1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
//===--- Dex.cpp - Dex Symbol Index Implementation --------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Dex.h"
#include "FileDistance.h"
#include "FuzzyMatch.h"
#include "Quality.h"
#include "URI.h"
#include "index/Index.h"
#include "index/dex/Iterator.h"
#include "index/dex/Token.h"
#include "index/dex/Trigram.h"
#include "support/Logger.h"
#include "support/Trace.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/ScopedPrinter.h"
#include <algorithm>
#include <queue>
#include <utility>
#include <vector>
namespace clang {
namespace clangd {
namespace dex {
std::unique_ptr<SymbolIndex> Dex::build(SymbolSlab Symbols, RefSlab Refs,
RelationSlab Rels) {
auto Size = Symbols.bytes() + Refs.bytes();
// There is no need to include "Rels" in Data because the relations are self-
// contained, without references into a backing store.
auto Data = std::make_pair(std::move(Symbols), std::move(Refs));
return std::make_unique<Dex>(Data.first, Data.second, Rels, std::move(Data),
Size);
}
namespace {
// Mark symbols which are can be used for code completion.
const Token RestrictedForCodeCompletion =
Token(Token::Kind::Sentinel, "Restricted For Code Completion");
// Helper to efficiently assemble the inverse index (token -> matching docs).
// The output is a nice uniform structure keyed on Token, but constructing
// the Token object every time we want to insert into the map is wasteful.
// Instead we have various maps keyed on things that are cheap to compute,
// and produce the Token keys once at the end.
class IndexBuilder {
llvm::DenseMap<Trigram, std::vector<DocID>> TrigramDocs;
std::vector<DocID> RestrictedCCDocs;
llvm::StringMap<std::vector<DocID>> TypeDocs;
llvm::StringMap<std::vector<DocID>> ScopeDocs;
llvm::StringMap<std::vector<DocID>> ProximityDocs;
std::vector<Trigram> TrigramScratch;
public:
// Add the tokens which are given symbol's characteristics.
// This includes fuzzy matching trigrams, symbol's scope, etc.
// FIXME(kbobyrev): Support more token types:
// * Namespace proximity
void add(const Symbol &Sym, DocID D) {
generateIdentifierTrigrams(Sym.Name, TrigramScratch);
for (Trigram T : TrigramScratch)
TrigramDocs[T].push_back(D);
ScopeDocs[Sym.Scope].push_back(D);
if (!llvm::StringRef(Sym.CanonicalDeclaration.FileURI).empty())
for (const auto &ProximityURI :
generateProximityURIs(Sym.CanonicalDeclaration.FileURI))
ProximityDocs[ProximityURI].push_back(D);
if (Sym.Flags & Symbol::IndexedForCodeCompletion)
RestrictedCCDocs.push_back(D);
if (!Sym.Type.empty())
TypeDocs[Sym.Type].push_back(D);
}
// Assemble the final compressed posting lists for the added symbols.
llvm::DenseMap<Token, PostingList> build() && {
llvm::DenseMap<Token, PostingList> Result(/*InitialReserve=*/
TrigramDocs.size() +
RestrictedCCDocs.size() +
TypeDocs.size() +
ScopeDocs.size() +
ProximityDocs.size());
// Tear down intermediate structs as we go to reduce memory usage.
// Since we're trying to get rid of underlying allocations, clearing the
// containers is not enough.
auto CreatePostingList =
[&Result](Token::Kind TK, llvm::StringMap<std::vector<DocID>> &Docs) {
for (auto &E : Docs) {
Result.try_emplace(Token(TK, E.first()), E.second);
E.second = {};
}
Docs = {};
};
CreatePostingList(Token::Kind::Type, TypeDocs);
CreatePostingList(Token::Kind::Scope, ScopeDocs);
CreatePostingList(Token::Kind::ProximityURI, ProximityDocs);
// TrigramDocs are stored in a DenseMap and RestrictedCCDocs is not even a
// map, treat them specially.
