1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
|
//===--- GLR.cpp -----------------------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang-pseudo/GLR.h"
#include "clang-pseudo/Language.h"
#include "clang-pseudo/grammar/Grammar.h"
#include "clang-pseudo/grammar/LRTable.h"
#include "clang/Basic/TokenKinds.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormatVariadic.h"
#include <algorithm>
#include <memory>
#include <queue>
#define DEBUG_TYPE "GLR.cpp"
namespace clang {
namespace pseudo {
namespace {
Token::Index findRecoveryEndpoint(ExtensionID Strategy, Token::Index Begin,
const TokenStream &Tokens,
const Language &Lang) {
assert(Strategy != 0);
assert(Begin > 0);
if (auto S = Lang.RecoveryStrategies.lookup(Strategy))
return S(Begin, Tokens);
return Token::Invalid;
}
} // namespace
void glrRecover(llvm::ArrayRef<const GSS::Node *> OldHeads,
unsigned &TokenIndex, const ParseParams &Params,
const Language &Lang,
std::vector<const GSS::Node *> &NewHeads) {
LLVM_DEBUG(llvm::dbgs() << "Recovery at token " << TokenIndex << "...\n");
// Describes a possibility to recover by forcibly interpreting a range of
// tokens around the cursor as a nonterminal that we expected to see.
struct PlaceholderRecovery {
// The token prior to the nonterminal which is being recovered.
// This starts of the region we're skipping, so higher Position is better.
Token::Index Position;
// The nonterminal which will be created in order to recover.
SymbolID Symbol;
// The heuristic used to choose the bounds of the nonterminal to recover.
ExtensionID Strategy;
// The GSS head where we are expecting the recovered nonterminal.
const GSS::Node *RecoveryNode;
// Payload of nodes on the way back from the OldHead to the recovery node.
// These represent the partial parse that is being discarded.
// They should become the children of the opaque recovery node.
// FIXME: internal structure of opaque nodes is not implemented.
//
// There may be multiple paths leading to the same recovery node, we choose
// one arbitrarily.
std::vector<const ForestNode *> DiscardedParse;
};
std::vector<PlaceholderRecovery> Options;
// Find recovery options by walking up the stack.
//
// This is similar to exception handling: we walk up the "frames" of nested
// rules being parsed until we find one that has a "handler" which allows us
// to determine the node bounds without parsing it.
//
// Unfortunately there's a significant difference: the stack contains both
// "upward" nodes (ancestor parses) and "leftward" ones.
// e.g. when parsing `{ if (1) ? }` as compound-stmt, the stack contains:
// stmt := IF ( expr ) . stmt - current state, we should recover here!
// stmt := IF ( expr . ) stmt - (left, no recovery here)
// stmt := IF ( . expr ) stmt - left, we should NOT recover here!
// stmt := IF . ( expr ) stmt - (left, no recovery here)
// stmt-seq := . stmt - up, we might recover here
// compound-stmt := { . stmt-seq } - up, we should recover here!
//
// It's not obvious how to avoid collecting "leftward" recovery options.
// I think the distinction is ill-defined after merging items into states.
// For now, we have to take this into account when defining recovery rules.
// (e.g. in the expr recovery above, stay inside the parentheses).
// FIXME: find a more satisfying way to avoid such false recovery.
// FIXME: Add a test for spurious recovery once tests can define strategies.
std::vector<const ForestNode *> Path;
llvm::DenseSet<const GSS::Node *> Seen;
auto WalkUp = [&](const GSS::Node *N, Token::Index NextTok, auto &WalkUp) {
if (!Seen.insert(N).second)
return;
for (auto Strategy : Lang.Table.getRecovery(N->State)) {
Options.push_back(PlaceholderRecovery{
NextTok,
Strategy.Result,
Strategy.Strategy,
N,
Path,
});
LLVM_DEBUG(llvm::dbgs()
<< "Option: recover " << Lang.G.symbolName(Strategy.Result)
<< " at token " << NextTok << "\n");
}
Path.push_back(N->Payload);
for (const GSS::Node *Parent : N->parents())
WalkUp(Parent, N->Payload->startTokenIndex(), WalkUp);
Path.pop_back();
};
for (auto *N : OldHeads)
WalkUp(N, TokenIndex, WalkUp);
// Now we select the option(s) we will use to recover.
//
// We prefer options starting further right, as these discard less code
// (e.g. we prefer to recover inner scopes rather than outer ones).
