1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
|
//===--- AST.cpp - Utility AST functions -----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "AST.h"
#include "SourceCode.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Index/USRGeneration.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include <iterator>
#include <string>
#include <vector>
namespace clang {
namespace clangd {
namespace {
llvm::Optional<llvm::ArrayRef<TemplateArgumentLoc>>
getTemplateSpecializationArgLocs(const NamedDecl &ND) {
if (auto *Func = llvm::dyn_cast<FunctionDecl>(&ND)) {
if (const ASTTemplateArgumentListInfo *Args =
Func->getTemplateSpecializationArgsAsWritten())
return Args->arguments();
} else if (auto *Cls =
llvm::dyn_cast<ClassTemplatePartialSpecializationDecl>(&ND)) {
if (auto *Args = Cls->getTemplateArgsAsWritten())
return Args->arguments();
} else if (auto *Var =
llvm::dyn_cast<VarTemplatePartialSpecializationDecl>(&ND)) {
if (auto *Args = Var->getTemplateArgsAsWritten())
return Args->arguments();
} else if (auto *Var = llvm::dyn_cast<VarTemplateSpecializationDecl>(&ND)) {
if (auto *Args = Var->getTemplateArgsInfo())
return Args->arguments();
}
// We return None for ClassTemplateSpecializationDecls because it does not
// contain TemplateArgumentLoc information.
return llvm::None;
}
template <class T>
bool isTemplateSpecializationKind(const NamedDecl *D,
TemplateSpecializationKind Kind) {
if (const auto *TD = dyn_cast<T>(D))
return TD->getTemplateSpecializationKind() == Kind;
return false;
}
bool isTemplateSpecializationKind(const NamedDecl *D,
TemplateSpecializationKind Kind) {
return isTemplateSpecializationKind<FunctionDecl>(D, Kind) ||
isTemplateSpecializationKind<CXXRecordDecl>(D, Kind) ||
isTemplateSpecializationKind<VarDecl>(D, Kind);
}
// Store all UsingDirectiveDecls in parent contexts of DestContext, that were
// introduced before InsertionPoint.
llvm::DenseSet<const NamespaceDecl *>
getUsingNamespaceDirectives(const DeclContext *DestContext,
SourceLocation Until) {
const auto &SM = DestContext->getParentASTContext().getSourceManager();
llvm::DenseSet<const NamespaceDecl *> VisibleNamespaceDecls;
for (const auto *DC = DestContext; DC; DC = DC->getLookupParent()) {
for (const auto *D : DC->decls()) {
if (!SM.isWrittenInSameFile(D->getLocation(), Until) ||
!SM.isBeforeInTranslationUnit(D->getLocation(), Until))
continue;
if (auto *UDD = llvm::dyn_cast<UsingDirectiveDecl>(D))
VisibleNamespaceDecls.insert(
UDD->getNominatedNamespace()->getCanonicalDecl());
}
}
return VisibleNamespaceDecls;
}
// Goes over all parents of SourceContext until we find a common ancestor for
// DestContext and SourceContext. Any qualifier including and above common
// ancestor is redundant, therefore we stop at lowest common ancestor.
// In addition to that stops early whenever IsVisible returns true. This can be
// used to implement support for "using namespace" decls.
std::string
getQualification(ASTContext &Context, const DeclContext *DestContext,
const DeclContext *SourceContext,
llvm::function_ref<bool(NestedNameSpecifier *)> IsVisible) {
std::vector<const NestedNameSpecifier *> Parents;
bool ReachedNS = false;
for (const DeclContext *CurContext = SourceContext; CurContext;
CurContext = CurContext->getLookupParent()) {
// Stop once we reach a common ancestor.
if (CurContext->Encloses(DestContext))
break;
NestedNameSpecifier *NNS = nullptr;
if (auto *TD = llvm::dyn_cast<TagDecl>(CurContext)) {
// There can't be any more tag parents after hitting a namespace.
assert(!ReachedNS);
(void)ReachedNS;
NNS = NestedNameSpecifier::Create(Context, nullptr, false,
TD->getTypeForDecl());
} else if (auto *NSD = llvm::dyn_cast<NamespaceDecl>(CurContext)) {
ReachedNS = true;
NNS = NestedNameSpecifier::Create(Context, nullptr, NSD);
// Anonymous and inline namespace names are not spelled while qualifying
// a name, so skip those.
if (NSD->isAnonymousNamespace() || NSD->isInlineNamespace())
continue;
} else {
// Other types of contexts cannot be spelled in code, just skip over
// them.
continue;
}
// Stop if this namespace is already visible at DestContext.