for (auto &E : TrigramDocs) {
Result.try_emplace(Token(Token::Kind::Trigram, E.first.str()), E.second);
E.second = {};
}
TrigramDocs = llvm::DenseMap<Trigram, std::vector<DocID>>{};
if (!RestrictedCCDocs.empty())
Result.try_emplace(RestrictedForCodeCompletion,
std::move(RestrictedCCDocs));
return Result;
}
};
} // namespace
void Dex::buildIndex() {
this->Corpus = dex::Corpus(Symbols.size());
std::vector<std::pair<float, const Symbol *>> ScoredSymbols(Symbols.size());
for (size_t I = 0; I < Symbols.size(); ++I) {
const Symbol *Sym = Symbols[I];
LookupTable[Sym->ID] = Sym;
ScoredSymbols[I] = {quality(*Sym), Sym};
}
// Symbols are sorted by symbol qualities so that items in the posting lists
// are stored in the descending order of symbol quality.
llvm::sort(ScoredSymbols, std::greater<std::pair<float, const Symbol *>>());
// SymbolQuality was empty up until now.
SymbolQuality.resize(Symbols.size());
// Populate internal storage using Symbol + Score pairs.
for (size_t I = 0; I < ScoredSymbols.size(); ++I) {
SymbolQuality[I] = ScoredSymbols[I].first;
Symbols[I] = ScoredSymbols[I].second;
}
// Build posting lists for symbols.
IndexBuilder Builder;
for (DocID SymbolRank = 0; SymbolRank < Symbols.size(); ++SymbolRank)
Builder.add(*Symbols[SymbolRank], SymbolRank);
InvertedIndex = std::move(Builder).build();
}
std::unique_ptr<Iterator> Dex::iterator(const Token &Tok) const {
auto It = InvertedIndex.find(Tok);
return It == InvertedIndex.end() ? Corpus.none()
: It->second.iterator(&It->first);
}
// Constructs BOOST iterators for Path Proximities.
std::unique_ptr<Iterator> Dex::createFileProximityIterator(
llvm::ArrayRef<std::string> ProximityPaths) const {
std::vector<std::unique_ptr<Iterator>> BoostingIterators;
// Deduplicate parent URIs extracted from the ProximityPaths.
llvm::StringSet<> ParentURIs;
llvm::StringMap<SourceParams> Sources;
for (const auto &Path : ProximityPaths) {
Sources[Path] = SourceParams();
auto PathURI = URI::create(Path);
const auto PathProximityURIs = generateProximityURIs(PathURI.toString());
for (const auto &ProximityURI : PathProximityURIs)
ParentURIs.insert(ProximityURI);
}
// Use SymbolRelevanceSignals for symbol relevance evaluation: use defaults
// for all parameters except for Proximity Path distance signal.
SymbolRelevanceSignals PathProximitySignals;
// DistanceCalculator will find the shortest distance from ProximityPaths to
// any URI extracted from the ProximityPaths.
URIDistance DistanceCalculator(Sources);
PathProximitySignals.FileProximityMatch = &DistanceCalculator;
// Try to build BOOST iterator for each Proximity Path provided by
// ProximityPaths. Boosting factor should depend on the distance to the
// Proximity Path: the closer processed path is, the higher boosting factor.
for (const auto &ParentURI : ParentURIs.keys()) {
// FIXME(kbobyrev): Append LIMIT on top of every BOOST iterator.
auto It = iterator(Token(Token::Kind::ProximityURI, ParentURI));
if (It->kind() != Iterator::Kind::False) {
PathProximitySignals.SymbolURI = ParentURI;
BoostingIterators.push_back(Corpus.boost(
std::move(It), PathProximitySignals.evaluateHeuristics()));
}
}
BoostingIterators.push_back(Corpus.all());
return Corpus.unionOf(std::move(BoostingIterators));
}
// Constructs BOOST iterators for preferred types.
