File: GrammarBNF.cpp

package info (click to toggle)
llvm-toolchain-15 1%3A15.0.6-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,554,644 kB
  • sloc: cpp: 5,922,452; ansic: 1,012,136; asm: 674,362; python: 191,568; objc: 73,855; f90: 42,327; lisp: 31,913; pascal: 11,973; javascript: 10,144; sh: 9,421; perl: 7,447; ml: 5,527; awk: 3,523; makefile: 2,520; xml: 885; cs: 573; fortran: 567
file content (357 lines) | stat: -rw-r--r-- 13,174 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
//===--- GrammarBNF.cpp - build grammar from BNF files  ----------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "clang-pseudo/grammar/Grammar.h"
#include "clang/Basic/TokenKinds.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/FormatVariadic.h"
#include <memory>
#include <utility>

namespace clang {
namespace pseudo {

namespace {
static const llvm::StringRef OptSuffix = "_opt";
static const llvm::StringRef StartSymbol = "_";

// Builds grammar from BNF files.
class GrammarBuilder {
public:
  GrammarBuilder(std::vector<std::string> &Diagnostics)
      : Diagnostics(Diagnostics) {}

  Grammar build(llvm::StringRef BNF) {
    auto Specs = eliminateOptional(parse(BNF));

    assert(llvm::all_of(Specs,
                        [](const RuleSpec &R) {
                          if (R.Target.endswith(OptSuffix))
                            return false;
                          return llvm::all_of(
                              R.Sequence, [](const RuleSpec::Element &E) {
                                return !E.Symbol.endswith(OptSuffix);
                              });
                        }) &&
           "Optional symbols should be eliminated!");

    auto T = std::make_unique<GrammarTable>();

    // Assemble the name->ID and ID->nonterminal name maps.
    llvm::DenseSet<llvm::StringRef> UniqueNonterminals;
    llvm::DenseMap<llvm::StringRef, SymbolID> SymbolIds;

    llvm::DenseSet<llvm::StringRef> UniqueAttributeValues;

    for (uint16_t I = 0; I < NumTerminals; ++I)
      SymbolIds.try_emplace(T->Terminals[I], tokenSymbol(tok::TokenKind(I)));
    auto Consider = [&](llvm::StringRef Name) {
      if (!SymbolIds.count(Name))
        UniqueNonterminals.insert(Name);
    };
    for (const auto &Spec : Specs) {
      Consider(Spec.Target);
      for (const RuleSpec::Element &Elt : Spec.Sequence) {
        Consider(Elt.Symbol);
        for (const auto& KV : Elt.Attributes)
           UniqueAttributeValues.insert(KV.second);
      }
    }
    llvm::for_each(UniqueNonterminals, [&T](llvm::StringRef Name) {
      T->Nonterminals.emplace_back();
      T->Nonterminals.back().Name = Name.str();
    });
    assert(T->Nonterminals.size() < (1 << (SymbolBits - 1)) &&
           "Too many nonterminals to fit in SymbolID bits!");
    llvm::sort(T->Nonterminals, [](const GrammarTable::Nonterminal &L,
                                   const GrammarTable::Nonterminal &R) {
      return L.Name < R.Name;
    });
    // Add an empty string for the corresponding sentinel unset attribute.
    T->AttributeValues.push_back("");
    UniqueAttributeValues.erase("");
    llvm::for_each(UniqueAttributeValues, [&T](llvm::StringRef Name) {
      T->AttributeValues.emplace_back();
      T->AttributeValues.back() = Name.str();
    });
    llvm::sort(T->AttributeValues);
    assert(T->AttributeValues.front() == "");

    // Build name -> ID maps for nonterminals.
    for (SymbolID SID = 0; SID < T->Nonterminals.size(); ++SID)
      SymbolIds.try_emplace(T->Nonterminals[SID].Name, SID);

