override {
    // Early exit if there are no results that could be replaced.
    if (op.getNumResults() == 0)
      return failure();

    auto trueYield =
        cast<scf::YieldOp>(op.getThenRegion().back().getTerminator());
    auto falseYield =
        cast<scf::YieldOp>(op.getElseRegion().back().getTerminator());

    rewriter.setInsertionPoint(op->getBlock(),
                               op.getOperation()->getIterator());
    bool changed = false;
    Type i1Ty = rewriter.getI1Type();
    for (auto tup : llvm::zip(trueYield.getResults(), falseYield.getResults(),
                              op.getResults())) {
      Value trueResult, falseResult, opResult;
      std::tie(trueResult, falseResult, opResult) = tup;

      if (trueResult == falseResult) {
        if (!opResult.use_empty()) {
          opResult.replaceAllUsesWith(trueResult);
          changed = true;
        }
        continue;
      }

      auto trueYield = trueResult.getDefiningOp<arith::ConstantOp>();
      if (!trueYield)
        continue;

      if (!trueYield.getType().isInteger(1))
        continue;

      auto falseYield = falseResult.getDefiningOp<arith::ConstantOp>();
      if (!falseYield)
        continue;

      bool trueVal = trueYield.getValue().cast<BoolAttr>().getValue();
      bool falseVal = falseYield.getValue().cast<BoolAttr>().getValue();
      if (!trueVal && falseVal) {
        if (!opResult.use_empty()) {
          Value notCond = rewriter.create<arith::XOrIOp>(
              op.getLoc(), op.getCondition(),
              rewriter.create<arith::ConstantOp>(
                  op.getLoc(), i1Ty, rewriter.getIntegerAttr(i1Ty, 1)));
          opResult.replaceAllUsesWith(notCond);
          changed = true;
        }
      }
      if (trueVal && !falseVal) {
        if (!opResult.use_empty()) {
          opResult.replaceAllUsesWith(op.getCondition());
          changed = true;
        }
      }
    }
    return success(changed);
  }
};

/// Merge any consecutive scf.if's with the same condition.
///
///    scf.if %cond {
///       firstCodeTrue();...
///    } else {
///       firstCodeFalse();...
///    }
///    %res = scf.if %cond {
///       secondCodeTrue();...
///    } else {
///       secondCodeFalse();...
///    }
///
///  becomes
///    %res = scf.if %cmp {
///       firstCodeTrue();...
///       secondCodeTrue();...
///    } else {
///       firstCodeFalse();...
///       secondCodeFalse();...
///    }
struct CombineIfs : public OpRewritePattern<IfOp> {
  using OpRewritePattern<IfOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(IfOp nextIf,
                                PatternRewriter &rewriter) const override {
    Block *parent = nextIf->getBlock();
    if (nextIf == &parent->front())
      return failure();

    auto prevIf = dyn_cast<IfOp>(nextIf->getPrevNode());
    if (!prevIf)
      return failure();

    if (nextIf.getCondition() != prevIf.getCondition())
      return failure();

    // Don't permit merging if a result of the first if is used
    // within the second.
    if (llvm::any_of(prevIf->getUsers(),
                     [&](Operation *user) { return nextIf->isAncestor(user); }))
      return failure();

    SmallVector<Type> mergedTypes(prevIf.getResultTypes());
    llvm::append_range(mergedTypes, nextIf.getResultTypes());

    IfOp combinedIf = rewriter.create<IfOp>(
        nextIf.getLoc(), mergedTypes, nextIf.getCondition(), /*hasElse=*/false);
    rewriter.eraseBlock(&combinedIf.getThenRegion().back());

    YieldOp thenYield = prevIf.thenYield();
    YieldOp thenYield2 = nextIf.thenYield();

    combinedIf.getThenRegion().getBlocks().splice(
        combinedIf.getThenRegion().getBlocks().begin(),
        prevIf.getThenRegion().getBlocks());

    rewriter.mergeBlocks(nextIf.thenBlock(), combinedIf.thenBlock());
    rewriter.setInsertionPointToEnd(combinedIf.thenBlock());

    SmallVector<Value> mergedYields(thenYield.getOperands());
    llvm::append_range(mergedYields, thenYield2.getOperands());
    rewriter.create<YieldOp>(thenYield2.getLoc(), mergedYields);
    rewriter.eraseOp(thenYield);
    rewriter.eraseOp(thenYield2);

    combinedIf.getElseRegion().getBlocks().splice(
        combinedIf.getElseRegion().getBlocks().begin(),
        prevIf.getElseRegion().getBlocks());

    if (!nextIf.getElseRegion().empty()) {
      if (combinedIf.getElseRegion().empty()) {
        combinedIf.getElseRegion().getBlocks().splice(
            combinedIf.getElseRegion().getBlocks().begin(),
            nextIf.getElseRegion().getBlocks());
      } else {
        YieldOp elseYield = combinedIf.elseYield();
        YieldOp elseYield2 = nextIf.elseYield();
        rewriter.mergeBlocks(nextIf.elseBlock(), combinedIf.elseBlock());

        rewriter.setInsertionPointToEnd(combinedIf.elseBlock());

        SmallVector<Value> mergedElseYields(elseYield.getOperands());
        llvm::append_range(mergedElseYields, elseYield2.getOperands());

        rewriter.create<YieldOp>(elseYield2.getLoc(), mergedElseYields);
        rewriter.eraseOp(elseYield);
        rewriter.eraseOp(elseYield2);
      }
    }