// The options also need to agree on an endpoint, so the parser has a
// consistent position afterwards.
//
// So conceptually we're sorting by the tuple (start, end), though we avoid
// computing `end` for options that can't be winners.
// Consider options starting further right first.
// Don't drop the others yet though, we may still use them if preferred fails.
llvm::stable_sort(Options, [&](const auto &L, const auto &R) {
return L.Position > R.Position;
});
// We may find multiple winners, but they will have the same range.
llvm::Optional<Token::Range> RecoveryRange;
std::vector<const PlaceholderRecovery *> BestOptions;
for (const PlaceholderRecovery &Option : Options) {
// If this starts further left than options we've already found, then
// we'll never find anything better. Skip computing End for the rest.
if (RecoveryRange && Option.Position < RecoveryRange->Begin)
break;
auto End = findRecoveryEndpoint(Option.Strategy, Option.Position,
Params.Code, Lang);
// Recovery may not take the parse backwards.
if (End == Token::Invalid || End < TokenIndex)
continue;
if (RecoveryRange) {
// If this is worse than our previous options, ignore it.
if (RecoveryRange->End < End)
continue;
// If this is an improvement over our previous options, then drop them.
if (RecoveryRange->End > End)
BestOptions.clear();
}
// Create recovery nodes and heads for them in the GSS. These may be
// discarded if a better recovery is later found, but this path isn't hot.
RecoveryRange = {Option.Position, End};
BestOptions.push_back(&Option);
}
if (BestOptions.empty()) {
LLVM_DEBUG(llvm::dbgs() << "Recovery failed after trying " << Options.size()
<< " strategies\n");
return;
}
// We've settled on a set of recovery options, so create their nodes and
// advance the cursor.
LLVM_DEBUG({
llvm::dbgs() << "Recovered range=" << *RecoveryRange << ":";
for (const auto *Option : BestOptions)
llvm::dbgs() << " " << Lang.G.symbolName(Option->Symbol);
llvm::dbgs() << "\n";
});
// FIXME: in general, we might have the same Option->Symbol multiple times,
// and we risk creating redundant Forest and GSS nodes.
// We also may inadvertently set up the next glrReduce to create a sequence
// node duplicating an opaque node that we're creating here.
// There are various options, including simply breaking ties between options.
// For now it's obscure enough to ignore.
for (const PlaceholderRecovery *Option : BestOptions) {
const ForestNode &Placeholder =
Params.Forest.createOpaque(Option->Symbol, RecoveryRange->Begin);
LRTable::StateID OldState = Option->RecoveryNode->State;
LRTable::StateID NewState =
isToken(Option->Symbol)
? *Lang.Table.getShiftState(OldState, Option->Symbol)
: *Lang.Table.getGoToState(OldState, Option->Symbol);
const GSS::Node *NewHead =
Params.GSStack.addNode(NewState, &Placeholder, {Option->RecoveryNode});
NewHeads.push_back(NewHead);
}
TokenIndex = RecoveryRange->End;
}
using StateID = LRTable::StateID;
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const GSS::Node &N) {
std::vector<std::string> ParentStates;
for (const auto *Parent : N.parents())
ParentStates.push_back(llvm::formatv("{0}", Parent->State));
OS << llvm::formatv("state {0}, parsed symbol {1}, parents {3}", N.State,
N.Payload ? N.Payload->symbol() : 0,
llvm::join(ParentStates, ", "));
return OS;
}
// Apply all pending shift actions.
// In theory, LR parsing doesn't have shift/shift conflicts on a single head.
// But we may have multiple active heads, and each head has a shift action.
//
// We merge the stack -- if multiple heads will reach the same state after
// shifting a token, we shift only once by combining these heads.
