File: CXX.cpp

package info (click to toggle)
llvm-toolchain-15 1%3A15.0.6-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,554,644 kB
  • sloc: cpp: 5,922,452; ansic: 1,012,136; asm: 674,362; python: 191,568; objc: 73,855; f90: 42,327; lisp: 31,913; pascal: 11,973; javascript: 10,144; sh: 9,421; perl: 7,447; ml: 5,527; awk: 3,523; makefile: 2,520; xml: 885; cs: 573; fortran: 567
file content (407 lines) | stat: -rw-r--r-- 17,180 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
//===--- CXX.cpp - Define public interfaces for C++ grammar ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "clang-pseudo/cxx/CXX.h"
#include "clang-pseudo/Forest.h"
#include "clang-pseudo/Language.h"
#include "clang-pseudo/grammar/Grammar.h"
#include "clang-pseudo/grammar/LRTable.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/TokenKinds.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Debug.h"
#include <utility>
#define DEBUG_TYPE "CXX.cpp"

namespace clang {
namespace pseudo {
namespace cxx {
namespace {
static const char *CXXBNF =
#include "CXXBNF.inc"
    ;

// User-defined string literals look like `""suffix`.
bool isStringUserDefined(const Token &Tok) {
  return !Tok.text().endswith("\"");
}
bool isCharUserDefined(const Token &Tok) { return !Tok.text().endswith("'"); }

// Combinable flags describing numbers.
// Clang has just one numeric_token kind, the grammar has 4.
enum NumericKind {
  Integer = 0,
  Floating = 1 << 0,
  UserDefined = 1 << 1,
};
// Determine the kind of numeric_constant we have.
// We can assume it's something valid, as it has been lexed.
// FIXME: is this expensive enough that we should set flags on the token
// and reuse them rather than computing it for each guard?
unsigned numKind(const Token &Tok) {
  assert(Tok.Kind == tok::numeric_constant);
  llvm::StringRef Text = Tok.text();
  if (Text.size() <= 1)
    return Integer;
  bool Hex =
      Text.size() > 2 && Text[0] == '0' && (Text[1] == 'x' || Text[1] == 'X');
  uint8_t K = Integer;

  for (char C : Text) {
    switch (C) {
    case '.':
      K |= Floating;
      break;
    case 'e':
    case 'E':
      if (!Hex)
        K |= Floating;
      break;
    case 'p':
    case 'P':
      if (Hex)
        K |= Floating;
      break;
    case '_':
      K |= UserDefined;
      break;
    default:
      break;
    }
  }

  // We would be done here, but there are stdlib UDLs that lack _.
  // We must distinguish these from the builtin suffixes.
  unsigned LastLetter = Text.size();
  while (LastLetter > 0 && isLetter(Text[LastLetter - 1]))
    --LastLetter;
  if (LastLetter == Text.size()) // Common case
    return NumericKind(K);
  // Trailing d/e/f are not part of the suffix in hex numbers.
  while (Hex && LastLetter < Text.size() && isHexDigit(Text[LastLetter]))
    ++LastLetter;
  return llvm::StringSwitch<int, unsigned>(Text.substr(LastLetter))
      // std::chrono
      .Cases("h", "min", "s", "ms", "us", "ns", "d", "y", K | UserDefined)
      // complex
      .Cases("il", "i", "if", K | UserDefined)
      .Default(K);
}

