1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
|
//===--- InlayHints.cpp ------------------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "InlayHints.h"
#include "AST.h"
#include "Config.h"
#include "HeuristicResolver.h"
#include "ParsedAST.h"
#include "SourceCode.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/ADT/ScopeExit.h"
namespace clang {
namespace clangd {
namespace {
// For now, inlay hints are always anchored at the left or right of their range.
enum class HintSide { Left, Right };
// Helper class to iterate over the designator names of an aggregate type.
//
// For an array type, yields [0], [1], [2]...
// For aggregate classes, yields null for each base, then .field1, .field2, ...
class AggregateDesignatorNames {
public:
AggregateDesignatorNames(QualType T) {
if (!T.isNull()) {
T = T.getCanonicalType();
if (T->isArrayType()) {
IsArray = true;
Valid = true;
return;
}
if (const RecordDecl *RD = T->getAsRecordDecl()) {
Valid = true;
FieldsIt = RD->field_begin();
FieldsEnd = RD->field_end();
if (const auto *CRD = llvm::dyn_cast<CXXRecordDecl>(RD)) {
BasesIt = CRD->bases_begin();
BasesEnd = CRD->bases_end();
Valid = CRD->isAggregate();
}
OneField = Valid && BasesIt == BasesEnd && FieldsIt != FieldsEnd &&
std::next(FieldsIt) == FieldsEnd;
}
}
}
// Returns false if the type was not an aggregate.
operator bool() { return Valid; }
// Advance to the next element in the aggregate.
void next() {
if (IsArray)
++Index;
else if (BasesIt != BasesEnd)
++BasesIt;
else if (FieldsIt != FieldsEnd)
++FieldsIt;
}
// Print the designator to Out.
// Returns false if we could not produce a designator for this element.
bool append(std::string &Out, bool ForSubobject) {
if (IsArray) {
Out.push_back('[');
Out.append(std::to_string(Index));
Out.push_back(']');
return true;
}
if (BasesIt != BasesEnd)
return false; // Bases can't be designated. Should we make one up?
if (FieldsIt != FieldsEnd) {
llvm::StringRef FieldName;
if (const IdentifierInfo *II = FieldsIt->getIdentifier())
FieldName = II->getName();
// For certain objects, their subobjects may be named directly.
if (ForSubobject &&
(FieldsIt->isAnonymousStructOrUnion() ||
// std::array<int,3> x = {1,2,3}. Designators not strictly valid!
(OneField && isReservedName(FieldName))))
return true;
if (!FieldName.empty() && !isReservedName(FieldName)) {
Out.push_back('.');
Out.append(FieldName.begin(), FieldName.end());
return true;
}
return false;
}
return false;
}
private:
bool Valid = false;
bool IsArray = false;
bool OneField = false; // e.g. std::array { T __elements[N]; }
unsigned Index = 0;
CXXRecordDecl::base_class_const_iterator BasesIt;
CXXRecordDecl::base_class_const_iterator BasesEnd;
RecordDecl::field_iterator FieldsIt;
RecordDecl::field_iterator FieldsEnd;
};
// Collect designator labels describing the elements of an init list.
//
// This function contributes the designators of some (sub)object, which is
// represented by the semantic InitListExpr Sem.
// This includes any nested subobjects, but *only* if they are part of the same
// original syntactic init list (due to brace elision).
// In other words, it may descend into subobjects but not written init-lists.
//
// For example: struct Outer { Inner a,b; }; struct Inner { int x, y; }
// Outer o{{1, 2}, 3};
// This function will be called with Sem = { {1, 2}, {3, ImplicitValue} }
// It should generate designators '.a:' and '.b.x:'.
// '.a:' is produced directly without recursing into the written sublist.
// (The written sublist will have a separate collectDesignators() call later).