//
// E.g. we have two heads (2, 3) in the GSS, and will shift both to reach 4:
// 0---1---2
// └---3
// After the shift action, the GSS is:
// 0---1---2---4
// └---3---┘
void glrShift(llvm::ArrayRef<const GSS::Node *> OldHeads,
const ForestNode &NewTok, const ParseParams &Params,
const Language &Lang, std::vector<const GSS::Node *> &NewHeads) {
assert(NewTok.kind() == ForestNode::Terminal);
LLVM_DEBUG(llvm::dbgs() << llvm::formatv(" Shift {0} ({1} active heads):\n",
Lang.G.symbolName(NewTok.symbol()),
OldHeads.size()));
// We group pending shifts by their target state so we can merge them.
llvm::SmallVector<std::pair<StateID, const GSS::Node *>, 8> Shifts;
for (const auto *H : OldHeads)
if (auto S = Lang.Table.getShiftState(H->State, NewTok.symbol()))
Shifts.push_back({*S, H});
llvm::stable_sort(Shifts, llvm::less_first{});
auto Rest = llvm::makeArrayRef(Shifts);
llvm::SmallVector<const GSS::Node *> Parents;
while (!Rest.empty()) {
// Collect the batch of PendingShift that have compatible shift states.
// Their heads become TempParents, the parents of the new GSS node.
StateID NextState = Rest.front().first;
Parents.clear();
for (const auto &Base : Rest) {
if (Base.first != NextState)
break;
Parents.push_back(Base.second);
}
Rest = Rest.drop_front(Parents.size());
LLVM_DEBUG(llvm::dbgs() << llvm::formatv(" --> S{0} ({1} heads)\n",
NextState, Parents.size()));
NewHeads.push_back(Params.GSStack.addNode(NextState, &NewTok, Parents));
}
}
namespace {
// A KeyedQueue yields pairs of keys and values in order of the keys.
template <typename Key, typename Value>
using KeyedQueue =
std::priority_queue<std::pair<Key, Value>,
std::vector<std::pair<Key, Value>>, llvm::less_first>;
template <typename T> void sortAndUnique(std::vector<T> &Vec) {
llvm::sort(Vec);
Vec.erase(std::unique(Vec.begin(), Vec.end()), Vec.end());
}
// Perform reduces until no more are possible.
//
// Generally this means walking up from the heads gathering ForestNodes that
// will match the RHS of the rule we're reducing into a sequence ForestNode,
// and ending up at a base node.
// Then we push a new GSS node onto that base, taking care to:
// - pack alternative sequence ForestNodes into an ambiguous ForestNode.
// - use the same GSS node for multiple heads if the parse state matches.
//
// Examples of reduction:
// Before (simple):
// 0--1(expr)--2(semi)
// After reducing 2 by `stmt := expr semi`:
// 0--3(stmt) // 3 is goto(0, stmt)
//
// Before (splitting due to R/R conflict):
// 0--1(IDENTIFIER)
// After reducing 1 by `class-name := IDENTIFIER` & `enum-name := IDENTIFIER`:
// 0--2(class-name) // 2 is goto(0, class-name)
// └--3(enum-name) // 3 is goto(0, enum-name)
//
// Before (splitting due to multiple bases):
// 0--2(class-name)--4(STAR)
// └--3(enum-name)---┘
// After reducing 4 by `ptr-operator := STAR`:
// 0--2(class-name)--5(ptr-operator) // 5 is goto(2, ptr-operator)
// └--3(enum-name)---6(ptr-operator) // 6 is goto(3, ptr-operator)
//
// Before (joining due to same goto state, multiple bases):
// 0--1(cv-qualifier)--3(class-name)
// └--2(cv-qualifier)--4(enum-name)
// After reducing 3 by `type-name := class-name` and
// 4 by `type-name := enum-name`:
// 0--1(cv-qualifier)--5(type-name) // 5 is goto(1, type-name) and
// └--2(cv-qualifier)--┘ // goto(2, type-name)
//
// Before (joining due to same goto state, the same base):
// 0--1(class-name)--3(STAR)
// └--2(enum-name)--4(STAR)
// After reducing 3 by `pointer := class-name STAR` and
// 2 by`enum-name := class-name STAR`:
// 0--5(pointer) // 5 is goto(0, pointer)
//
// (This is a functor rather than a function to allow it to reuse scratch
// storage across calls).
class GLRReduce {
const ParseParams &Params;
const Language& Lang;
// There are two interacting complications:
// 1. Performing one reduce can unlock new reduces on the newly-created head.
// 2a. The ambiguous ForestNodes must be complete (have all sequence nodes).
// This means we must have unlocked all the reduces that contribute to it.
// 2b. Similarly, the new GSS nodes must be complete (have all parents).
//
// We define a "family" of reduces as those that produce the same symbol and
// cover the same range of tokens. These are exactly the set of reductions
// whose sequence nodes would be covered by the same ambiguous node.
// We wish to process a whole family at a time (to satisfy complication 2),
// and can address complication 1 by carefully ordering the families:
// - Process families covering fewer tokens first.