if (IsVisible(NNS))
break;
Parents.push_back(NNS);
}
// Go over name-specifiers in reverse order to create necessary qualification,
// since we stored inner-most parent first.
std::string Result;
llvm::raw_string_ostream OS(Result);
for (const auto *Parent : llvm::reverse(Parents))
Parent->print(OS, Context.getPrintingPolicy());
return OS.str();
}
} // namespace
bool isImplicitTemplateInstantiation(const NamedDecl *D) {
return isTemplateSpecializationKind(D, TSK_ImplicitInstantiation);
}
bool isExplicitTemplateSpecialization(const NamedDecl *D) {
return isTemplateSpecializationKind(D, TSK_ExplicitSpecialization);
}
bool isImplementationDetail(const Decl *D) {
return !isSpelledInSource(D->getLocation(),
D->getASTContext().getSourceManager());
}
SourceLocation nameLocation(const clang::Decl &D, const SourceManager &SM) {
auto L = D.getLocation();
// For `- (void)foo` we want `foo` not the `-`.
if (const auto *MD = dyn_cast<ObjCMethodDecl>(&D))
L = MD->getSelectorStartLoc();
if (isSpelledInSource(L, SM))
return SM.getSpellingLoc(L);
return SM.getExpansionLoc(L);
}
std::string printQualifiedName(const NamedDecl &ND) {
std::string QName;
llvm::raw_string_ostream OS(QName);
PrintingPolicy Policy(ND.getASTContext().getLangOpts());
// Note that inline namespaces are treated as transparent scopes. This
// reflects the way they're most commonly used for lookup. Ideally we'd
// include them, but at query time it's hard to find all the inline
// namespaces to query: the preamble doesn't have a dedicated list.
Policy.SuppressUnwrittenScope = true;
ND.printQualifiedName(OS, Policy);
OS.flush();
assert(!StringRef(QName).startswith("::"));
return QName;
}
static bool isAnonymous(const DeclarationName &N) {
return N.isIdentifier() && !N.getAsIdentifierInfo();
}
NestedNameSpecifierLoc getQualifierLoc(const NamedDecl &ND) {
if (auto *V = llvm::dyn_cast<DeclaratorDecl>(&ND))
return V->getQualifierLoc();
if (auto *T = llvm::dyn_cast<TagDecl>(&ND))
return T->getQualifierLoc();
return NestedNameSpecifierLoc();
}
std::string printUsingNamespaceName(const ASTContext &Ctx,
const UsingDirectiveDecl &D) {
PrintingPolicy PP(Ctx.getLangOpts());
std::string Name;
llvm::raw_string_ostream Out(Name);
if (auto *Qual = D.getQualifier())
Qual->print(Out, PP);
D.getNominatedNamespaceAsWritten()->printName(Out);
return Out.str();
}
std::string printName(const ASTContext &Ctx, const NamedDecl &ND) {
std::string Name;
llvm::raw_string_ostream Out(Name);
PrintingPolicy PP(Ctx.getLangOpts());
// We don't consider a class template's args part of the constructor name.
PP.SuppressTemplateArgsInCXXConstructors = true;
// Handle 'using namespace'. They all have the same name - <using-directive>.
if (auto *UD = llvm::dyn_cast<UsingDirectiveDecl>(&ND)) {
Out << "using namespace ";
if (auto *Qual = UD->getQualifier())
Qual->print(Out, PP);
UD->getNominatedNamespaceAsWritten()->printName(Out);
return Out.str();
}
if (isAnonymous(ND.getDeclName())) {
// Come up with a presentation for an anonymous entity.
if (isa<NamespaceDecl>(ND))
return "(anonymous namespace)";
if (auto *Cls = llvm::dyn_cast<RecordDecl>(&ND)) {
if (Cls->isLambda())
return "(lambda)";
return ("(anonymous " + Cls->getKindName() + ")").str();
}
if (isa<EnumDecl>(ND))
return "(anonymous enum)";
return "(anonymous)";
}
// Print nested name qualifier if it was written in the source code.
if (auto *Qualifier = getQualifierLoc(ND).getNestedNameSpecifier())
Qualifier->print(Out, PP);
// Print the name itself.
ND.getDeclName().print(Out, PP);
// Print template arguments.