// Recursion with Prefix='.b' and Sem = {3, ImplicitValue} produces '.b.x:'.
void collectDesignators(const InitListExpr *Sem,
llvm::DenseMap<SourceLocation, std::string> &Out,
const llvm::DenseSet<SourceLocation> &NestedBraces,
std::string &Prefix) {
if (!Sem || Sem->isTransparent())
return;
assert(Sem->isSemanticForm());
// The elements of the semantic form all correspond to direct subobjects of
// the aggregate type. `Fields` iterates over these subobject names.
AggregateDesignatorNames Fields(Sem->getType());
if (!Fields)
return;
for (const Expr *Init : Sem->inits()) {
auto Next = llvm::make_scope_exit([&, Size(Prefix.size())] {
Fields.next(); // Always advance to the next subobject name.
Prefix.resize(Size); // Erase any designator we appended.
});
// Skip for a broken initializer or if it is a "hole" in a subobject that
// was not explicitly initialized.
if (!Init || llvm::isa<ImplicitValueInitExpr>(Init))
continue;
const auto *BraceElidedSubobject = llvm::dyn_cast<InitListExpr>(Init);
if (BraceElidedSubobject &&
NestedBraces.contains(BraceElidedSubobject->getLBraceLoc()))
BraceElidedSubobject = nullptr; // there were braces!
if (!Fields.append(Prefix, BraceElidedSubobject != nullptr))
continue; // no designator available for this subobject
if (BraceElidedSubobject) {
// If the braces were elided, this aggregate subobject is initialized
// inline in the same syntactic list.
// Descend into the semantic list describing the subobject.
// (NestedBraces are still correct, they're from the same syntactic list).
collectDesignators(BraceElidedSubobject, Out, NestedBraces, Prefix);
continue;
}
Out.try_emplace(Init->getBeginLoc(), Prefix);
}
}
// Get designators describing the elements of a (syntactic) init list.
// This does not produce designators for any explicitly-written nested lists.
llvm::DenseMap<SourceLocation, std::string>
getDesignators(const InitListExpr *Syn) {
assert(Syn->isSyntacticForm());
// collectDesignators needs to know which InitListExprs in the semantic tree
// were actually written, but InitListExpr::isExplicit() lies.
// Instead, record where braces of sub-init-lists occur in the syntactic form.
llvm::DenseSet<SourceLocation> NestedBraces;
for (const Expr *Init : Syn->inits())
if (auto *Nested = llvm::dyn_cast<InitListExpr>(Init))
NestedBraces.insert(Nested->getLBraceLoc());
// Traverse the semantic form to find the designators.
// We use their SourceLocation to correlate with the syntactic form later.
llvm::DenseMap<SourceLocation, std::string> Designators;
std::string EmptyPrefix;
collectDesignators(Syn->isSemanticForm() ? Syn : Syn->getSemanticForm(),
Designators, NestedBraces, EmptyPrefix);
return Designators;
}
class InlayHintVisitor : public RecursiveASTVisitor<InlayHintVisitor> {
public:
InlayHintVisitor(std::vector<InlayHint> &Results, ParsedAST &AST,
const Config &Cfg, llvm::Optional<Range> RestrictRange)
: Results(Results), AST(AST.getASTContext()), Tokens(AST.getTokens()),
Cfg(Cfg), RestrictRange(std::move(RestrictRange)),
MainFileID(AST.getSourceManager().getMainFileID()),
Resolver(AST.getHeuristicResolver()),
TypeHintPolicy(this->AST.getPrintingPolicy()),
StructuredBindingPolicy(this->AST.getPrintingPolicy()) {
bool Invalid = false;
llvm::StringRef Buf =
AST.getSourceManager().getBufferData(MainFileID, &Invalid);
MainFileBuf = Invalid ? StringRef{} : Buf;
TypeHintPolicy.SuppressScope = true; // keep type names short
TypeHintPolicy.AnonymousTagLocations =
false; // do not print lambda locations
// For structured bindings, print canonical types. This is important because
// for bindings that use the tuple_element protocol, the non-canonical types
// would be "tuple_element<I, A>::type".