std::unique_ptr<Iterator>
Dex::createTypeBoostingIterator(llvm::ArrayRef<std::string> Types) const {
std::vector<std::unique_ptr<Iterator>> BoostingIterators;
SymbolRelevanceSignals PreferredTypeSignals;
PreferredTypeSignals.TypeMatchesPreferred = true;
auto Boost = PreferredTypeSignals.evaluateHeuristics();
for (const auto &T : Types)
BoostingIterators.push_back(
Corpus.boost(iterator(Token(Token::Kind::Type, T)), Boost));
BoostingIterators.push_back(Corpus.all());
return Corpus.unionOf(std::move(BoostingIterators));
}
/// Constructs iterators over tokens extracted from the query and exhausts it
/// while applying Callback to each symbol in the order of decreasing quality
/// of the matched symbols.
bool Dex::fuzzyFind(const FuzzyFindRequest &Req,
llvm::function_ref<void(const Symbol &)> Callback) const {
assert(!StringRef(Req.Query).contains("::") &&
"There must be no :: in query.");
trace::Span Tracer("Dex fuzzyFind");
FuzzyMatcher Filter(Req.Query);
// For short queries we use specialized trigrams that don't yield all results.
// Prevent clients from postfiltering them for longer queries.
bool More = !Req.Query.empty() && Req.Query.size() < 3;
std::vector<std::unique_ptr<Iterator>> Criteria;
const auto TrigramTokens = generateQueryTrigrams(Req.Query);
// Generate query trigrams and construct AND iterator over all query
// trigrams.
std::vector<std::unique_ptr<Iterator>> TrigramIterators;
for (const auto &Trigram : TrigramTokens)
TrigramIterators.push_back(iterator(Trigram));
Criteria.push_back(Corpus.intersect(std::move(TrigramIterators)));
// Generate scope tokens for search query.
std::vector<std::unique_ptr<Iterator>> ScopeIterators;
for (const auto &Scope : Req.Scopes)
ScopeIterators.push_back(iterator(Token(Token::Kind::Scope, Scope)));
if (Req.AnyScope)
ScopeIterators.push_back(
Corpus.boost(Corpus.all(), ScopeIterators.empty() ? 1.0 : 0.2));
Criteria.push_back(Corpus.unionOf(std::move(ScopeIterators)));
// Add proximity paths boosting (all symbols, some boosted).
Criteria.push_back(createFileProximityIterator(Req.ProximityPaths));
// Add boosting for preferred types.
Criteria.push_back(createTypeBoostingIterator(Req.PreferredTypes));
if (Req.RestrictForCodeCompletion)
Criteria.push_back(iterator(RestrictedForCodeCompletion));
// Use TRUE iterator if both trigrams and scopes from the query are not
// present in the symbol index.
auto Root = Corpus.intersect(std::move(Criteria));
// Retrieve more items than it was requested: some of the items with high
// final score might not be retrieved otherwise.
// FIXME(kbobyrev): Tune this ratio.
if (Req.Limit)
Root = Corpus.limit(std::move(Root), *Req.Limit * 100);
SPAN_ATTACH(Tracer, "query", llvm::to_string(*Root));
vlog("Dex query tree: {0}", *Root);
using IDAndScore = std::pair<DocID, float>;
std::vector<IDAndScore> IDAndScores = consume(*Root);
auto Compare = [](const IDAndScore &LHS, const IDAndScore &RHS) {
return LHS.second > RHS.second;
};
TopN<IDAndScore, decltype(Compare)> Top(
Req.Limit ? *Req.Limit : std::numeric_limits<size_t>::max(), Compare);
for (const auto &IDAndScore : IDAndScores) {
const DocID SymbolDocID = IDAndScore.first;
const auto *Sym = Symbols[SymbolDocID];
const llvm::Optional<float> Score = Filter.match(Sym->Name);
if (!Score)
continue;
// Combine Fuzzy Matching score, precomputed symbol quality and boosting
// score for a cumulative final symbol score.
const float FinalScore =
(*Score) * SymbolQuality[SymbolDocID] * IDAndScore.second;
// If Top.push(...) returns true, it means that it had to pop an item. In
// this case, it is possible to retrieve more symbols.