    // Convert the rules.
    T->Rules.reserve(Specs.size());
    std::vector<SymbolID> Symbols;
    auto Lookup = [SymbolIds](llvm::StringRef Name) {
      auto It = SymbolIds.find(Name);
      assert(It != SymbolIds.end() && "Didn't find the symbol in SymbolIds!");
      return It->second;
    };
    for (const auto &Spec : Specs) {
      assert(Spec.Sequence.size() <= Rule::MaxElements);
      Symbols.clear();
      for (const RuleSpec::Element &Elt : Spec.Sequence)
        Symbols.push_back(Lookup(Elt.Symbol));
      T->Rules.push_back(Rule(Lookup(Spec.Target), Symbols));
      applyAttributes(Spec, *T, T->Rules.back());
    }

    assert(T->Rules.size() < (1 << RuleBits) &&
           "Too many rules to fit in RuleID bits!");
    const auto &SymbolOrder = getTopologicalOrder(T.get());
    llvm::stable_sort(
        T->Rules, [&SymbolOrder](const Rule &Left, const Rule &Right) {
          // Sorted by the topological order of the nonterminal Target.
          return SymbolOrder[Left.Target] < SymbolOrder[Right.Target];
        });
    for (SymbolID SID = 0; SID < T->Nonterminals.size(); ++SID) {
      auto StartIt = llvm::partition_point(T->Rules, [&](const Rule &R) {
        return SymbolOrder[R.Target] < SymbolOrder[SID];
      });
      RuleID Start = StartIt - T->Rules.begin();
      RuleID End = Start;
      while (End < T->Rules.size() && T->Rules[End].Target == SID)
        ++End;
      T->Nonterminals[SID].RuleRange = {Start, End};
    }
    Grammar G(std::move(T));
    diagnoseGrammar(G);
    return G;
  }

  // Gets topological order for nonterminal symbols.
  //
  // The topological order is defined as: if a *single* nonterminal A produces
  // (or transitively) a nonterminal B (that said, there is a production rule
  // B := A), then A is less than B.
  //
  // It returns the sort key for each symbol, the array is indexed by SymbolID.
  std::vector<unsigned> getTopologicalOrder(GrammarTable *T) {
    std::vector<std::pair<SymbolID, SymbolID>> Dependencies;
    for (const auto &Rule : T->Rules) {
      // if A := B, A depends on B.
      if (Rule.Size == 1 && pseudo::isNonterminal(Rule.Sequence[0]))
        Dependencies.push_back({Rule.Target, Rule.Sequence[0]});
    }
    llvm::sort(Dependencies);
    std::vector<SymbolID> Order;
    // Each nonterminal state flows: NotVisited -> Visiting -> Visited.
    enum State {
      NotVisited,
      Visiting,
      Visited,
    };
    std::vector<State> VisitStates(T->Nonterminals.size(), NotVisited);
    std::function<void(SymbolID)> DFS = [&](SymbolID SID) -> void {
      if (VisitStates[SID] == Visited)
        return;
      if (VisitStates[SID] == Visiting) {
        Diagnostics.push_back(
            llvm::formatv("The grammar contains a cycle involving symbol {0}",
                          T->Nonterminals[SID].Name));
        return;
      }
      VisitStates[SID] = Visiting;
      for (auto It = llvm::lower_bound(Dependencies,
                                       std::pair<SymbolID, SymbolID>{SID, 0});
           It != Dependencies.end() && It->first == SID; ++It)
        DFS(It->second);
      VisitStates[SID] = Visited;
      Order.push_back(SID);
    };
    for (SymbolID ID = 0; ID != T->Nonterminals.size(); ++ID)
      DFS(ID);
    std::vector<unsigned> Result(T->Nonterminals.size(), 0);
    for (size_t I = 0; I < Order.size(); ++I)
      Result[Order[I]] = I;
    return Result;
  }