    SmallVector<Value> prevValues;
    SmallVector<Value> nextValues;
    for (const auto &pair : llvm::enumerate(combinedIf.getResults())) {
      if (pair.index() < prevIf.getNumResults())
        prevValues.push_back(pair.value());
      else
        nextValues.push_back(pair.value());
    }
    rewriter.replaceOp(prevIf, prevValues);
    rewriter.replaceOp(nextIf, nextValues);
    return success();
  }
};

/// Pattern to remove an empty else branch.
struct RemoveEmptyElseBranch : public OpRewritePattern<IfOp> {
  using OpRewritePattern<IfOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(IfOp ifOp,
                                PatternRewriter &rewriter) const override {
    // Cannot remove else region when there are operation results.
    if (ifOp.getNumResults())
      return failure();
    Block *elseBlock = ifOp.elseBlock();
    if (!elseBlock || !llvm::hasSingleElement(*elseBlock))
      return failure();
    auto newIfOp = rewriter.cloneWithoutRegions(ifOp);
    rewriter.inlineRegionBefore(ifOp.getThenRegion(), newIfOp.getThenRegion(),
                                newIfOp.getThenRegion().begin());
    rewriter.eraseOp(ifOp);
    return success();
  }
};

/// Convert nested `if`s into `arith.andi` + single `if`.
///
///    scf.if %arg0 {
///      scf.if %arg1 {
///        ...
///        scf.yield
///      }
///      scf.yield
///    }
///  becomes
///
///    %0 = arith.andi %arg0, %arg1
///    scf.if %0 {
///      ...
///      scf.yield
///    }
struct CombineNestedIfs : public OpRewritePattern<IfOp> {
  using OpRewritePattern<IfOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(IfOp op,
                                PatternRewriter &rewriter) const override {
    // Both `if` ops must not yield results and have only `then` block.
    if (op->getNumResults() != 0 || op.elseBlock())
      return failure();

    auto nestedOps = op.thenBlock()->without_terminator();
    // Nested `if` must be the only op in block.
    if (!llvm::hasSingleElement(nestedOps))
      return failure();

    auto nestedIf = dyn_cast<IfOp>(*nestedOps.begin());
    if (!nestedIf || nestedIf->getNumResults() != 0 || nestedIf.elseBlock())
      return failure();

    Location loc = op.getLoc();
    Value newCondition = rewriter.create<arith::AndIOp>(
        loc, op.getCondition(), nestedIf.getCondition());
    auto newIf = rewriter.create<IfOp>(loc, newCondition);
    Block *newIfBlock = newIf.thenBlock();
    rewriter.eraseOp(newIfBlock->getTerminator());
    rewriter.mergeBlocks(nestedIf.thenBlock(), newIfBlock);
    rewriter.eraseOp(op);
    return success();
  }
};

} // namespace

void IfOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                       MLIRContext *context) {
  results.add<CombineIfs, CombineNestedIfs, ConditionPropagation,
              ConvertTrivialIfToSelect, RemoveEmptyElseBranch,
              RemoveStaticCondition, RemoveUnusedResults,
              ReplaceIfYieldWithConditionOrValue>(context);
}

Block *IfOp::thenBlock() { return &getThenRegion().back(); }
YieldOp IfOp::thenYield() { return cast<YieldOp>(&thenBlock()->back()); }
Block *IfOp::elseBlock() {
  Region &r = getElseRegion();
  if (r.empty())
    return nullptr;
  return &r.back();
}
YieldOp IfOp::elseYield() { return cast<YieldOp>(&elseBlock()->back()); }

//===----------------------------------------------------------------------===//
// ParallelOp
//===----------------------------------------------------------------------===//

void ParallelOp::build(
    OpBuilder &builder, OperationState &result, ValueRange lowerBounds,
    ValueRange upperBounds, ValueRange steps, ValueRange initVals,
    function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
        bodyBuilderFn) {
  result.addOperands(lowerBounds);
  result.addOperands(upperBounds);
  result.addOperands(steps);
  result.addOperands(initVals);
  result.addAttribute(
      ParallelOp::getOperandSegmentSizeAttr(),
      builder.getI32VectorAttr({static_cast<int32_t>(lowerBounds.size()),
                                static_cast<int32_t>(upperBounds.size()),
                                static_cast<int32_t>(steps.size()),
                                static_cast<int32_t>(initVals.size())}));
  result.addTypes(initVals.getTypes());

  OpBuilder::InsertionGuard guard(builder);
  unsigned numIVs = steps.size();
  SmallVector<Type, 8> argTypes(numIVs, builder.getIndexType());
  SmallVector<Location, 8> argLocs(numIVs, result.location);
  Region *bodyRegion = result.addRegion();
  Block *bodyBlock = builder.createBlock(bodyRegion, {}, argTypes, argLocs);

  if (bodyBuilderFn) {
    builder.setInsertionPointToStart(bodyBlock);
    bodyBuilderFn(builder, result.location,
                  bodyBlock->getArguments().take_front(numIVs),
                  bodyBlock->getArguments().drop_front(numIVs));
  }
  ParallelOp::ensureTerminator(*bodyRegion, builder, result.location);
}