Out << printTemplateSpecializationArgs(ND);
return Out.str();
}
std::string printTemplateSpecializationArgs(const NamedDecl &ND) {
std::string TemplateArgs;
llvm::raw_string_ostream OS(TemplateArgs);
PrintingPolicy Policy(ND.getASTContext().getLangOpts());
if (llvm::Optional<llvm::ArrayRef<TemplateArgumentLoc>> Args =
getTemplateSpecializationArgLocs(ND)) {
printTemplateArgumentList(OS, *Args, Policy);
} else if (auto *Cls = llvm::dyn_cast<ClassTemplateSpecializationDecl>(&ND)) {
if (const TypeSourceInfo *TSI = Cls->getTypeAsWritten()) {
// ClassTemplateSpecializationDecls do not contain
// TemplateArgumentTypeLocs, they only have TemplateArgumentTypes. So we
// create a new argument location list from TypeSourceInfo.
auto STL = TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>();
llvm::SmallVector<TemplateArgumentLoc> ArgLocs;
ArgLocs.reserve(STL.getNumArgs());
for (unsigned I = 0; I < STL.getNumArgs(); ++I)
ArgLocs.push_back(STL.getArgLoc(I));
printTemplateArgumentList(OS, ArgLocs, Policy);
} else {
// FIXME: Fix cases when getTypeAsWritten returns null inside clang AST,
// e.g. friend decls. Currently we fallback to Template Arguments without
// location information.
printTemplateArgumentList(OS, Cls->getTemplateArgs().asArray(), Policy);
}
}
OS.flush();
return TemplateArgs;
}
std::string printNamespaceScope(const DeclContext &DC) {
for (const auto *Ctx = &DC; Ctx != nullptr; Ctx = Ctx->getParent())
if (const auto *NS = dyn_cast<NamespaceDecl>(Ctx))
if (!NS->isAnonymousNamespace() && !NS->isInlineNamespace())
return printQualifiedName(*NS) + "::";
return "";
}
static llvm::StringRef
getNameOrErrForObjCInterface(const ObjCInterfaceDecl *ID) {
return ID ? ID->getName() : "<<error-type>>";
}
std::string printObjCMethod(const ObjCMethodDecl &Method) {
std::string Name;
llvm::raw_string_ostream OS(Name);
OS << (Method.isInstanceMethod() ? '-' : '+') << '[';
// Should always be true.
if (const ObjCContainerDecl *C =
dyn_cast<ObjCContainerDecl>(Method.getDeclContext()))
OS << printObjCContainer(*C);
Method.getSelector().print(OS << ' ');
if (Method.isVariadic())
OS << ", ...";
OS << ']';
OS.flush();
return Name;
}
std::string printObjCContainer(const ObjCContainerDecl &C) {
if (const ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(&C)) {
std::string Name;
llvm::raw_string_ostream OS(Name);
const ObjCInterfaceDecl *Class = Category->getClassInterface();
OS << getNameOrErrForObjCInterface(Class) << '(' << Category->getName()
<< ')';
OS.flush();
return Name;
}
if (const ObjCCategoryImplDecl *CID = dyn_cast<ObjCCategoryImplDecl>(&C)) {
std::string Name;
llvm::raw_string_ostream OS(Name);
const ObjCInterfaceDecl *Class = CID->getClassInterface();
OS << getNameOrErrForObjCInterface(Class) << '(' << CID->getName() << ')';
OS.flush();
return Name;
}
return C.getNameAsString();
}
SymbolID getSymbolID(const Decl *D) {
llvm::SmallString<128> USR;
if (index::generateUSRForDecl(D, USR))
return {};
return SymbolID(USR);
}
SymbolID getSymbolID(const llvm::StringRef MacroName, const MacroInfo *MI,
const SourceManager &SM) {
if (MI == nullptr)
return {};
llvm::SmallString<128> USR;
if (index::generateUSRForMacro(MacroName, MI->getDefinitionLoc(), SM, USR))
return {};
return SymbolID(USR);
}
const ObjCImplDecl *getCorrespondingObjCImpl(const ObjCContainerDecl *D) {
if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D))
return ID->getImplementation();
if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
if (CD->IsClassExtension()) {
if (const auto *ID = CD->getClassInterface())
return ID->getImplementation();
return nullptr;
}
return CD->getImplementation();
}
return nullptr;
}
std::string printType(const QualType QT, const DeclContext &CurContext,
const llvm::StringRef Placeholder) {
std::string Result;
llvm::raw_string_ostream OS(Result);
PrintingPolicy PP(CurContext.getParentASTContext().getPrintingPolicy());
PP.SuppressTagKeyword = true;
PP.SuppressUnwrittenScope = true;
class PrintCB : public PrintingCallbacks {
public:
PrintCB(const DeclContext *CurContext) : CurContext(CurContext) {}
virtual ~PrintCB() {}
bool isScopeVisible(const DeclContext *DC) const override {
return DC->Encloses(CurContext);
}
private:
const DeclContext *CurContext;
};
PrintCB PCB(&CurContext);
PP.Callbacks = &PCB;
QT.print(OS, PP, Placeholder);
return OS.str();
}
bool hasReservedName(const Decl &D) {
if (const auto *ND = llvm::dyn_cast<NamedDecl>(&D))
if (const auto *II = ND->getIdentifier())
return isReservedName(II->getName());
return false;
}
bool hasReservedScope(const DeclContext &DC) {
for (const DeclContext *D = &DC; D; D = D->getParent()) {
if (D->isTransparentContext() || D->isInlineNamespace())
continue;
if (const auto *ND = llvm::dyn_cast<NamedDecl>(D))
if (hasReservedName(*ND))
return true;
}
return false;
}
QualType declaredType(const TypeDecl *D) {
if (const auto *CTSD = llvm::dyn_cast<ClassTemplateSpecializationDecl>(D))
if (const auto *TSI = CTSD->getTypeAsWritten())
return TSI->getType();
return D->getASTContext().getTypeDeclType(D);
}
namespace {
/// Computes the deduced type at a given location by visiting the relevant
/// nodes. We use this to display the actual type when hovering over an "auto"
/// keyword or "decltype()" expression.