// A reduce can't depend on a longer reduce!
// - For equal token ranges: if S := T, process T families before S families.
// Parsing T can't depend on an equal-length S, as the grammar is acyclic.
//
// This isn't quite enough: we don't know the token length of the reduction
// until we walk up the stack to perform the pop.
// So we perform the pop part upfront, and place the push specification on
// priority queues such that we can retrieve a family at a time.
// A reduction family is characterized by its token range and symbol produced.
// It is used as a key in the priority queues to group pushes by family.
struct Family {
// The start of the token range of the reduce.
Token::Index Start;
SymbolID Symbol;
// Rule must produce Symbol and can otherwise be arbitrary.
// RuleIDs have the topological order based on the acyclic grammar.
// FIXME: should SymbolIDs be so ordered instead?
RuleID Rule;
bool operator==(const Family &Other) const {
return Start == Other.Start && Symbol == Other.Symbol;
}
// The larger Family is the one that should be processed first.
bool operator<(const Family &Other) const {
if (Start != Other.Start)
return Start < Other.Start;
if (Symbol != Other.Symbol)
return Rule > Other.Rule;
assert(*this == Other);
return false;
}
};
// A sequence is the ForestNode payloads of the GSS nodes we are reducing.
using Sequence = llvm::SmallVector<const ForestNode *, Rule::MaxElements>;
// Like ArrayRef<const ForestNode*>, but with the missing operator<.
// (Sequences are big to move by value as the collections gets rearranged).
struct SequenceRef {
SequenceRef(const Sequence &S) : S(S) {}
llvm::ArrayRef<const ForestNode *> S;
friend bool operator==(SequenceRef A, SequenceRef B) { return A.S == B.S; }
friend bool operator<(const SequenceRef &A, const SequenceRef &B) {
return std::lexicographical_compare(A.S.begin(), A.S.end(), B.S.begin(),
B.S.end());
}
};
// Underlying storage for sequences pointed to by stored SequenceRefs.
std::deque<Sequence> SequenceStorage;
// We don't actually destroy the sequences between calls, to reuse storage.
// Everything SequenceStorage[ >=SequenceStorageCount ] is reusable scratch.
unsigned SequenceStorageCount;
// Halfway through a reduction (after the pop, before the push), we have
// collected nodes for the RHS of a rule, and reached a base node.
// They specify a sequence ForestNode we may build (but we dedup first).
// (The RuleID is not stored here, but rather in the Family).
struct PushSpec {
// The last node popped before pushing. Its parent is the reduction base(s).
// (Base is more fundamental, but this is cheaper to store).
const GSS::Node* LastPop = nullptr;
Sequence *Seq = nullptr;
};
KeyedQueue<Family, PushSpec> Sequences; // FIXME: rename => PendingPushes?
// We treat Heads as a queue of Pop operations still to be performed.
// PoppedHeads is our position within it.
std::vector<const GSS::Node *> *Heads;
unsigned NextPopHead;
SymbolID Lookahead;
Sequence TempSequence;
public:
GLRReduce(const ParseParams &Params, const Language &Lang)
: Params(Params), Lang(Lang) {}
void operator()(std::vector<const GSS::Node *> &Heads, SymbolID Lookahead) {
assert(isToken(Lookahead));
NextPopHead = 0;
this->Heads = &Heads;
this->Lookahead = Lookahead;
assert(Sequences.empty());
SequenceStorageCount = 0;
popPending();
while (!Sequences.empty()) {
pushNext();
popPending();
}
}
private:
bool canReduce(const Rule &R, RuleID RID,
llvm::ArrayRef<const ForestNode *> RHS) const {
if (!R.Guarded)
return true;
if (auto Guard = Lang.Guards.lookup(RID))
return Guard({RHS, Params.Code, Lookahead});
LLVM_DEBUG(llvm::dbgs()
<< llvm::formatv("missing guard implementation for rule {0}\n",
Lang.G.dumpRule(RID)));
return true;
}
// pop walks up the parent chain(s) for a reduction from Head by to Rule.