// For "auto", we often prefer sugared types.
// Not setting PrintCanonicalTypes for "auto" allows
// SuppressDefaultTemplateArgs (set by default) to have an effect.
StructuredBindingPolicy = TypeHintPolicy;
StructuredBindingPolicy.PrintCanonicalTypes = true;
}
bool VisitCXXConstructExpr(CXXConstructExpr *E) {
// Weed out constructor calls that don't look like a function call with
// an argument list, by checking the validity of getParenOrBraceRange().
// Also weed out std::initializer_list constructors as there are no names
// for the individual arguments.
if (!E->getParenOrBraceRange().isValid() ||
E->isStdInitListInitialization()) {
return true;
}
processCall(E->getConstructor(), {E->getArgs(), E->getNumArgs()});
return true;
}
bool VisitCallExpr(CallExpr *E) {
if (!Cfg.InlayHints.Parameters)
return true;
// Do not show parameter hints for operator calls written using operator
// syntax or user-defined literals. (Among other reasons, the resulting
// hints can look awkard, e.g. the expression can itself be a function
// argument and then we'd get two hints side by side).
if (isa<CXXOperatorCallExpr>(E) || isa<UserDefinedLiteral>(E))
return true;
auto CalleeDecls = Resolver->resolveCalleeOfCallExpr(E);
if (CalleeDecls.size() != 1)
return true;
const FunctionDecl *Callee = nullptr;
if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecls[0]))
Callee = FD;
else if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(CalleeDecls[0]))
Callee = FTD->getTemplatedDecl();
if (!Callee)
return true;
processCall(Callee, {E->getArgs(), E->getNumArgs()});
return true;
}
bool VisitFunctionDecl(FunctionDecl *D) {
if (auto *FPT =
llvm::dyn_cast<FunctionProtoType>(D->getType().getTypePtr())) {
if (!FPT->hasTrailingReturn()) {
if (auto FTL = D->getFunctionTypeLoc())
addReturnTypeHint(D, FTL.getRParenLoc());
}
}
return true;
}
bool VisitLambdaExpr(LambdaExpr *E) {
FunctionDecl *D = E->getCallOperator();
if (!E->hasExplicitResultType())
addReturnTypeHint(D, E->hasExplicitParameters()
? D->getFunctionTypeLoc().getRParenLoc()
: E->getIntroducerRange().getEnd());
return true;
}
void addReturnTypeHint(FunctionDecl *D, SourceRange Range) {
auto *AT = D->getReturnType()->getContainedAutoType();
if (!AT || AT->getDeducedType().isNull())
return;
addTypeHint(Range, D->getReturnType(), /*Prefix=*/"-> ");
}
bool VisitVarDecl(VarDecl *D) {
// Do not show hints for the aggregate in a structured binding,
// but show hints for the individual bindings.
if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
for (auto *Binding : DD->bindings()) {
addTypeHint(Binding->getLocation(), Binding->getType(), /*Prefix=*/": ",
StructuredBindingPolicy);
}
return true;
}
if (D->getType()->getContainedAutoType()) {
if (!D->getType()->isDependentType()) {
// Our current approach is to place the hint on the variable
// and accordingly print the full type
// (e.g. for `const auto& x = 42`, print `const int&`).
// Alternatively, we could place the hint on the `auto`
// (and then just print the type deduced for the `auto`).
addTypeHint(D->getLocation(), D->getType(), /*Prefix=*/": ");
}
}
// Handle templates like `int foo(auto x)` with exactly one instantiation.