/// FIXME: This could have been a lot simpler by visiting AutoTypeLocs but it
/// seems that the AutoTypeLocs that can be visited along with their AutoType do
/// not have the deduced type set. Instead, we have to go to the appropriate
/// DeclaratorDecl/FunctionDecl and work our back to the AutoType that does have
/// a deduced type set. The AST should be improved to simplify this scenario.
class DeducedTypeVisitor : public RecursiveASTVisitor<DeducedTypeVisitor> {
SourceLocation SearchedLocation;
public:
DeducedTypeVisitor(SourceLocation SearchedLocation)
: SearchedLocation(SearchedLocation) {}
// Handle auto initializers:
//- auto i = 1;
//- decltype(auto) i = 1;
//- auto& i = 1;
//- auto* i = &a;
bool VisitDeclaratorDecl(DeclaratorDecl *D) {
if (!D->getTypeSourceInfo() ||
D->getTypeSourceInfo()->getTypeLoc().getBeginLoc() != SearchedLocation)
return true;
if (auto *AT = D->getType()->getContainedAutoType()) {
DeducedType = AT->desugar();
}
return true;
}
// Handle auto return types:
//- auto foo() {}
//- auto& foo() {}
//- auto foo() -> int {}
//- auto foo() -> decltype(1+1) {}
//- operator auto() const { return 10; }
bool VisitFunctionDecl(FunctionDecl *D) {
if (!D->getTypeSourceInfo())
return true;
// Loc of auto in return type (c++14).
auto CurLoc = D->getReturnTypeSourceRange().getBegin();
// Loc of "auto" in operator auto()
if (CurLoc.isInvalid() && isa<CXXConversionDecl>(D))
CurLoc = D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
// Loc of "auto" in function with trailing return type (c++11).
if (CurLoc.isInvalid())
CurLoc = D->getSourceRange().getBegin();
if (CurLoc != SearchedLocation)
return true;
const AutoType *AT = D->getReturnType()->getContainedAutoType();
if (AT && !AT->getDeducedType().isNull()) {
DeducedType = AT->getDeducedType();
} else if (auto *DT = dyn_cast<DecltypeType>(D->getReturnType())) {
// auto in a trailing return type just points to a DecltypeType and
// getContainedAutoType does not unwrap it.
if (!DT->getUnderlyingType().isNull())
DeducedType = DT->getUnderlyingType();
} else if (!D->getReturnType().isNull()) {
DeducedType = D->getReturnType();
}
return true;
}
// Handle non-auto decltype, e.g.:
// - auto foo() -> decltype(expr) {}
// - decltype(expr);
bool VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
if (TL.getBeginLoc() != SearchedLocation)
return true;
// A DecltypeType's underlying type can be another DecltypeType! E.g.
// int I = 0;
// decltype(I) J = I;
// decltype(J) K = J;
const DecltypeType *DT = dyn_cast<DecltypeType>(TL.getTypePtr());
while (DT && !DT->getUnderlyingType().isNull()) {
DeducedType = DT->getUnderlyingType();
DT = dyn_cast<DecltypeType>(DeducedType.getTypePtr());
}
return true;
}
// Handle functions/lambdas with `auto` typed parameters.
// We deduce the type if there's exactly one instantiation visible.
bool VisitParmVarDecl(ParmVarDecl *PVD) {
if (!PVD->getType()->isDependentType())
return true;
// 'auto' here does not name an AutoType, but an implicit template param.