// Once we reach the end, record the bases and sequences.
void pop(const GSS::Node *Head, RuleID RID, const Rule &Rule) {
LLVM_DEBUG(llvm::dbgs() << " Pop " << Lang.G.dumpRule(RID) << "\n");
Family F{/*Start=*/0, /*Symbol=*/Rule.Target, /*Rule=*/RID};
TempSequence.resize_for_overwrite(Rule.Size);
auto DFS = [&](const GSS::Node *N, unsigned I, auto &DFS) {
TempSequence[Rule.Size - 1 - I] = N->Payload;
if (I + 1 == Rule.Size) {
F.Start = TempSequence.front()->startTokenIndex();
LLVM_DEBUG({
for (const auto *B : N->parents())
llvm::dbgs() << " --> base at S" << B->State << "\n";
});
if (!canReduce(Rule, RID, TempSequence))
return;
// Copy the chain to stable storage so it can be enqueued.
if (SequenceStorageCount == SequenceStorage.size())
SequenceStorage.emplace_back();
SequenceStorage[SequenceStorageCount] = TempSequence;
Sequence *Seq = &SequenceStorage[SequenceStorageCount++];
Sequences.emplace(F, PushSpec{N, Seq});
return;
}
for (const GSS::Node *Parent : N->parents())
DFS(Parent, I + 1, DFS);
};
DFS(Head, 0, DFS);
}
// popPending pops every available reduction.
void popPending() {
for (; NextPopHead < Heads->size(); ++NextPopHead) {
// In trivial cases, we perform the complete reduce here!
if (popAndPushTrivial())
continue;
for (RuleID RID :
Lang.Table.getReduceRules((*Heads)[NextPopHead]->State)) {
const auto &Rule = Lang.G.lookupRule(RID);
if (Lang.Table.canFollow(Rule.Target, Lookahead))
pop((*Heads)[NextPopHead], RID, Rule);
}
}
}
// Storage reused by each call to pushNext.
std::vector<std::pair</*Goto*/ StateID, const GSS::Node *>> FamilyBases;
std::vector<std::pair<RuleID, SequenceRef>> FamilySequences;
std::vector<const GSS::Node *> Parents;
std::vector<const ForestNode *> SequenceNodes;
// Process one push family, forming a forest node.
// This produces new GSS heads which may enable more pops.
void pushNext() {
assert(!Sequences.empty());
Family F = Sequences.top().first;
LLVM_DEBUG(llvm::dbgs() << " Push " << Lang.G.symbolName(F.Symbol)
<< " from token " << F.Start << "\n");
// Grab the sequences and bases for this family.
// We don't care which rule yielded each base. If Family.Symbol is S, the
// base includes an item X := ... • S ... and since the grammar is
// context-free, *all* parses of S are valid here.
FamilySequences.clear();
FamilyBases.clear();
do {
const PushSpec &Push = Sequences.top().second;
FamilySequences.emplace_back(Sequences.top().first.Rule, *Push.Seq);
for (const GSS::Node *Base : Push.LastPop->parents()) {
auto NextState = Lang.Table.getGoToState(Base->State, F.Symbol);
assert(NextState.has_value() && "goto must succeed after reduce!");
FamilyBases.emplace_back(*NextState, Base);
}
Sequences.pop();
} while (!Sequences.empty() && Sequences.top().first == F);
// Build a forest node for each unique sequence.
sortAndUnique(FamilySequences);
SequenceNodes.clear();
for (const auto &SequenceSpec : FamilySequences)
SequenceNodes.push_back(&Params.Forest.createSequence(
F.Symbol, SequenceSpec.first, SequenceSpec.second.S));
// Wrap in an ambiguous node if needed.
const ForestNode *Parsed =
SequenceNodes.size() == 1
? SequenceNodes.front()
: &Params.Forest.createAmbiguous(F.Symbol, SequenceNodes);
LLVM_DEBUG(llvm::dbgs() << " --> " << Parsed->dump(Lang.G) << "\n");
// Bases for this family, deduplicate them, and group by the goTo State.
sortAndUnique(FamilyBases);
// Create a GSS node for each unique goto state.
llvm::ArrayRef<decltype(FamilyBases)::value_type> BasesLeft = FamilyBases;
while (!BasesLeft.empty()) {
StateID NextState = BasesLeft.front().first;
Parents.clear();
for (const auto &Base : BasesLeft) {
if (Base.first != NextState)
break;
Parents.push_back(Base.second);
}
BasesLeft = BasesLeft.drop_front(Parents.size());
Heads->push_back(Params.GSStack.addNode(NextState, Parsed, Parents));
}
}
// In general we split a reduce into a pop/push, so concurrently-available
// reductions can run in the correct order. The data structures are expensive.