if (Top.push({SymbolDocID, FinalScore}))
More = true;
}
// Apply callback to the top Req.Limit items in the descending
// order of cumulative score.
for (const auto &Item : std::move(Top).items())
Callback(*Symbols[Item.first]);
return More;
}
void Dex::lookup(const LookupRequest &Req,
llvm::function_ref<void(const Symbol &)> Callback) const {
trace::Span Tracer("Dex lookup");
for (const auto &ID : Req.IDs) {
auto I = LookupTable.find(ID);
if (I != LookupTable.end())
Callback(*I->second);
}
}
bool Dex::refs(const RefsRequest &Req,
llvm::function_ref<void(const Ref &)> Callback) const {
trace::Span Tracer("Dex refs");
uint32_t Remaining = Req.Limit.value_or(std::numeric_limits<uint32_t>::max());
for (const auto &ID : Req.IDs)
for (const auto &Ref : Refs.lookup(ID)) {
if (!static_cast<int>(Req.Filter & Ref.Kind))
continue;
if (Remaining == 0)
return true; // More refs were available.
--Remaining;
Callback(Ref);
}
return false; // We reported all refs.
}
void Dex::relations(
const RelationsRequest &Req,
llvm::function_ref<void(const SymbolID &, const Symbol &)> Callback) const {
trace::Span Tracer("Dex relations");
uint32_t Remaining = Req.Limit.value_or(std::numeric_limits<uint32_t>::max());
for (const SymbolID &Subject : Req.Subjects) {
LookupRequest LookupReq;
auto It = Relations.find(
std::make_pair(Subject, static_cast<uint8_t>(Req.Predicate)));
if (It != Relations.end()) {
for (const auto &Object : It->second) {
if (Remaining > 0) {
--Remaining;
LookupReq.IDs.insert(Object);
}
}
}
lookup(LookupReq, [&](const Symbol &Object) { Callback(Subject, Object); });
}
}
llvm::unique_function<IndexContents(llvm::StringRef) const>
Dex::indexedFiles() const {
return [this](llvm::StringRef FileURI) {
return Files.contains(FileURI) ? IdxContents : IndexContents::None;
};
}
size_t Dex::estimateMemoryUsage() const {
size_t Bytes = Symbols.size() * sizeof(const Symbol *);
Bytes += SymbolQuality.size() * sizeof(float);
Bytes += LookupTable.getMemorySize();
Bytes += InvertedIndex.getMemorySize();
for (const auto &TokenToPostingList : InvertedIndex)
Bytes += TokenToPostingList.second.bytes();
Bytes += Refs.getMemorySize();
Bytes += Relations.getMemorySize();
return Bytes + BackingDataSize;
}
std::vector<std::string> generateProximityURIs(llvm::StringRef URIPath) {
std::vector<std::string> Result;
auto ParsedURI = URI::parse(URIPath);
assert(ParsedURI &&
"Non-empty argument of generateProximityURIs() should be a valid "
"URI.");
llvm::StringRef Body = ParsedURI->body();
// FIXME(kbobyrev): Currently, this is a heuristic which defines the maximum
// size of resulting vector. Some projects might want to have higher limit if
// the file hierarchy is deeper. For the generic case, it would be useful to
// calculate Limit in the index build stage by calculating the maximum depth
// of the project source tree at runtime.
size_t Limit = 5;
// Insert original URI before the loop: this would save a redundant iteration
// with a URI parse.
Result.emplace_back(ParsedURI->toString());
while (!Body.empty() && --Limit > 0) {
// FIXME(kbobyrev): Parsing and encoding path to URIs is not necessary and
// could be optimized.
Body = llvm::sys::path::parent_path(Body, llvm::sys::path::Style::posix);
if (!Body.empty())
Result.emplace_back(
URI(ParsedURI->scheme(), ParsedURI->authority(), Body).toString());
}
return Result;
}
} // namespace dex
} // namespace clangd
} // namespace clang
|