TemplateTypeParmTypeLoc Auto =
getContainedAutoParamType(PVD->getTypeSourceInfo()->getTypeLoc());
if (Auto.isNull() || Auto.getNameLoc() != SearchedLocation)
return true;
// We expect the TTP to be attached to this function template.
// Find the template and the param index.
auto *Templated = llvm::dyn_cast<FunctionDecl>(PVD->getDeclContext());
if (!Templated)
return true;
auto *FTD = Templated->getDescribedFunctionTemplate();
if (!FTD)
return true;
int ParamIndex = paramIndex(*FTD, *Auto.getDecl());
if (ParamIndex < 0) {
assert(false && "auto TTP is not from enclosing function?");
return true;
}
// Now find the instantiation and the deduced template type arg.
auto *Instantiation =
llvm::dyn_cast_or_null<FunctionDecl>(getOnlyInstantiation(Templated));
if (!Instantiation)
return true;
const auto *Args = Instantiation->getTemplateSpecializationArgs();
if (Args->size() != FTD->getTemplateParameters()->size())
return true; // no weird variadic stuff
DeducedType = Args->get(ParamIndex).getAsType();
return true;
}
static int paramIndex(const TemplateDecl &TD, NamedDecl &Param) {
unsigned I = 0;
for (auto *ND : *TD.getTemplateParameters()) {
if (&Param == ND)
return I;
++I;
}
return -1;
}
QualType DeducedType;
};
} // namespace
llvm::Optional<QualType> getDeducedType(ASTContext &ASTCtx,
SourceLocation Loc) {
if (!Loc.isValid())
return {};
DeducedTypeVisitor V(Loc);
V.TraverseAST(ASTCtx);
if (V.DeducedType.isNull())
return llvm::None;
return V.DeducedType;
}
TemplateTypeParmTypeLoc getContainedAutoParamType(TypeLoc TL) {
if (auto QTL = TL.getAs<QualifiedTypeLoc>())
return getContainedAutoParamType(QTL.getUnqualifiedLoc());
if (llvm::isa<PointerType, ReferenceType, ParenType>(TL.getTypePtr()))
return getContainedAutoParamType(TL.getNextTypeLoc());
if (auto FTL = TL.getAs<FunctionTypeLoc>())
return getContainedAutoParamType(FTL.getReturnLoc());
if (auto TTPTL = TL.getAs<TemplateTypeParmTypeLoc>()) {
if (TTPTL.getTypePtr()->getDecl()->isImplicit())
return TTPTL;
}
return {};
}
template <typename TemplateDeclTy>
static NamedDecl *getOnlyInstantiationImpl(TemplateDeclTy *TD) {
NamedDecl *Only = nullptr;
for (auto *Spec : TD->specializations()) {
if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
continue;
if (Only != nullptr)
return nullptr;
Only = Spec;
}
return Only;
}
NamedDecl *getOnlyInstantiation(NamedDecl *TemplatedDecl) {
if (TemplateDecl *TD = TemplatedDecl->getDescribedTemplate()) {
if (auto *CTD = llvm::dyn_cast<ClassTemplateDecl>(TD))
return getOnlyInstantiationImpl(CTD);
if (auto *FTD = llvm::dyn_cast<FunctionTemplateDecl>(TD))
return getOnlyInstantiationImpl(FTD);
if (auto *VTD = llvm::dyn_cast<VarTemplateDecl>(TD))
return getOnlyInstantiationImpl(VTD);
}
return nullptr;
}
std::vector<const Attr *> getAttributes(const DynTypedNode &N) {
std::vector<const Attr *> Result;
if (const auto *TL = N.get<TypeLoc>()) {
for (AttributedTypeLoc ATL = TL->getAs<AttributedTypeLoc>(); !ATL.isNull();
ATL = ATL.getModifiedLoc().getAs<AttributedTypeLoc>()) {
if (const Attr *A = ATL.getAttr())
Result.push_back(A);
assert(!ATL.getModifiedLoc().isNull());
}
}
if (const auto *S = N.get<AttributedStmt>()) {
for (; S != nullptr; S = dyn_cast<AttributedStmt>(S->getSubStmt()))
for (const Attr *A : S->getAttrs())
if (A)
Result.push_back(A);
}
if (const auto *D = N.get<Decl>()) {
for (const Attr *A : D->attrs())
if (A)
Result.push_back(A);
}
return Result;
}
std::string getQualification(ASTContext &Context,
const DeclContext *DestContext,
SourceLocation InsertionPoint,
const NamedDecl *ND) {
auto VisibleNamespaceDecls =
getUsingNamespaceDirectives(DestContext, InsertionPoint);
return getQualification(
Context, DestContext, ND->getDeclContext(),
[&](NestedNameSpecifier *NNS) {
if (NNS->getKind() != NestedNameSpecifier::Namespace)
return false;
const auto *CanonNSD = NNS->getAsNamespace()->getCanonicalDecl();
return llvm::any_of(VisibleNamespaceDecls,
[CanonNSD](const NamespaceDecl *NSD) {
return NSD->getCanonicalDecl() == CanonNSD;
});
});
}
std::string getQualification(ASTContext &Context,
const DeclContext *DestContext,
const NamedDecl *ND,
llvm::ArrayRef<std::string> VisibleNamespaces) {
for (llvm::StringRef NS : VisibleNamespaces) {
assert(NS.endswith("::"));
(void)NS;
}
return getQualification(
Context, DestContext, ND->getDeclContext(),
[&](NestedNameSpecifier *NNS) {
return llvm::any_of(VisibleNamespaces, [&](llvm::StringRef Namespace) {
std::string NS;
llvm::raw_string_ostream OS(NS);
NNS->print(OS, Context.getPrintingPolicy());
return OS.str() == Namespace;
});
});
}
bool hasUnstableLinkage(const Decl *D) {
// Linkage of a ValueDecl depends on the type.