void ParallelOp::build(
    OpBuilder &builder, OperationState &result, ValueRange lowerBounds,
    ValueRange upperBounds, ValueRange steps,
    function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn) {
  // Only pass a non-null wrapper if bodyBuilderFn is non-null itself. Make sure
  // we don't capture a reference to a temporary by constructing the lambda at
  // function level.
  auto wrappedBuilderFn = [&bodyBuilderFn](OpBuilder &nestedBuilder,
                                           Location nestedLoc, ValueRange ivs,
                                           ValueRange) {
    bodyBuilderFn(nestedBuilder, nestedLoc, ivs);
  };
  function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)> wrapper;
  if (bodyBuilderFn)
    wrapper = wrappedBuilderFn;

  build(builder, result, lowerBounds, upperBounds, steps, ValueRange(),
        wrapper);
}

static LogicalResult verify(ParallelOp op) {
  // Check that there is at least one value in lowerBound, upperBound and step.
  // It is sufficient to test only step, because it is ensured already that the
  // number of elements in lowerBound, upperBound and step are the same.
  Operation::operand_range stepValues = op.getStep();
  if (stepValues.empty())
    return op.emitOpError(
        "needs at least one tuple element for lowerBound, upperBound and step");

  // Check whether all constant step values are positive.
  for (Value stepValue : stepValues)
    if (auto cst = stepValue.getDefiningOp<arith::ConstantIndexOp>())
      if (cst.value() <= 0)
        return op.emitOpError("constant step operand must be positive");

  // Check that the body defines the same number of block arguments as the
  // number of tuple elements in step.
  Block *body = op.getBody();
  if (body->getNumArguments() != stepValues.size())
    return op.emitOpError()
           << "expects the same number of induction variables: "
           << body->getNumArguments()
           << " as bound and step values: " << stepValues.size();
  for (auto arg : body->getArguments())
    if (!arg.getType().isIndex())
      return op.emitOpError(
          "expects arguments for the induction variable to be of index type");

  // Check that the yield has no results
  Operation *yield = body->getTerminator();
  if (yield->getNumOperands() != 0)
    return yield->emitOpError() << "not allowed to have operands inside '"
                                << ParallelOp::getOperationName() << "'";

  // Check that the number of results is the same as the number of ReduceOps.
  SmallVector<ReduceOp, 4> reductions(body->getOps<ReduceOp>());
  auto resultsSize = op.getResults().size();
  auto reductionsSize = reductions.size();
  auto initValsSize = op.getInitVals().size();
  if (resultsSize != reductionsSize)
    return op.emitOpError()
           << "expects number of results: " << resultsSize
           << " to be the same as number of reductions: " << reductionsSize;
  if (resultsSize != initValsSize)
    return op.emitOpError()
           << "expects number of results: " << resultsSize
           << " to be the same as number of initial values: " << initValsSize;

  // Check that the types of the results and reductions are the same.
  for (auto resultAndReduce : llvm::zip(op.getResults(), reductions)) {
    auto resultType = std::get<0>(resultAndReduce).getType();
    auto reduceOp = std::get<1>(resultAndReduce);
    auto reduceType = reduceOp.getOperand().getType();
    if (resultType != reduceType)
      return reduceOp.emitOpError()
             << "expects type of reduce: " << reduceType
             << " to be the same as result type: " << resultType;
  }
  return success();
}

static ParseResult parseParallelOp(OpAsmParser &parser,
                                   OperationState &result) {
  auto &builder = parser.getBuilder();
  // Parse an opening `(` followed by induction variables followed by `)`
  SmallVector<OpAsmParser::OperandType, 4> ivs;
  if (parser.parseRegionArgumentList(ivs, /*requiredOperandCount=*/-1,
                                     OpAsmParser::Delimiter::Paren))
    return failure();

  // Parse loop bounds.
  SmallVector<OpAsmParser::OperandType, 4> lower;
  if (parser.parseEqual() ||
      parser.parseOperandList(lower, ivs.size(),
                              OpAsmParser::Delimiter::Paren) ||
      parser.resolveOperands(lower, builder.getIndexType(), result.operands))
    return failure();

  SmallVector<OpAsmParser::OperandType, 4> upper;
  if (parser.parseKeyword("to") ||
      parser.parseOperandList(upper, ivs.size(),
                              OpAsmParser::Delimiter::Paren) ||
      parser.resolveOperands(upper, builder.getIndexType(), result.operands))
    return failure();

  // Parse step values.
  SmallVector<OpAsmParser::OperandType, 4> steps;
  if (parser.parseKeyword("step") ||
      parser.parseOperandList(steps, ivs.size(),
                              OpAsmParser::Delimiter::Paren) ||
      parser.resolveOperands(steps, builder.getIndexType(), result.operands))
    return failure();

  // Parse init values.
  SmallVector<OpAsmParser::OperandType, 4> initVals;
  if (succeeded(parser.parseOptionalKeyword("init"))) {
    if (parser.parseOperandList(initVals, /*requiredOperandCount=*/-1,
                                OpAsmParser::Delimiter::Paren))
      return failure();
  }

  // Parse optional results in case there is a reduce.
  if (parser.parseOptionalArrowTypeList(result.types))
    return failure();

  // Now parse the body.
  Region *body = result.addRegion();
  SmallVector<Type, 4> types(ivs.size(), builder.getIndexType());
  if (parser.parseRegion(*body, ivs, types))
    return failure();