if (auto *PVD = llvm::dyn_cast<ParmVarDecl>(D)) {
if (D->getIdentifier() && PVD->getType()->isDependentType() &&
!getContainedAutoParamType(D->getTypeSourceInfo()->getTypeLoc())
.isNull()) {
if (auto *IPVD = getOnlyParamInstantiation(PVD))
addTypeHint(D->getLocation(), IPVD->getType(), /*Prefix=*/": ");
}
}
return true;
}
ParmVarDecl *getOnlyParamInstantiation(ParmVarDecl *D) {
auto *TemplateFunction = llvm::dyn_cast<FunctionDecl>(D->getDeclContext());
if (!TemplateFunction)
return nullptr;
auto *InstantiatedFunction = llvm::dyn_cast_or_null<FunctionDecl>(
getOnlyInstantiation(TemplateFunction));
if (!InstantiatedFunction)
return nullptr;
unsigned ParamIdx = 0;
for (auto *Param : TemplateFunction->parameters()) {
// Can't reason about param indexes in the presence of preceding packs.
// And if this param is a pack, it may expand to multiple params.
if (Param->isParameterPack())
return nullptr;
if (Param == D)
break;
++ParamIdx;
}
assert(ParamIdx < TemplateFunction->getNumParams() &&
"Couldn't find param in list?");
assert(ParamIdx < InstantiatedFunction->getNumParams() &&
"Instantiated function has fewer (non-pack) parameters?");
return InstantiatedFunction->getParamDecl(ParamIdx);
}
bool VisitInitListExpr(InitListExpr *Syn) {
// We receive the syntactic form here (shouldVisitImplicitCode() is false).
// This is the one we will ultimately attach designators to.
// It may have subobject initializers inlined without braces. The *semantic*
// form of the init-list has nested init-lists for these.
// getDesignators will look at the semantic form to determine the labels.
assert(Syn->isSyntacticForm() && "RAV should not visit implicit code!");
if (!Cfg.InlayHints.Designators)
return true;
if (Syn->isIdiomaticZeroInitializer(AST.getLangOpts()))
return true;
llvm::DenseMap<SourceLocation, std::string> Designators =
getDesignators(Syn);
for (const Expr *Init : Syn->inits()) {
if (llvm::isa<DesignatedInitExpr>(Init))
continue;
auto It = Designators.find(Init->getBeginLoc());
if (It != Designators.end() &&
!isPrecededByParamNameComment(Init, It->second))
addDesignatorHint(Init->getSourceRange(), It->second);
}
return true;
}
// FIXME: Handle RecoveryExpr to try to hint some invalid calls.
private:
using NameVec = SmallVector<StringRef, 8>;
void processCall(const FunctionDecl *Callee,
llvm::ArrayRef<const Expr *> Args) {
if (!Cfg.InlayHints.Parameters || Args.size() == 0 || !Callee)
return;
// The parameter name of a move or copy constructor is not very interesting.
if (auto *Ctor = dyn_cast<CXXConstructorDecl>(Callee))
if (Ctor->isCopyOrMoveConstructor())
return;
// Resolve parameter packs to their forwarded parameter
auto ForwardedParams = resolveForwardingParameters(Callee);
NameVec ParameterNames = chooseParameterNames(ForwardedParams);
// Exclude setters (i.e. functions with one argument whose name begins with
// "set"), and builtins like std::move/forward/... as their parameter name
// is also not likely to be interesting.
if (isSetter(Callee, ParameterNames) || isSimpleBuiltin(Callee))
return;
for (size_t I = 0; I < ParameterNames.size() && I < Args.size(); ++I) {
// Pack expansion expressions cause the 1:1 mapping between arguments and
// parameters to break down, so we don't add further inlay hints if we
// encounter one.