// If that's not deduced yet, deducing it may change the linkage.
auto *VD = llvm::dyn_cast_or_null<ValueDecl>(D);
return VD && !VD->getType().isNull() && VD->getType()->isUndeducedType();
}
bool isDeeplyNested(const Decl *D, unsigned MaxDepth) {
size_t ContextDepth = 0;
for (auto *Ctx = D->getDeclContext(); Ctx && !Ctx->isTranslationUnit();
Ctx = Ctx->getParent()) {
if (++ContextDepth == MaxDepth)
return true;
}
return false;
}
namespace {
// returns true for `X` in `template <typename... X> void foo()`
bool isTemplateTypeParameterPack(NamedDecl *D) {
if (const auto *TTPD = dyn_cast<TemplateTypeParmDecl>(D)) {
return TTPD->isParameterPack();
}
return false;
}
// Returns the template parameter pack type from an instantiated function
// template, if it exists, nullptr otherwise.
const TemplateTypeParmType *getFunctionPackType(const FunctionDecl *Callee) {
if (const auto *TemplateDecl = Callee->getPrimaryTemplate()) {
auto TemplateParams = TemplateDecl->getTemplateParameters()->asArray();
// find the template parameter pack from the back
const auto It = std::find_if(TemplateParams.rbegin(), TemplateParams.rend(),
isTemplateTypeParameterPack);
if (It != TemplateParams.rend()) {
const auto *TTPD = dyn_cast<TemplateTypeParmDecl>(*It);
return TTPD->getTypeForDecl()->castAs<TemplateTypeParmType>();
}
}
return nullptr;
}
// Returns the template parameter pack type that this parameter was expanded
// from (if in the Args... or Args&... or Args&&... form), if this is the case,
// nullptr otherwise.
const TemplateTypeParmType *getUnderylingPackType(const ParmVarDecl *Param) {
const auto *PlainType = Param->getType().getTypePtr();
if (auto *RT = dyn_cast<ReferenceType>(PlainType))
PlainType = RT->getPointeeTypeAsWritten().getTypePtr();
if (const auto *SubstType = dyn_cast<SubstTemplateTypeParmType>(PlainType)) {
const auto *ReplacedParameter = SubstType->getReplacedParameter();
if (ReplacedParameter->isParameterPack()) {
return dyn_cast<TemplateTypeParmType>(
ReplacedParameter->getCanonicalTypeUnqualified()->getTypePtr());
}
}
return nullptr;
}
// This visitor walks over the body of an instantiated function template.
// The template accepts a parameter pack and the visitor records whether
// the pack parameters were forwarded to another call. For example, given:
//
// template <typename T, typename... Args>
// auto make_unique(Args... args) {
// return unique_ptr<T>(new T(args...));
// }
//
// When called as `make_unique<std::string>(2, 'x')` this yields a function
// `make_unique<std::string, int, char>` with two parameters.
// The visitor records that those two parameters are forwarded to the
// `constructor std::string(int, char);`.