  // Set `operand_segment_sizes` attribute.
  result.addAttribute(
      ParallelOp::getOperandSegmentSizeAttr(),
      builder.getI32VectorAttr({static_cast<int32_t>(lower.size()),
                                static_cast<int32_t>(upper.size()),
                                static_cast<int32_t>(steps.size()),
                                static_cast<int32_t>(initVals.size())}));

  // Parse attributes.
  if (parser.parseOptionalAttrDict(result.attributes))
    return failure();

  if (!initVals.empty())
    parser.resolveOperands(initVals, result.types, parser.getNameLoc(),
                           result.operands);
  // Add a terminator if none was parsed.
  ForOp::ensureTerminator(*body, builder, result.location);

  return success();
}

static void print(OpAsmPrinter &p, ParallelOp op) {
  p << " (" << op.getBody()->getArguments() << ") = (" << op.getLowerBound()
    << ") to (" << op.getUpperBound() << ") step (" << op.getStep() << ")";
  if (!op.getInitVals().empty())
    p << " init (" << op.getInitVals() << ")";
  p.printOptionalArrowTypeList(op.getResultTypes());
  p << ' ';
  p.printRegion(op.getRegion(), /*printEntryBlockArgs=*/false);
  p.printOptionalAttrDict(
      op->getAttrs(), /*elidedAttrs=*/ParallelOp::getOperandSegmentSizeAttr());
}

Region &ParallelOp::getLoopBody() { return getRegion(); }

bool ParallelOp::isDefinedOutsideOfLoop(Value value) {
  return !getRegion().isAncestor(value.getParentRegion());
}

LogicalResult ParallelOp::moveOutOfLoop(ArrayRef<Operation *> ops) {
  for (auto *op : ops)
    op->moveBefore(*this);
  return success();
}

ParallelOp mlir::scf::getParallelForInductionVarOwner(Value val) {
  auto ivArg = val.dyn_cast<BlockArgument>();
  if (!ivArg)
    return ParallelOp();
  assert(ivArg.getOwner() && "unlinked block argument");
  auto *containingOp = ivArg.getOwner()->getParentOp();
  return dyn_cast<ParallelOp>(containingOp);
}

namespace {
// Collapse loop dimensions that perform a single iteration.
struct CollapseSingleIterationLoops : public OpRewritePattern<ParallelOp> {
  using OpRewritePattern<ParallelOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(ParallelOp op,
                                PatternRewriter &rewriter) const override {
    BlockAndValueMapping mapping;
    // Compute new loop bounds that omit all single-iteration loop dimensions.
    SmallVector<Value, 2> newLowerBounds;
    SmallVector<Value, 2> newUpperBounds;
    SmallVector<Value, 2> newSteps;
    newLowerBounds.reserve(op.getLowerBound().size());
    newUpperBounds.reserve(op.getUpperBound().size());
    newSteps.reserve(op.getStep().size());
    for (auto dim : llvm::zip(op.getLowerBound(), op.getUpperBound(),
                              op.getStep(), op.getInductionVars())) {
      Value lowerBound, upperBound, step, iv;
      std::tie(lowerBound, upperBound, step, iv) = dim;
      // Collect the statically known loop bounds.
      auto lowerBoundConstant =
          dyn_cast_or_null<arith::ConstantIndexOp>(lowerBound.getDefiningOp());
      auto upperBoundConstant =
          dyn_cast_or_null<arith::ConstantIndexOp>(upperBound.getDefiningOp());
      auto stepConstant =
          dyn_cast_or_null<arith::ConstantIndexOp>(step.getDefiningOp());
      // Replace the loop induction variable by the lower bound if the loop
      // performs a single iteration. Otherwise, copy the loop bounds.
      if (lowerBoundConstant && upperBoundConstant && stepConstant &&
          (upperBoundConstant.value() - lowerBoundConstant.value()) > 0 &&
          (upperBoundConstant.value() - lowerBoundConstant.value()) <=
              stepConstant.value()) {
        mapping.map(iv, lowerBound);
      } else {
        newLowerBounds.push_back(lowerBound);
        newUpperBounds.push_back(upperBound);
        newSteps.push_back(step);
      }
    }
    // Exit if none of the loop dimensions perform a single iteration.
    if (newLowerBounds.size() == op.getLowerBound().size())
      return failure();

    if (newLowerBounds.empty()) {
      // All of the loop dimensions perform a single iteration. Inline
      // loop body and nested ReduceOp's
      SmallVector<Value> results;
      results.reserve(op.getInitVals().size());
      for (auto &bodyOp : op.getLoopBody().front().without_terminator()) {
        auto reduce = dyn_cast<ReduceOp>(bodyOp);
        if (!reduce) {
          rewriter.clone(bodyOp, mapping);
          continue;
        }
        Block &reduceBlock = reduce.getReductionOperator().front();
        auto initValIndex = results.size();
        mapping.map(reduceBlock.getArgument(0), op.getInitVals()[initValIndex]);
        mapping.map(reduceBlock.getArgument(1),
                    mapping.lookupOrDefault(reduce.getOperand()));
        for (auto &reduceBodyOp : reduceBlock.without_terminator())
          rewriter.clone(reduceBodyOp, mapping);

        auto result = mapping.lookupOrDefault(
            cast<ReduceReturnOp>(reduceBlock.getTerminator()).getResult());
        results.push_back(result);
      }
      rewriter.replaceOp(op, results);
      return success();
    }
    // Replace the parallel loop by lower-dimensional parallel loop.
    auto newOp =
        rewriter.create<ParallelOp>(op.getLoc(), newLowerBounds, newUpperBounds,
                                    newSteps, op.getInitVals(), nullptr);
    // Clone the loop body and remap the block arguments of the collapsed loops
    // (inlining does not support a cancellable block argument mapping).
    rewriter.cloneRegionBefore(op.getRegion(), newOp.getRegion(),
                               newOp.getRegion().begin(), mapping);
    rewriter.replaceOp(op, newOp.getResults());
    return success();
  }
};