// RHS is expected to contain a single terminal.
// Returns the corresponding token.
const Token &onlyToken(tok::TokenKind Kind,
                       const ArrayRef<const ForestNode *> RHS,
                       const TokenStream &Tokens) {
  assert(RHS.size() == 1 && RHS.front()->symbol() == tokenSymbol(Kind));
  return Tokens.tokens()[RHS.front()->startTokenIndex()];
}
// RHS is expected to contain a single symbol.
// Returns the corresponding ForestNode.
const ForestNode &onlySymbol(SymbolID Kind,
                             const ArrayRef<const ForestNode *> RHS,
                             const TokenStream &Tokens) {
  assert(RHS.size() == 1 && RHS.front()->symbol() == Kind);
  return *RHS.front();
}

bool isFunctionDeclarator(const ForestNode *Declarator) {
  assert(Declarator->symbol() == (SymbolID)(cxx::Symbol::declarator));
  bool IsFunction = false;
  using cxx::Rule;
  while (true) {
    // not well-formed code, return the best guess.
    if (Declarator->kind() != ForestNode::Sequence)
      return IsFunction;

    switch ((cxx::Rule)Declarator->rule()) {
    case Rule::noptr_declarator_0declarator_id: // reached the bottom
      return IsFunction;
    // *X is a nonfunction (unless X is a function).
    case Rule::ptr_declarator_0ptr_operator_1ptr_declarator:
      Declarator = Declarator->elements()[1];
      IsFunction = false;
      continue;
    // X() is a function (unless X is a pointer or similar).
    case Rule::
        declarator_0noptr_declarator_1parameters_and_qualifiers_2trailing_return_type:
    case Rule::noptr_declarator_0noptr_declarator_1parameters_and_qualifiers:
      Declarator = Declarator->elements()[0];
      IsFunction = true;
      continue;
    // X[] is an array (unless X is a pointer or function).
    case Rule::
        noptr_declarator_0noptr_declarator_1l_square_2constant_expression_3r_square:
    case Rule::noptr_declarator_0noptr_declarator_1l_square_2r_square:
      Declarator = Declarator->elements()[0];
      IsFunction = false;
      continue;
    // (X) is whatever X is.
    case Rule::noptr_declarator_0l_paren_1ptr_declarator_2r_paren:
      Declarator = Declarator->elements()[1];
      continue;
    case Rule::ptr_declarator_0noptr_declarator:
    case Rule::declarator_0ptr_declarator:
      Declarator = Declarator->elements()[0];
      continue;

    default:
      assert(false && "unhandled declarator for IsFunction");
      return IsFunction;
    }
  }
  llvm_unreachable("unreachable");
}

bool guardNextTokenNotElse(const GuardParams &P) {
  return symbolToToken(P.Lookahead) != tok::kw_else;
}

// Whether this e.g. decl-specifier contains an "exclusive" type such as a class
// name, and thus can't combine with a second exclusive type.
//
// Returns false for
//  - non-types
//  - "unsigned" etc that may suffice as types but may modify others
//  - cases of uncertainty (e.g. due to ambiguity)
bool hasExclusiveType(const ForestNode *N) {
  // FIXME: every time we apply this check, we walk the whole subtree.
  // Add per-node caching instead.
  while (true) {
    assert(N->symbol() == (SymbolID)Symbol::decl_specifier_seq ||
           N->symbol() == (SymbolID)Symbol::type_specifier_seq ||
           N->symbol() == (SymbolID)Symbol::defining_type_specifier_seq ||
           N->symbol() == (SymbolID)Symbol::decl_specifier ||
           N->symbol() == (SymbolID)Symbol::type_specifier ||
           N->symbol() == (SymbolID)Symbol::defining_type_specifier ||
           N->symbol() == (SymbolID)Symbol::simple_type_specifier);
    if (N->kind() == ForestNode::Opaque)
      return false; // conservative
    if (N->kind() == ForestNode::Ambiguous)
      return llvm::all_of(N->alternatives(), hasExclusiveType); // conservative
    // All supported symbols are nonterminals.
    assert(N->kind() == ForestNode::Sequence);
    switch (N->rule()) {
      // seq := element seq: check element then continue into seq
      case (RuleID)Rule::decl_specifier_seq_0decl_specifier_1decl_specifier_seq:
      case (RuleID)Rule::defining_type_specifier_seq_0defining_type_specifier_1defining_type_specifier_seq:
      case (RuleID)Rule::type_specifier_seq_0type_specifier_1type_specifier_seq:
        if (hasExclusiveType(N->children()[0]))
          return true;
        N = N->children()[1];
        continue;
      // seq := element: continue into element
      case (RuleID)Rule::decl_specifier_seq_0decl_specifier:
      case (RuleID)Rule::type_specifier_seq_0type_specifier:
      case (RuleID)Rule::defining_type_specifier_seq_0defining_type_specifier:
        N = N->children()[0];
        continue;