//
// This information is recorded in the `ForwardingInfo` split into fully
// resolved parameters (passed as argument to a parameter that is not an
// expanded template type parameter pack) and forwarding parameters (passed to a
// parameter that is an expanded template type parameter pack).
class ForwardingCallVisitor
: public RecursiveASTVisitor<ForwardingCallVisitor> {
public:
ForwardingCallVisitor(ArrayRef<const ParmVarDecl *> Parameters)
: Parameters{Parameters}, PackType{getUnderylingPackType(
Parameters.front())} {}
bool VisitCallExpr(CallExpr *E) {
auto *Callee = getCalleeDeclOrUniqueOverload(E);
if (Callee) {
handleCall(Callee, E->arguments());
}
return !Info.has_value();
}
bool VisitCXXConstructExpr(CXXConstructExpr *E) {
auto *Callee = E->getConstructor();
if (Callee) {
handleCall(Callee, E->arguments());
}
return !Info.has_value();
}
// The expanded parameter pack to be resolved
ArrayRef<const ParmVarDecl *> Parameters;
// The type of the parameter pack
const TemplateTypeParmType *PackType;
struct ForwardingInfo {
// If the parameters were resolved to another FunctionDecl, these are its
// first non-variadic parameters (i.e. the first entries of the parameter
// pack that are passed as arguments bound to a non-pack parameter.)
ArrayRef<const ParmVarDecl *> Head;
// If the parameters were resolved to another FunctionDecl, these are its
// variadic parameters (i.e. the entries of the parameter pack that are
// passed as arguments bound to a pack parameter.)
ArrayRef<const ParmVarDecl *> Pack;
// If the parameters were resolved to another FunctionDecl, these are its
// last non-variadic parameters (i.e. the last entries of the parameter pack
// that are passed as arguments bound to a non-pack parameter.)
ArrayRef<const ParmVarDecl *> Tail;
// If the parameters were resolved to another forwarding FunctionDecl, this
// is it.
Optional<FunctionDecl *> PackTarget;
};
// The output of this visitor
Optional<ForwardingInfo> Info;
private:
// inspects the given callee with the given args to check whether it
// contains Parameters, and sets Info accordingly.
void handleCall(FunctionDecl *Callee, typename CallExpr::arg_range Args) {
// Skip functions with less parameters, they can't be the target.
if (Callee->parameters().size() < Parameters.size())
return;
if (std::any_of(Args.begin(), Args.end(), [](const Expr *E) {
return dyn_cast<PackExpansionExpr>(E) != nullptr;
})) {
return;
}
auto PackLocation = findPack(Args);
if (!PackLocation)
return;
ArrayRef<ParmVarDecl *> MatchingParams =
Callee->parameters().slice(*PackLocation, Parameters.size());
// Check whether the function has a parameter pack as the last template
// parameter
if (const auto *TTPT = getFunctionPackType(Callee)) {
// In this case: Separate the parameters into head, pack and tail
auto IsExpandedPack = [&](const ParmVarDecl *P) {
return getUnderylingPackType(P) == TTPT;
};
ForwardingInfo FI;
FI.Head = MatchingParams.take_until(IsExpandedPack);
FI.Pack =
MatchingParams.drop_front(FI.Head.size()).take_while(IsExpandedPack);
FI.Tail = MatchingParams.drop_front(FI.Head.size() + FI.Pack.size());
FI.PackTarget = Callee;
Info = FI;
return;
}
// Default case: assume all parameters were fully resolved
ForwardingInfo FI;
FI.Head = MatchingParams;
Info = FI;
}
// Returns the beginning of the expanded pack represented by Parameters
// in the given arguments, if it is there.
llvm::Optional<size_t> findPack(typename CallExpr::arg_range Args) {
// find the argument directly referring to the first parameter
assert(Parameters.size() <= static_cast<size_t>(llvm::size(Args)));
for (auto Begin = Args.begin(), End = Args.end() - Parameters.size() + 1;
Begin != End; ++Begin) {
if (const auto *RefArg = unwrapForward(*Begin)) {
if (Parameters.front() != RefArg->getDecl())
continue;
// Check that this expands all the way until the last parameter.
// It's enough to look at the last parameter, because it isn't possible
// to expand without expanding all of them.