/// Removes parallel loops in which at least one lower/upper bound pair consists
/// of the same values - such loops have an empty iteration domain.
struct RemoveEmptyParallelLoops : public OpRewritePattern<ParallelOp> {
  using OpRewritePattern<ParallelOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(ParallelOp op,
                                PatternRewriter &rewriter) const override {
    for (auto dim : llvm::zip(op.getLowerBound(), op.getUpperBound())) {
      if (std::get<0>(dim) == std::get<1>(dim)) {
        rewriter.replaceOp(op, op.getInitVals());
        return success();
      }
    }
    return failure();
  }
};

struct MergeNestedParallelLoops : public OpRewritePattern<ParallelOp> {
  using OpRewritePattern<ParallelOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(ParallelOp op,
                                PatternRewriter &rewriter) const override {
    Block &outerBody = op.getLoopBody().front();
    if (!llvm::hasSingleElement(outerBody.without_terminator()))
      return failure();

    auto innerOp = dyn_cast<ParallelOp>(outerBody.front());
    if (!innerOp)
      return failure();

    auto hasVal = [](const auto &range, Value val) {
      return llvm::find(range, val) != range.end();
    };

    for (auto val : outerBody.getArguments())
      if (hasVal(innerOp.getLowerBound(), val) ||
          hasVal(innerOp.getUpperBound(), val) ||
          hasVal(innerOp.getStep(), val))
        return failure();

    // Reductions are not supported yet.
    if (!op.getInitVals().empty() || !innerOp.getInitVals().empty())
      return failure();

    auto bodyBuilder = [&](OpBuilder &builder, Location /*loc*/,
                           ValueRange iterVals, ValueRange) {
      Block &innerBody = innerOp.getLoopBody().front();
      assert(iterVals.size() ==
             (outerBody.getNumArguments() + innerBody.getNumArguments()));
      BlockAndValueMapping mapping;
      mapping.map(outerBody.getArguments(),
                  iterVals.take_front(outerBody.getNumArguments()));
      mapping.map(innerBody.getArguments(),
                  iterVals.take_back(innerBody.getNumArguments()));
      for (Operation &op : innerBody.without_terminator())
        builder.clone(op, mapping);
    };

    auto concatValues = [](const auto &first, const auto &second) {
      SmallVector<Value> ret;
      ret.reserve(first.size() + second.size());
      ret.assign(first.begin(), first.end());
      ret.append(second.begin(), second.end());
      return ret;
    };

    auto newLowerBounds =
        concatValues(op.getLowerBound(), innerOp.getLowerBound());
    auto newUpperBounds =
        concatValues(op.getUpperBound(), innerOp.getUpperBound());
    auto newSteps = concatValues(op.getStep(), innerOp.getStep());

    rewriter.replaceOpWithNewOp<ParallelOp>(op, newLowerBounds, newUpperBounds,
                                            newSteps, llvm::None, bodyBuilder);
    return success();
  }
};

} // namespace

void ParallelOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                             MLIRContext *context) {
  results.add<CollapseSingleIterationLoops, RemoveEmptyParallelLoops,
              MergeNestedParallelLoops>(context);
}

//===----------------------------------------------------------------------===//
// ReduceOp
//===----------------------------------------------------------------------===//

void ReduceOp::build(
    OpBuilder &builder, OperationState &result, Value operand,
    function_ref<void(OpBuilder &, Location, Value, Value)> bodyBuilderFn) {
  auto type = operand.getType();
  result.addOperands(operand);

  OpBuilder::InsertionGuard guard(builder);
  Region *bodyRegion = result.addRegion();
  Block *body = builder.createBlock(bodyRegion, {}, ArrayRef<Type>{type, type},
                                    {result.location, result.location});
  if (bodyBuilderFn)
    bodyBuilderFn(builder, result.location, body->getArgument(0),
                  body->getArgument(1));
}

static LogicalResult verify(ReduceOp op) {
  // The region of a ReduceOp has two arguments of the same type as its operand.
  auto type = op.getOperand().getType();
  Block &block = op.getReductionOperator().front();
  if (block.empty())
    return op.emitOpError("the block inside reduce should not be empty");
  if (block.getNumArguments() != 2 ||
      llvm::any_of(block.getArguments(), [&](const BlockArgument &arg) {
        return arg.getType() != type;
      }))
    return op.emitOpError()
           << "expects two arguments to reduce block of type " << type;

  // Check that the block is terminated by a ReduceReturnOp.
  if (!isa<ReduceReturnOp>(block.getTerminator()))
    return op.emitOpError("the block inside reduce should be terminated with a "
                          "'scf.reduce.return' op");

  return success();
}

static ParseResult parseReduceOp(OpAsmParser &parser, OperationState &result) {
  // Parse an opening `(` followed by the reduced value followed by `)`
  OpAsmParser::OperandType operand;
  if (parser.parseLParen() || parser.parseOperand(operand) ||
      parser.parseRParen())
    return failure();