      // defining-type-specifier
      case (RuleID)Rule::defining_type_specifier_0type_specifier:
        N = N->children()[0];
        continue;
      case (RuleID)Rule::defining_type_specifier_0class_specifier:
      case (RuleID)Rule::defining_type_specifier_0enum_specifier:
        return true;

      // decl-specifier
      case (RuleID)Rule::decl_specifier_0defining_type_specifier:
        N = N->children()[0];
        continue;
      case (RuleID)Rule::decl_specifier_0consteval:
      case (RuleID)Rule::decl_specifier_0constexpr:
      case (RuleID)Rule::decl_specifier_0constinit:
      case (RuleID)Rule::decl_specifier_0inline:
      case (RuleID)Rule::decl_specifier_0friend:
      case (RuleID)Rule::decl_specifier_0storage_class_specifier:
      case (RuleID)Rule::decl_specifier_0typedef:
      case (RuleID)Rule::decl_specifier_0function_specifier:
        return false;

      // type-specifier
      case (RuleID)Rule::type_specifier_0elaborated_type_specifier:
      case (RuleID)Rule::type_specifier_0typename_specifier:
        return true;
      case (RuleID)Rule::type_specifier_0simple_type_specifier:
        N = N->children()[0];
        continue;
      case (RuleID)Rule::type_specifier_0cv_qualifier:
        return false;

      // simple-type-specifier
      case (RuleID)Rule::simple_type_specifier_0type_name:
      case (RuleID)Rule::simple_type_specifier_0template_name:
      case (RuleID)Rule::simple_type_specifier_0builtin_type:
      case (RuleID)Rule::simple_type_specifier_0nested_name_specifier_1template_2simple_template_id:
      case (RuleID)Rule::simple_type_specifier_0nested_name_specifier_1template_name:
      case (RuleID)Rule::simple_type_specifier_0nested_name_specifier_1type_name:
      case (RuleID)Rule::simple_type_specifier_0decltype_specifier:
      case (RuleID)Rule::simple_type_specifier_0placeholder_type_specifier:
        return true;
      case (RuleID)Rule::simple_type_specifier_0long:
      case (RuleID)Rule::simple_type_specifier_0short:
      case (RuleID)Rule::simple_type_specifier_0signed:
      case (RuleID)Rule::simple_type_specifier_0unsigned:
        return false;

      default:
        LLVM_DEBUG(llvm::errs() << "Unhandled rule " << N->rule() << "\n");
        llvm_unreachable("hasExclusiveType be exhaustive!");
    }
  }
}

llvm::DenseMap<ExtensionID, RuleGuard> buildGuards() {
#define GUARD(cond)                                                            \
  {                                                                            \
    [](const GuardParams &P) { return cond; }                                  \
  }
#define TOKEN_GUARD(kind, cond)                                                \
  [](const GuardParams& P) {                                                   \
    const Token &Tok = onlyToken(tok::kind, P.RHS, P.Tokens);                  \
    return cond;                                                               \
  }
#define SYMBOL_GUARD(kind, cond)                                               \
  [](const GuardParams& P) {                                                   \
    const ForestNode &N = onlySymbol((SymbolID)Symbol::kind, P.RHS, P.Tokens); \
    return cond;                                                               \
  }
  return {
      {(RuleID)Rule::function_declarator_0declarator,
       SYMBOL_GUARD(declarator, isFunctionDeclarator(&N))},
      {(RuleID)Rule::non_function_declarator_0declarator,
       SYMBOL_GUARD(declarator, !isFunctionDeclarator(&N))},