//
// When only one reduction is possible at a time, we can skip this:
// we pop and immediately push, as an LR parser (as opposed to GLR) would.
// This is valid whenever there's only one concurrent PushSpec.
//
// This function handles a trivial but common subset of these cases:
// - there must be no pending pushes, and only one poppable head
// - the head must have only one reduction rule
// - the reduction path must be a straight line (no multiple parents)
// (Roughly this means there's no local ambiguity, so the LR algorithm works).
//
// Returns true if we successfully consumed the next unpopped head.
bool popAndPushTrivial() {
if (!Sequences.empty() || Heads->size() != NextPopHead + 1)
return false;
const GSS::Node *Head = Heads->back();
llvm::Optional<RuleID> RID;
for (RuleID R : Lang.Table.getReduceRules(Head->State)) {
if (RID.has_value())
return false;
RID = R;
}
if (!RID)
return true; // no reductions available, but we've processed the head!
const auto &Rule = Lang.G.lookupRule(*RID);
if (!Lang.Table.canFollow(Rule.Target, Lookahead))
return true; // reduction is not available
const GSS::Node *Base = Head;
TempSequence.resize_for_overwrite(Rule.Size);
for (unsigned I = 0; I < Rule.Size; ++I) {
if (Base->parents().size() != 1)
return false;
TempSequence[Rule.Size - 1 - I] = Base->Payload;
Base = Base->parents().front();
}
if (!canReduce(Rule, *RID, TempSequence))
return true; // reduction is not available
const ForestNode *Parsed =
&Params.Forest.createSequence(Rule.Target, *RID, TempSequence);
auto NextState = Lang.Table.getGoToState(Base->State, Rule.Target);
assert(NextState.has_value() && "goto must succeed after reduce!");
Heads->push_back(Params.GSStack.addNode(*NextState, Parsed, {Base}));
return true;
}
};
} // namespace
const ForestNode &glrParse(const ParseParams &Params, SymbolID StartSymbol,
const Language &Lang) {
GLRReduce Reduce(Params, Lang);
assert(isNonterminal(StartSymbol) && "Start symbol must be a nonterminal");
llvm::ArrayRef<ForestNode> Terminals = Params.Forest.createTerminals(Params.Code);
auto &GSS = Params.GSStack;
StateID StartState = Lang.Table.getStartState(StartSymbol);
// Heads correspond to the parse of tokens [0, I), NextHeads to [0, I+1).
std::vector<const GSS::Node *> Heads = {GSS.addNode(/*State=*/StartState,
/*ForestNode=*/nullptr,
{})};
std::vector<const GSS::Node *> NextHeads;
auto MaybeGC = [&, Roots(std::vector<const GSS::Node *>{}), I(0u)]() mutable {
assert(NextHeads.empty() && "Running GC at the wrong time!");
if (++I != 20) // Run periodically to balance CPU and memory usage.
return;
I = 0;
// We need to copy the list: Roots is consumed by the GC.
Roots = Heads;
GSS.gc(std::move(Roots));
};
// Each iteration fully processes a single token.
for (unsigned I = 0; I < Terminals.size();) {
LLVM_DEBUG(llvm::dbgs() << llvm::formatv(
"Next token {0} (id={1})\n",
Lang.G.symbolName(Terminals[I].symbol()), Terminals[I].symbol()));
// Consume the token.
glrShift(Heads, Terminals[I], Params, Lang, NextHeads);
// If we weren't able to consume the token, try to skip over some tokens
// so we can keep parsing.
if (NextHeads.empty()) {
// FIXME: Heads may not be fully reduced, because our reductions were
// constrained by lookahead (but lookahead is meaningless to recovery).
glrRecover(Heads, I, Params, Lang, NextHeads);
if (NextHeads.empty())
// FIXME: Ensure the `_ := start-symbol` rules have a fallback
// error-recovery strategy attached. Then this condition can't happen.
return Params.Forest.createOpaque(StartSymbol, /*Token::Index=*/0);
} else
++I;
// Form nonterminals containing the token we just consumed.