  Type resultType;
  // Parse the type of the operand (and also what reduce computes on).
  if (parser.parseColonType(resultType) ||
      parser.resolveOperand(operand, resultType, result.operands))
    return failure();

  // Now parse the body.
  Region *body = result.addRegion();
  if (parser.parseRegion(*body, /*arguments=*/{}, /*argTypes=*/{}))
    return failure();

  return success();
}

static void print(OpAsmPrinter &p, ReduceOp op) {
  p << "(" << op.getOperand() << ") ";
  p << " : " << op.getOperand().getType() << ' ';
  p.printRegion(op.getReductionOperator());
}

//===----------------------------------------------------------------------===//
// ReduceReturnOp
//===----------------------------------------------------------------------===//

static LogicalResult verify(ReduceReturnOp op) {
  // The type of the return value should be the same type as the type of the
  // operand of the enclosing ReduceOp.
  auto reduceOp = cast<ReduceOp>(op->getParentOp());
  Type reduceType = reduceOp.getOperand().getType();
  if (reduceType != op.getResult().getType())
    return op.emitOpError() << "needs to have type " << reduceType
                            << " (the type of the enclosing ReduceOp)";
  return success();
}

//===----------------------------------------------------------------------===//
// WhileOp
//===----------------------------------------------------------------------===//

OperandRange WhileOp::getSuccessorEntryOperands(unsigned index) {
  assert(index == 0 &&
         "WhileOp is expected to branch only to the first region");

  return getInits();
}

ConditionOp WhileOp::getConditionOp() {
  return cast<ConditionOp>(getBefore().front().getTerminator());
}

YieldOp WhileOp::getYieldOp() {
  return cast<YieldOp>(getAfter().front().getTerminator());
}

Block::BlockArgListType WhileOp::getBeforeArguments() {
  return getBefore().front().getArguments();
}

Block::BlockArgListType WhileOp::getAfterArguments() {
  return getAfter().front().getArguments();
}

void WhileOp::getSuccessorRegions(Optional<unsigned> index,
                                  ArrayRef<Attribute> operands,
                                  SmallVectorImpl<RegionSuccessor> &regions) {
  (void)operands;

  if (!index.hasValue()) {
    regions.emplace_back(&getBefore(), getBefore().getArguments());
    return;
  }

  assert(*index < 2 && "there are only two regions in a WhileOp");
  if (*index == 0) {
    regions.emplace_back(&getAfter(), getAfter().getArguments());
    regions.emplace_back(getResults());
    return;
  }

  regions.emplace_back(&getBefore(), getBefore().getArguments());
}

/// Parses a `while` op.
///
/// op ::= `scf.while` assignments `:` function-type region `do` region
///         `attributes` attribute-dict
/// initializer ::= /* empty */ | `(` assignment-list `)`
/// assignment-list ::= assignment | assignment `,` assignment-list
/// assignment ::= ssa-value `=` ssa-value
static ParseResult parseWhileOp(OpAsmParser &parser, OperationState &result) {
  SmallVector<OpAsmParser::OperandType, 4> regionArgs, operands;
  Region *before = result.addRegion();
  Region *after = result.addRegion();

  OptionalParseResult listResult =
      parser.parseOptionalAssignmentList(regionArgs, operands);
  if (listResult.hasValue() && failed(listResult.getValue()))
    return failure();

  FunctionType functionType;
  SMLoc typeLoc = parser.getCurrentLocation();
  if (failed(parser.parseColonType(functionType)))
    return failure();

  result.addTypes(functionType.getResults());

  if (functionType.getNumInputs() != operands.size()) {
    return parser.emitError(typeLoc)
           << "expected as many input types as operands "
           << "(expected " << operands.size() << " got "
           << functionType.getNumInputs() << ")";
  }

  // Resolve input operands.
  if (failed(parser.resolveOperands(operands, functionType.getInputs(),
                                    parser.getCurrentLocation(),
                                    result.operands)))
    return failure();

  return failure(
      parser.parseRegion(*before, regionArgs, functionType.getInputs()) ||
      parser.parseKeyword("do") || parser.parseRegion(*after) ||
      parser.parseOptionalAttrDictWithKeyword(result.attributes));
}

/// Prints a `while` op.
static void print(OpAsmPrinter &p, scf::WhileOp op) {
  printInitializationList(p, op.getBefore().front().getArguments(),
                          op.getInits(), " ");
  p << " : ";
  p.printFunctionalType(op.getInits().getTypes(), op.getResults().getTypes());
  p << ' ';
  p.printRegion(op.getBefore(), /*printEntryBlockArgs=*/false);
  p << " do ";
  p.printRegion(op.getAfter());
  p.printOptionalAttrDictWithKeyword(op->getAttrs());
}