auto ParamEnd = Begin + Parameters.size() - 1;
RefArg = unwrapForward(*ParamEnd);
if (!RefArg || Parameters.back() != RefArg->getDecl())
continue;
return std::distance(Args.begin(), Begin);
}
}
return llvm::None;
}
static FunctionDecl *getCalleeDeclOrUniqueOverload(CallExpr *E) {
Decl *CalleeDecl = E->getCalleeDecl();
auto *Callee = dyn_cast_or_null<FunctionDecl>(CalleeDecl);
if (!Callee) {
if (auto *Lookup = dyn_cast<UnresolvedLookupExpr>(E->getCallee())) {
Callee = resolveOverload(Lookup, E);
}
}
// Ignore the callee if the number of arguments is wrong (deal with va_args)
if (Callee && Callee->getNumParams() == E->getNumArgs())
return Callee;
return nullptr;
}
static FunctionDecl *resolveOverload(UnresolvedLookupExpr *Lookup,
CallExpr *E) {
FunctionDecl *MatchingDecl = nullptr;
if (!Lookup->requiresADL()) {
// Check whether there is a single overload with this number of
// parameters
for (auto *Candidate : Lookup->decls()) {
if (auto *FuncCandidate = dyn_cast_or_null<FunctionDecl>(Candidate)) {
if (FuncCandidate->getNumParams() == E->getNumArgs()) {
if (MatchingDecl) {
// there are multiple candidates - abort
return nullptr;
}
MatchingDecl = FuncCandidate;
}
}
}
}
return MatchingDecl;
}
// Tries to get to the underlying argument by unwrapping implicit nodes and
// std::forward.
static const DeclRefExpr *unwrapForward(const Expr *E) {
E = E->IgnoreImplicitAsWritten();
// There might be an implicit copy/move constructor call on top of the
// forwarded arg.
// FIXME: Maybe mark implicit calls in the AST to properly filter here.
if (const auto *Const = dyn_cast<CXXConstructExpr>(E))
if (Const->getConstructor()->isCopyOrMoveConstructor())
E = Const->getArg(0)->IgnoreImplicitAsWritten();
if (const auto *Call = dyn_cast<CallExpr>(E)) {
const auto Callee = Call->getBuiltinCallee();
if (Callee == Builtin::BIforward) {
return dyn_cast<DeclRefExpr>(
Call->getArg(0)->IgnoreImplicitAsWritten());
}
}
return dyn_cast<DeclRefExpr>(E);
}
};
} // namespace
SmallVector<const ParmVarDecl *>
resolveForwardingParameters(const FunctionDecl *D, unsigned MaxDepth) {
auto Parameters = D->parameters();
// If the function has a template parameter pack
if (const auto *TTPT = getFunctionPackType(D)) {
// Split the parameters into head, pack and tail
auto IsExpandedPack = [TTPT](const ParmVarDecl *P) {
return getUnderylingPackType(P) == TTPT;
};
ArrayRef<const ParmVarDecl *> Head = Parameters.take_until(IsExpandedPack);
ArrayRef<const ParmVarDecl *> Pack =
Parameters.drop_front(Head.size()).take_while(IsExpandedPack);
ArrayRef<const ParmVarDecl *> Tail =
Parameters.drop_front(Head.size() + Pack.size());
SmallVector<const ParmVarDecl *> Result(Parameters.size());
// Fill in non-pack parameters
auto HeadIt = std::copy(Head.begin(), Head.end(), Result.begin());
auto TailIt = std::copy(Tail.rbegin(), Tail.rend(), Result.rbegin());
// Recurse on pack parameters
size_t Depth = 0;
const FunctionDecl *CurrentFunction = D;
llvm::SmallSet<const FunctionTemplateDecl *, 4> SeenTemplates;
if (const auto *Template = D->getPrimaryTemplate()) {
SeenTemplates.insert(Template);
}
while (!Pack.empty() && CurrentFunction && Depth < MaxDepth) {
// Find call expressions involving the pack
ForwardingCallVisitor V{Pack};
V.TraverseStmt(CurrentFunction->getBody());
if (!V.Info) {
break;
}
// If we found something: Fill in non-pack parameters
auto Info = V.Info.value();
HeadIt = std::copy(Info.Head.begin(), Info.Head.end(), HeadIt);
TailIt = std::copy(Info.Tail.rbegin(), Info.Tail.rend(), TailIt);
// Prepare next recursion level
Pack = Info.Pack;
CurrentFunction = Info.PackTarget.value_or(nullptr);
Depth++;
// If we are recursing into a previously encountered function: Abort
if (CurrentFunction) {
if (const auto *Template = CurrentFunction->getPrimaryTemplate()) {
bool NewFunction = SeenTemplates.insert(Template).second;
if (!NewFunction) {
return {Parameters.begin(), Parameters.end()};
}
}
}
}
// Fill in the remaining unresolved pack parameters
HeadIt = std::copy(Pack.begin(), Pack.end(), HeadIt);
assert(TailIt.base() == HeadIt);
return Result;
}
return {Parameters.begin(), Parameters.end()};
}
bool isExpandedFromParameterPack(const ParmVarDecl *D) {
return getUnderylingPackType(D) != nullptr;
}
} // namespace clangd
} // namespace clang
|