SymbolID Lookahead =
I == Terminals.size() ? tokenSymbol(tok::eof) : Terminals[I].symbol();
Reduce(NextHeads, Lookahead);
// Prepare for the next token.
std::swap(Heads, NextHeads);
NextHeads.clear();
MaybeGC();
}
LLVM_DEBUG(llvm::dbgs() << llvm::formatv("Reached eof\n"));
// The parse was successful if we're in state `_ := start-symbol .`
auto AcceptState = Lang.Table.getGoToState(StartState, StartSymbol);
assert(AcceptState.has_value() && "goto must succeed after start symbol!");
auto SearchForAccept = [&](llvm::ArrayRef<const GSS::Node *> Heads) {
const ForestNode *Result = nullptr;
for (const auto *Head : Heads) {
if (Head->State == *AcceptState) {
assert(Head->Payload->symbol() == StartSymbol);
assert(Result == nullptr && "multiple results!");
Result = Head->Payload;
}
}
return Result;
};
if (auto *Result = SearchForAccept(Heads))
return *Result;
// Failed to parse the input, attempt to run recovery.
// FIXME: this awkwardly repeats the recovery in the loop, when shift fails.
// More elegant is to include EOF in the token stream, and make the
// augmented rule: `_ := translation-unit EOF`. In this way recovery at EOF
// would not be a special case: it show up as a failure to shift the EOF
// token.
unsigned I = Terminals.size();
glrRecover(Heads, I, Params, Lang, NextHeads);
Reduce(NextHeads, tokenSymbol(tok::eof));
if (auto *Result = SearchForAccept(NextHeads))
return *Result;
// We failed to parse the input, returning an opaque forest node for recovery.
// FIXME: as above, we can add fallback error handling so this is impossible.
return Params.Forest.createOpaque(StartSymbol, /*Token::Index=*/0);
}
void glrReduce(std::vector<const GSS::Node *> &Heads, SymbolID Lookahead,
const ParseParams &Params, const Language &Lang) {
// Create a new GLRReduce each time for tests, performance doesn't matter.
GLRReduce{Params, Lang}(Heads, Lookahead);
}
const GSS::Node *GSS::addNode(LRTable::StateID State, const ForestNode *Symbol,
llvm::ArrayRef<const Node *> Parents) {
Node *Result = new (allocate(Parents.size()))
Node({State, GCParity, static_cast<uint16_t>(Parents.size())});
Alive.push_back(Result);
++NodesCreated;
Result->Payload = Symbol;
if (!Parents.empty())
llvm::copy(Parents, reinterpret_cast<const Node **>(Result + 1));
return Result;
}
GSS::Node *GSS::allocate(unsigned Parents) {
if (FreeList.size() <= Parents)
FreeList.resize(Parents + 1);
auto &SizedList = FreeList[Parents];
if (!SizedList.empty()) {
auto *Result = SizedList.back();
SizedList.pop_back();
return Result;
}
return static_cast<Node *>(
Arena.Allocate(sizeof(Node) + Parents * sizeof(Node *), alignof(Node)));
}
void GSS::destroy(Node *N) {
unsigned ParentCount = N->ParentCount;
N->~Node();
assert(FreeList.size() > ParentCount && "established on construction!");
FreeList[ParentCount].push_back(N);
}
unsigned GSS::gc(std::vector<const Node *> &&Queue) {
#ifndef NDEBUG
auto ParityMatches = [&](const Node *N) { return N->GCParity == GCParity; };
assert("Before GC" && llvm::all_of(Alive, ParityMatches));
auto Deferred = llvm::make_scope_exit(
[&] { assert("After GC" && llvm::all_of(Alive, ParityMatches)); });
assert(llvm::all_of(
Queue, [&](const Node *R) { return llvm::is_contained(Alive, R); }));
#endif
unsigned InitialCount = Alive.size();
// Mark
GCParity = !GCParity;
while (!Queue.empty()) {
Node *N = const_cast<Node *>(Queue.back()); // Safe: we created these nodes.
Queue.pop_back();
if (N->GCParity != GCParity) { // Not seen yet
N->GCParity = GCParity; // Mark as seen
for (const Node *P : N->parents()) // And walk parents
Queue.push_back(P);
}
}
// Sweep
llvm::erase_if(Alive, [&](Node *N) {
if (N->GCParity == GCParity) // Walk reached this node.
return false;
destroy(N);
return true;
});
LLVM_DEBUG(llvm::dbgs() << "GC pruned " << (InitialCount - Alive.size())
<< "/" << InitialCount << " GSS nodes\n");
return InitialCount - Alive.size();
}
} // namespace pseudo
} // namespace clang
|