/// Verifies that two ranges of types match, i.e. have the same number of
/// entries and that types are pairwise equals. Reports errors on the given
/// operation in case of mismatch.
template <typename OpTy>
static LogicalResult verifyTypeRangesMatch(OpTy op, TypeRange left,
                                           TypeRange right, StringRef message) {
  if (left.size() != right.size())
    return op.emitOpError("expects the same number of ") << message;

  for (unsigned i = 0, e = left.size(); i < e; ++i) {
    if (left[i] != right[i]) {
      InFlightDiagnostic diag = op.emitOpError("expects the same types for ")
                                << message;
      diag.attachNote() << "for argument " << i << ", found " << left[i]
                        << " and " << right[i];
      return diag;
    }
  }

  return success();
}

/// Verifies that the first block of the given `region` is terminated by a
/// YieldOp. Reports errors on the given operation if it is not the case.
template <typename TerminatorTy>
static TerminatorTy verifyAndGetTerminator(scf::WhileOp op, Region &region,
                                           StringRef errorMessage) {
  Operation *terminatorOperation = region.front().getTerminator();
  if (auto yield = dyn_cast_or_null<TerminatorTy>(terminatorOperation))
    return yield;

  auto diag = op.emitOpError(errorMessage);
  if (terminatorOperation)
    diag.attachNote(terminatorOperation->getLoc()) << "terminator here";
  return nullptr;
}

static LogicalResult verify(scf::WhileOp op) {
  if (failed(RegionBranchOpInterface::verifyTypes(op)))
    return failure();

  auto beforeTerminator = verifyAndGetTerminator<scf::ConditionOp>(
      op, op.getBefore(),
      "expects the 'before' region to terminate with 'scf.condition'");
  if (!beforeTerminator)
    return failure();

  auto afterTerminator = verifyAndGetTerminator<scf::YieldOp>(
      op, op.getAfter(),
      "expects the 'after' region to terminate with 'scf.yield'");
  return success(afterTerminator != nullptr);
}

namespace {
/// Replace uses of the condition within the do block with true, since otherwise
/// the block would not be evaluated.
///
/// scf.while (..) : (i1, ...) -> ... {
///  %condition = call @evaluate_condition() : () -> i1
///  scf.condition(%condition) %condition : i1, ...
/// } do {
/// ^bb0(%arg0: i1, ...):
///    use(%arg0)
///    ...
///
/// becomes
/// scf.while (..) : (i1, ...) -> ... {
///  %condition = call @evaluate_condition() : () -> i1
///  scf.condition(%condition) %condition : i1, ...
/// } do {
/// ^bb0(%arg0: i1, ...):
///    use(%true)
///    ...
struct WhileConditionTruth : public OpRewritePattern<WhileOp> {
  using OpRewritePattern<WhileOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(WhileOp op,
                                PatternRewriter &rewriter) const override {
    auto term = op.getConditionOp();

    // These variables serve to prevent creating duplicate constants
    // and hold constant true or false values.
    Value constantTrue = nullptr;

    bool replaced = false;
    for (auto yieldedAndBlockArgs :
         llvm::zip(term.getArgs(), op.getAfterArguments())) {
      if (std::get<0>(yieldedAndBlockArgs) == term.getCondition()) {
        if (!std::get<1>(yieldedAndBlockArgs).use_empty()) {
          if (!constantTrue)
            constantTrue = rewriter.create<arith::ConstantOp>(
                op.getLoc(), term.getCondition().getType(),
                rewriter.getBoolAttr(true));

          std::get<1>(yieldedAndBlockArgs).replaceAllUsesWith(constantTrue);
          replaced = true;
        }
      }
    }
    return success(replaced);
  }
};

/// Remove WhileOp results that are also unused in 'after' block.
///
///  %0:2 = scf.while () : () -> (i32, i64) {
///    %condition = "test.condition"() : () -> i1
///    %v1 = "test.get_some_value"() : () -> i32
///    %v2 = "test.get_some_value"() : () -> i64
///    scf.condition(%condition) %v1, %v2 : i32, i64
///  } do {
///  ^bb0(%arg0: i32, %arg1: i64):
///    "test.use"(%arg0) : (i32) -> ()
///    scf.yield
///  }
///  return %0#0 : i32
///
/// becomes
///  %0 = scf.while () : () -> (i32) {
///    %condition = "test.condition"() : () -> i1
///    %v1 = "test.get_some_value"() : () -> i32
///    %v2 = "test.get_some_value"() : () -> i64
///    scf.condition(%condition) %v1 : i32
///  } do {
///  ^bb0(%arg0: i32):
///    "test.use"(%arg0) : (i32) -> ()
///    scf.yield
///  }
///  return %0 : i32
struct WhileUnusedResult : public OpRewritePattern<WhileOp> {
  using OpRewritePattern<WhileOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(WhileOp op,
                                PatternRewriter &rewriter) const override {
    auto term = op.getConditionOp();
    auto afterArgs = op.getAfterArguments();
    auto termArgs = term.getArgs();

    // Collect results mapping, new terminator args and new result types.
    SmallVector<unsigned> newResultsIndices;
    SmallVector<Type> newResultTypes;
    SmallVector<Value> newTermArgs;
    SmallVector<Location> newArgLocs;
    bool needUpdate = false;
    for (const auto &it :
         llvm::enumerate(llvm::zip(op.getResults(), afterArgs, termArgs))) {
      auto i = static_cast<unsigned>(it.index());
      Value result = std::get<0>(it.value());
      Value afterArg = std::get<1>(it.value());
      Value termArg = std::get<2>(it.value());
      if (result.use_empty() && afterArg.use_empty()) {
        needUpdate = true;
      } else {
        newResultsIndices.emplace_back(i);
        newTermArgs.emplace_back(termArg);
        newResultTypes.emplace_back(result.getType());
        newArgLocs.emplace_back(result.getLoc());
      }
    }

    if (!needUpdate)
      return failure();

    {
      OpBuilder::InsertionGuard g(rewriter);
      rewriter.setInsertionPoint(term);
      rewriter.replaceOpWithNewOp<ConditionOp>(term, term.getCondition(),
                                               newTermArgs);
    }

    auto newWhile =
        rewriter.create<WhileOp>(op.getLoc(), newResultTypes, op.getInits());