if (isa<PackExpansionExpr>(Args[I])) {
break;
}
StringRef Name = ParameterNames[I];
bool NameHint = shouldHintName(Args[I], Name);
bool ReferenceHint =
shouldHintReference(Callee->getParamDecl(I), ForwardedParams[I]);
if (NameHint || ReferenceHint) {
addInlayHint(Args[I]->getSourceRange(), HintSide::Left,
InlayHintKind::Parameter, ReferenceHint ? "&" : "",
NameHint ? Name : "", ": ");
}
}
}
static bool isSetter(const FunctionDecl *Callee, const NameVec &ParamNames) {
if (ParamNames.size() != 1)
return false;
StringRef Name = getSimpleName(*Callee);
if (!Name.startswith_insensitive("set"))
return false;
// In addition to checking that the function has one parameter and its
// name starts with "set", also check that the part after "set" matches
// the name of the parameter (ignoring case). The idea here is that if
// the parameter name differs, it may contain extra information that
// may be useful to show in a hint, as in:
// void setTimeout(int timeoutMillis);
// This currently doesn't handle cases where params use snake_case
// and functions don't, e.g.
// void setExceptionHandler(EHFunc exception_handler);
// We could improve this by replacing `equals_insensitive` with some
// `sloppy_equals` which ignores case and also skips underscores.
StringRef WhatItIsSetting = Name.substr(3).ltrim("_");
return WhatItIsSetting.equals_insensitive(ParamNames[0]);
}
// Checks if the callee is one of the builtins
// addressof, as_const, forward, move(_if_noexcept)
static bool isSimpleBuiltin(const FunctionDecl *Callee) {
switch (Callee->getBuiltinID()) {
case Builtin::BIaddressof:
case Builtin::BIas_const:
case Builtin::BIforward:
case Builtin::BImove:
case Builtin::BImove_if_noexcept:
return true;
default:
return false;
}
}
bool shouldHintName(const Expr *Arg, StringRef ParamName) {
if (ParamName.empty())
return false;
// If the argument expression is a single name and it matches the
// parameter name exactly, omit the name hint.
if (ParamName == getSpelledIdentifier(Arg))
return false;
// Exclude argument expressions preceded by a /*paramName*/.
if (isPrecededByParamNameComment(Arg, ParamName))
return false;
return true;
}
bool shouldHintReference(const ParmVarDecl *Param,
const ParmVarDecl *ForwardedParam) {
// We add a & hint only when the argument is passed as mutable reference.
// For parameters that are not part of an expanded pack, this is
// straightforward. For expanded pack parameters, it's likely that they will
// be forwarded to another function. In this situation, we only want to add
// the reference hint if the argument is actually being used via mutable
// reference. This means we need to check
// 1. whether the value category of the argument is preserved, i.e. each
// pack expansion uses std::forward correctly.
// 2. whether the argument is ever copied/cast instead of passed
// by-reference
// Instead of checking this explicitly, we use the following proxy:
// 1. the value category can only change from rvalue to lvalue during
// forwarding, so checking whether both the parameter of the forwarding
// function and the forwarded function are lvalue references detects such
// a conversion.
// 2. if the argument is copied/cast somewhere in the chain of forwarding
// calls, it can only be passed on to an rvalue reference or const lvalue
// reference parameter. Thus if the forwarded parameter is a mutable
// lvalue reference, it cannot have been copied/cast to on the way.
// Additionally, we should not add a reference hint if the forwarded
// parameter was only partially resolved, i.e. points to an expanded pack
// parameter, since we do not know how it will be used eventually.
auto Type = Param->getType();
auto ForwardedType = ForwardedParam->getType();
return Type->isLValueReferenceType() &&
ForwardedType->isLValueReferenceType() &&
!ForwardedType.getNonReferenceType().isConstQualified() &&
!isExpandedFromParameterPack(ForwardedParam);
}
// Checks if "E" is spelled in the main file and preceded by a C-style comment
// whose contents match ParamName (allowing for whitespace and an optional "="
// at the end.
bool isPrecededByParamNameComment(const Expr *E, StringRef ParamName) {
auto &SM = AST.getSourceManager();
auto ExprStartLoc = SM.getTopMacroCallerLoc(E->getBeginLoc());
auto Decomposed = SM.getDecomposedLoc(ExprStartLoc);
if (Decomposed.first != MainFileID)
return false;
StringRef SourcePrefix = MainFileBuf.substr(0, Decomposed.second);
// Allow whitespace between comment and expression.