      // A {decl,type,defining-type}-specifier-sequence cannot have multiple
      // "exclusive" types (like class names): a value has only one type.
      {(RuleID)Rule::
           defining_type_specifier_seq_0defining_type_specifier_1defining_type_specifier_seq,
       GUARD(!hasExclusiveType(P.RHS[0]) || !hasExclusiveType(P.RHS[1]))},
      {(RuleID)Rule::type_specifier_seq_0type_specifier_1type_specifier_seq,
       GUARD(!hasExclusiveType(P.RHS[0]) || !hasExclusiveType(P.RHS[1]))},
      {(RuleID)Rule::decl_specifier_seq_0decl_specifier_1decl_specifier_seq,
       GUARD(!hasExclusiveType(P.RHS[0]) || !hasExclusiveType(P.RHS[1]))},

      {(RuleID)Rule::contextual_override_0identifier,
       TOKEN_GUARD(identifier, Tok.text() == "override")},
      {(RuleID)Rule::contextual_final_0identifier,
       TOKEN_GUARD(identifier, Tok.text() == "final")},
      {(RuleID)Rule::import_keyword_0identifier,
       TOKEN_GUARD(identifier, Tok.text() == "import")},
      {(RuleID)Rule::export_keyword_0identifier,
       TOKEN_GUARD(identifier, Tok.text() == "export")},
      {(RuleID)Rule::module_keyword_0identifier,
       TOKEN_GUARD(identifier, Tok.text() == "module")},
      {(RuleID)Rule::contextual_zero_0numeric_constant,
       TOKEN_GUARD(numeric_constant, Tok.text() == "0")},

      {(RuleID)Rule::
           selection_statement_0if_1l_paren_2condition_3r_paren_4statement,
       guardNextTokenNotElse},
      {(RuleID)Rule::
           selection_statement_0if_1constexpr_2l_paren_3condition_4r_paren_5statement,
       guardNextTokenNotElse},