    Block &newAfterBlock = *rewriter.createBlock(
        &newWhile.getAfter(), /*insertPt*/ {}, newResultTypes, newArgLocs);

    // Build new results list and new after block args (unused entries will be
    // null).
    SmallVector<Value> newResults(op.getNumResults());
    SmallVector<Value> newAfterBlockArgs(op.getNumResults());
    for (const auto &it : llvm::enumerate(newResultsIndices)) {
      newResults[it.value()] = newWhile.getResult(it.index());
      newAfterBlockArgs[it.value()] = newAfterBlock.getArgument(it.index());
    }

    rewriter.inlineRegionBefore(op.getBefore(), newWhile.getBefore(),
                                newWhile.getBefore().begin());

    Block &afterBlock = op.getAfter().front();
    rewriter.mergeBlocks(&afterBlock, &newAfterBlock, newAfterBlockArgs);

    rewriter.replaceOp(op, newResults);
    return success();
  }
};

/// Replace operations equivalent to the condition in the do block with true,
/// since otherwise the block would not be evaluated.
///
/// scf.while (..) : (i32, ...) -> ... {
///  %z = ... : i32
///  %condition = cmpi pred %z, %a
///  scf.condition(%condition) %z : i32, ...
/// } do {
/// ^bb0(%arg0: i32, ...):
///    %condition2 = cmpi pred %arg0, %a
///    use(%condition2)
///    ...
///
/// becomes
/// scf.while (..) : (i32, ...) -> ... {
///  %z = ... : i32
///  %condition = cmpi pred %z, %a
///  scf.condition(%condition) %z : i32, ...
/// } do {
/// ^bb0(%arg0: i32, ...):
///    use(%true)
///    ...
struct WhileCmpCond : public OpRewritePattern<scf::WhileOp> {
  using OpRewritePattern<scf::WhileOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(scf::WhileOp op,
                                PatternRewriter &rewriter) const override {
    using namespace scf;
    auto cond = op.getConditionOp();
    auto cmp = cond.getCondition().getDefiningOp<arith::CmpIOp>();
    if (!cmp)
      return failure();
    bool changed = false;
    for (auto tup :
         llvm::zip(cond.getArgs(), op.getAfter().front().getArguments())) {
      for (size_t opIdx = 0; opIdx < 2; opIdx++) {
        if (std::get<0>(tup) != cmp.getOperand(opIdx))
          continue;
        for (OpOperand &u :
             llvm::make_early_inc_range(std::get<1>(tup).getUses())) {
          auto cmp2 = dyn_cast<arith::CmpIOp>(u.getOwner());
          if (!cmp2)
            continue;
          // For a binary operator 1-opIdx gets the other side.
          if (cmp2.getOperand(1 - opIdx) != cmp.getOperand(1 - opIdx))
            continue;
          bool samePredicate;
          if (cmp2.getPredicate() == cmp.getPredicate())
            samePredicate = true;
          else if (cmp2.getPredicate() ==
                   arith::invertPredicate(cmp.getPredicate()))
            samePredicate = false;
          else
            continue;

          rewriter.replaceOpWithNewOp<arith::ConstantIntOp>(cmp2, samePredicate,
                                                            1);
          changed = true;
        }
      }
    }
    return success(changed);
  }
};

struct WhileUnusedArg : public OpRewritePattern<WhileOp> {
  using OpRewritePattern<WhileOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(WhileOp op,
                                PatternRewriter &rewriter) const override {

    if (!llvm::any_of(op.getBeforeArguments(),
                      [](Value arg) { return arg.use_empty(); }))
      return failure();

    YieldOp yield = op.getYieldOp();

    // Collect results mapping, new terminator args and new result types.
    SmallVector<Value> newYields;
    SmallVector<Value> newInits;
    SmallVector<unsigned> argsToErase;
    for (const auto &it : llvm::enumerate(llvm::zip(
             op.getBeforeArguments(), yield.getOperands(), op.getInits()))) {
      Value beforeArg = std::get<0>(it.value());
      Value yieldValue = std::get<1>(it.value());
      Value initValue = std::get<2>(it.value());
      if (beforeArg.use_empty()) {
        argsToErase.push_back(it.index());
      } else {
        newYields.emplace_back(yieldValue);
        newInits.emplace_back(initValue);
      }
    }

    if (argsToErase.empty())
      return failure();

    rewriter.startRootUpdate(op);
    op.getBefore().front().eraseArguments(argsToErase);
    rewriter.finalizeRootUpdate(op);

    WhileOp replacement =
        rewriter.create<WhileOp>(op.getLoc(), op.getResultTypes(), newInits);
    replacement.getBefore().takeBody(op.getBefore());
    replacement.getAfter().takeBody(op.getAfter());
    rewriter.replaceOp(op, replacement.getResults());

    rewriter.setInsertionPoint(yield);
    rewriter.replaceOpWithNewOp<YieldOp>(yield, newYields);
    return success();
  }
};
} // namespace

void WhileOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                          MLIRContext *context) {
  results.insert<WhileConditionTruth, WhileUnusedResult, WhileCmpCond,
                 WhileUnusedArg>(context);
}

//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//

#define GET_OP_CLASSES
#include "mlir/Dialect/SCF/SCFOps.cpp.inc"