SourcePrefix = SourcePrefix.rtrim();
// Check for comment ending.
if (!SourcePrefix.consume_back("*/"))
return false;
// Ignore some punctuation and whitespace around comment.
// In particular this allows designators to match nicely.
llvm::StringLiteral IgnoreChars = " =.";
SourcePrefix = SourcePrefix.rtrim(IgnoreChars);
ParamName = ParamName.trim(IgnoreChars);
// Other than that, the comment must contain exactly ParamName.
if (!SourcePrefix.consume_back(ParamName))
return false;
SourcePrefix = SourcePrefix.rtrim(IgnoreChars);
return SourcePrefix.endswith("/*");
}
// If "E" spells a single unqualified identifier, return that name.
// Otherwise, return an empty string.
static StringRef getSpelledIdentifier(const Expr *E) {
E = E->IgnoreUnlessSpelledInSource();
if (auto *DRE = dyn_cast<DeclRefExpr>(E))
if (!DRE->getQualifier())
return getSimpleName(*DRE->getDecl());
if (auto *ME = dyn_cast<MemberExpr>(E))
if (!ME->getQualifier() && ME->isImplicitAccess())
return getSimpleName(*ME->getMemberDecl());
return {};
}
NameVec chooseParameterNames(SmallVector<const ParmVarDecl *> Parameters) {
NameVec ParameterNames;
for (const auto *P : Parameters) {
if (isExpandedFromParameterPack(P)) {
// If we haven't resolved a pack paramater (e.g. foo(Args... args)) to a
// non-pack parameter, then hinting as foo(args: 1, args: 2, args: 3) is
// unlikely to be useful.
ParameterNames.emplace_back();
} else {
auto SimpleName = getSimpleName(*P);
// If the parameter is unnamed in the declaration:
// attempt to get its name from the definition
if (SimpleName.empty()) {
if (const auto *PD = getParamDefinition(P)) {
SimpleName = getSimpleName(*PD);
}
}
ParameterNames.emplace_back(SimpleName);
}
}
// Standard library functions often have parameter names that start
// with underscores, which makes the hints noisy, so strip them out.
for (auto &Name : ParameterNames)
stripLeadingUnderscores(Name);
return ParameterNames;
}
// for a ParmVarDecl from a function declaration, returns the corresponding
// ParmVarDecl from the definition if possible, nullptr otherwise.
static const ParmVarDecl *getParamDefinition(const ParmVarDecl *P) {
if (auto *Callee = dyn_cast<FunctionDecl>(P->getDeclContext())) {
if (auto *Def = Callee->getDefinition()) {
auto I = std::distance(
Callee->param_begin(),
std::find(Callee->param_begin(), Callee->param_end(), P));
if (I < Callee->getNumParams()) {
return Def->getParamDecl(I);
}
}
}
return nullptr;
}
static void stripLeadingUnderscores(StringRef &Name) {
Name = Name.ltrim('_');
}
static StringRef getSimpleName(const NamedDecl &D) {
if (IdentifierInfo *Ident = D.getDeclName().getAsIdentifierInfo()) {
return Ident->getName();
}
return StringRef();
}
// We pass HintSide rather than SourceLocation because we want to ensure
// it is in the same file as the common file range.
void addInlayHint(SourceRange R, HintSide Side, InlayHintKind Kind,
llvm::StringRef Prefix, llvm::StringRef Label,
llvm::StringRef Suffix) {
// We shouldn't get as far as adding a hint if the category is disabled.
// We'd like to disable as much of the analysis as possible above instead.