      // The grammar distinguishes (only) user-defined vs plain string literals,
      // where the clang lexer distinguishes (only) encoding types.
      {(RuleID)Rule::user_defined_string_literal_chunk_0string_literal,
       TOKEN_GUARD(string_literal, isStringUserDefined(Tok))},
      {(RuleID)Rule::user_defined_string_literal_chunk_0utf8_string_literal,
       TOKEN_GUARD(utf8_string_literal, isStringUserDefined(Tok))},
      {(RuleID)Rule::user_defined_string_literal_chunk_0utf16_string_literal,
       TOKEN_GUARD(utf16_string_literal, isStringUserDefined(Tok))},
      {(RuleID)Rule::user_defined_string_literal_chunk_0utf32_string_literal,
       TOKEN_GUARD(utf32_string_literal, isStringUserDefined(Tok))},
      {(RuleID)Rule::user_defined_string_literal_chunk_0wide_string_literal,
       TOKEN_GUARD(wide_string_literal, isStringUserDefined(Tok))},
      {(RuleID)Rule::string_literal_chunk_0string_literal,
       TOKEN_GUARD(string_literal, !isStringUserDefined(Tok))},
      {(RuleID)Rule::string_literal_chunk_0utf8_string_literal,
       TOKEN_GUARD(utf8_string_literal, !isStringUserDefined(Tok))},
      {(RuleID)Rule::string_literal_chunk_0utf16_string_literal,
       TOKEN_GUARD(utf16_string_literal, !isStringUserDefined(Tok))},
      {(RuleID)Rule::string_literal_chunk_0utf32_string_literal,
       TOKEN_GUARD(utf32_string_literal, !isStringUserDefined(Tok))},
      {(RuleID)Rule::string_literal_chunk_0wide_string_literal,
       TOKEN_GUARD(wide_string_literal, !isStringUserDefined(Tok))},
      // And the same for chars.
      {(RuleID)Rule::user_defined_character_literal_0char_constant,
       TOKEN_GUARD(char_constant, isCharUserDefined(Tok))},
      {(RuleID)Rule::user_defined_character_literal_0utf8_char_constant,
       TOKEN_GUARD(utf8_char_constant, isCharUserDefined(Tok))},
      {(RuleID)Rule::user_defined_character_literal_0utf16_char_constant,
       TOKEN_GUARD(utf16_char_constant, isCharUserDefined(Tok))},
      {(RuleID)Rule::user_defined_character_literal_0utf32_char_constant,
       TOKEN_GUARD(utf32_char_constant, isCharUserDefined(Tok))},
      {(RuleID)Rule::user_defined_character_literal_0wide_char_constant,
       TOKEN_GUARD(wide_char_constant, isCharUserDefined(Tok))},
      {(RuleID)Rule::character_literal_0char_constant,
       TOKEN_GUARD(char_constant, !isCharUserDefined(Tok))},
      {(RuleID)Rule::character_literal_0utf8_char_constant,
       TOKEN_GUARD(utf8_char_constant, !isCharUserDefined(Tok))},
      {(RuleID)Rule::character_literal_0utf16_char_constant,
       TOKEN_GUARD(utf16_char_constant, !isCharUserDefined(Tok))},
      {(RuleID)Rule::character_literal_0utf32_char_constant,
       TOKEN_GUARD(utf32_char_constant, !isCharUserDefined(Tok))},
      {(RuleID)Rule::character_literal_0wide_char_constant,
       TOKEN_GUARD(wide_char_constant, !isCharUserDefined(Tok))},
      // clang just has one NUMERIC_CONSTANT token for {ud,plain}x{float,int}
      {(RuleID)Rule::user_defined_integer_literal_0numeric_constant,
       TOKEN_GUARD(numeric_constant, numKind(Tok) == (Integer | UserDefined))},
      {(RuleID)Rule::user_defined_floating_point_literal_0numeric_constant,
       TOKEN_GUARD(numeric_constant, numKind(Tok) == (Floating | UserDefined))},
      {(RuleID)Rule::integer_literal_0numeric_constant,
       TOKEN_GUARD(numeric_constant, numKind(Tok) == Integer)},
      {(RuleID)Rule::floating_point_literal_0numeric_constant,
       TOKEN_GUARD(numeric_constant, numKind(Tok) == Floating)},
  };
#undef TOKEN_GUARD
#undef SYMBOL_GUARD
}

Token::Index recoverBrackets(Token::Index Begin, const TokenStream &Tokens) {
  assert(Begin > 0);
  const Token &Left = Tokens.tokens()[Begin - 1];
  assert(Left.Kind == tok::l_brace || Left.Kind == tok::l_paren ||
         Left.Kind == tok::l_square);
  if (const Token *Right = Left.pair()) {
    assert(Tokens.index(*Right) > Begin - 1);
    return Tokens.index(*Right);
  }
  return Token::Invalid;
}

llvm::DenseMap<ExtensionID, RecoveryStrategy> buildRecoveryStrategies() {
  return {
      {(ExtensionID)Extension::Brackets, recoverBrackets},
  };
}

} // namespace

const Language &getLanguage() {
  static const auto &CXXLanguage = []() -> const Language & {
    std::vector<std::string> Diags;
    auto G = Grammar::parseBNF(CXXBNF, Diags);
    assert(Diags.empty());
    LRTable Table = LRTable::buildSLR(G);
    const Language *PL = new Language{
        std::move(G),
        std::move(Table),
        buildGuards(),
        buildRecoveryStrategies(),
    };
    return *PL;
  }();
  return CXXLanguage;
}

} // namespace cxx
} // namespace pseudo
} // namespace clang