// Assert in debug mode but add a dynamic check in production.
assert(Cfg.InlayHints.Enabled && "Shouldn't get here if disabled!");
switch (Kind) {
#define CHECK_KIND(Enumerator, ConfigProperty) \
case InlayHintKind::Enumerator: \
assert(Cfg.InlayHints.ConfigProperty && \
"Shouldn't get here if kind is disabled!"); \
if (!Cfg.InlayHints.ConfigProperty) \
return; \
break
CHECK_KIND(Parameter, Parameters);
CHECK_KIND(Type, DeducedTypes);
CHECK_KIND(Designator, Designators);
#undef CHECK_KIND
}
auto LSPRange = getHintRange(R);
if (!LSPRange)
return;
Position LSPPos = Side == HintSide::Left ? LSPRange->start : LSPRange->end;
if (RestrictRange &&
(LSPPos < RestrictRange->start || !(LSPPos < RestrictRange->end)))
return;
bool PadLeft = Prefix.consume_front(" ");
bool PadRight = Suffix.consume_back(" ");
Results.push_back(InlayHint{LSPPos, (Prefix + Label + Suffix).str(), Kind,
PadLeft, PadRight, *LSPRange});
}
// Get the range of the main file that *exactly* corresponds to R.
llvm::Optional<Range> getHintRange(SourceRange R) {
const auto &SM = AST.getSourceManager();
auto Spelled = Tokens.spelledForExpanded(Tokens.expandedTokens(R));
// TokenBuffer will return null if e.g. R corresponds to only part of a
// macro expansion.
if (!Spelled || Spelled->empty())
return llvm::None;
// Hint must be within the main file, not e.g. a non-preamble include.
if (SM.getFileID(Spelled->front().location()) != SM.getMainFileID() ||
SM.getFileID(Spelled->back().location()) != SM.getMainFileID())
return llvm::None;
return Range{sourceLocToPosition(SM, Spelled->front().location()),
sourceLocToPosition(SM, Spelled->back().endLocation())};
}
void addTypeHint(SourceRange R, QualType T, llvm::StringRef Prefix) {
addTypeHint(R, T, Prefix, TypeHintPolicy);
}
void addTypeHint(SourceRange R, QualType T, llvm::StringRef Prefix,
const PrintingPolicy &Policy) {
if (!Cfg.InlayHints.DeducedTypes || T.isNull())
return;
std::string TypeName = T.getAsString(Policy);
if (TypeName.length() < TypeNameLimit)
addInlayHint(R, HintSide::Right, InlayHintKind::Type, Prefix, TypeName,
/*Suffix=*/"");
}
void addDesignatorHint(SourceRange R, llvm::StringRef Text) {
addInlayHint(R, HintSide::Left, InlayHintKind::Designator,
/*Prefix=*/"", Text, /*Suffix=*/"=");
}
std::vector<InlayHint> &Results;
ASTContext &AST;
const syntax::TokenBuffer &Tokens;
const Config &Cfg;
llvm::Optional<Range> RestrictRange;
FileID MainFileID;
StringRef MainFileBuf;
const HeuristicResolver *Resolver;
// We want to suppress default template arguments, but otherwise print
// canonical types. Unfortunately, they're conflicting policies so we can't
// have both. For regular types, suppressing template arguments is more
// important, whereas printing canonical types is crucial for structured
// bindings, so we use two separate policies. (See the constructor where
// the policies are initialized for more details.)
PrintingPolicy TypeHintPolicy;
PrintingPolicy StructuredBindingPolicy;
static const size_t TypeNameLimit = 32;
};
} // namespace
std::vector<InlayHint> inlayHints(ParsedAST &AST,
llvm::Optional<Range> RestrictRange) {
std::vector<InlayHint> Results;
const auto &Cfg = Config::current();
if (!Cfg.InlayHints.Enabled)
return Results;
InlayHintVisitor Visitor(Results, AST, Cfg, std::move(RestrictRange));
Visitor.TraverseAST(AST.getASTContext());
// De-duplicate hints. Duplicates can sometimes occur due to e.g. explicit
// template instantiations.
llvm::sort(Results);
Results.erase(std::unique(Results.begin(), Results.end()), Results.end());
return Results;
}
} // namespace clangd
} // namespace clang
|