private:
  // Text representation of a BNF grammar rule.
  struct RuleSpec {
    llvm::StringRef Target;
    struct Element {
      llvm::StringRef Symbol; // Name of the symbol
      // Attributes that are associated to the sequence symbol or rule.
      std::vector<std::pair<llvm::StringRef/*Key*/, llvm::StringRef/*Value*/>>
          Attributes;
    };
    std::vector<Element> Sequence;

    std::string toString() const {
      std::vector<llvm::StringRef> Body;
      for (const auto &E : Sequence)
        Body.push_back(E.Symbol);
      return llvm::formatv("{0} := {1}", Target, llvm::join(Body, " "));
    }
  };

  std::vector<RuleSpec> parse(llvm::StringRef Lines) {
    std::vector<RuleSpec> Specs;
    for (llvm::StringRef Line : llvm::split(Lines, '\n')) {
      Line = Line.trim();
      // Strip anything coming after the '#' (comment).
      Line = Line.take_while([](char C) { return C != '#'; });
      if (Line.empty())
        continue;
      RuleSpec Rule;
      if (parseLine(Line, Rule))
        Specs.push_back(std::move(Rule));
    }
    return Specs;
  }

  bool parseLine(llvm::StringRef Line, RuleSpec &Out) {
    auto Parts = Line.split(":=");
    if (Parts.first == Line) { // no separator in Line
      Diagnostics.push_back(
          llvm::formatv("Failed to parse '{0}': no separator :=", Line).str());
      return false;
    }

    Out.Target = Parts.first.trim();
    Out.Sequence.clear();
    for (llvm::StringRef Chunk : llvm::split(Parts.second, ' ')) {
      Chunk = Chunk.trim();
      if (Chunk.empty())
        continue; // skip empty
      if (Chunk.startswith("[") && Chunk.endswith("]")) {
        if (Out.Sequence.empty())
          continue;

        parseAttributes(Chunk, Out.Sequence.back().Attributes);
        continue;
      }

      Out.Sequence.push_back({Chunk, /*Attributes=*/{}});
    }
    return true;
  }

  bool parseAttributes(
      llvm::StringRef Content,
      std::vector<std::pair<llvm::StringRef, llvm::StringRef>> &Out) {
    assert(Content.startswith("[") && Content.endswith("]"));
    auto KV = Content.drop_front().drop_back().split('=');
    Out.push_back({KV.first, KV.second.trim()});

    return true;
  }
  // Apply the parsed extensions (stored in RuleSpec) to the grammar Rule.
  void applyAttributes(const RuleSpec& Spec, const GrammarTable& T, Rule& R) {
    auto LookupExtensionID = [&T](llvm::StringRef Name) {
      const auto It = llvm::partition_point(
          T.AttributeValues, [&](llvm::StringRef X) { return X < Name; });
      assert(It != T.AttributeValues.end() && *It == Name &&
             "Didn't find the attribute in AttrValues!");
      return It - T.AttributeValues.begin();
    };
    for (unsigned I = 0; I < Spec.Sequence.size(); ++I) {
      for (const auto &KV : Spec.Sequence[I].Attributes) {
        if (KV.first == "guard") {
          R.Guarded = true;
        } else if (KV.first == "recover") {
          R.Recovery = LookupExtensionID(KV.second);
          R.RecoveryIndex = I;
        } else {
          Diagnostics.push_back(
              llvm::formatv("Unknown attribute '{0}'", KV.first).str());
        }
      }
    }
  }

  // Inlines all _opt symbols.
  // For example, a rule E := id +_opt id, after elimination, we have two
  // equivalent rules:
  //   1) E := id + id
  //   2) E := id id
  std::vector<RuleSpec> eliminateOptional(llvm::ArrayRef<RuleSpec> Input) {
    std::vector<RuleSpec> Results;
    std::vector<RuleSpec::Element> Storage;
    for (const auto &R : Input) {
      eliminateOptionalTail(
          R.Sequence, Storage, [&Results, &Storage, &R, this]() {
            if (Storage.empty()) {
              Diagnostics.push_back(
                  llvm::formatv("Rule '{0}' has a nullable RHS", R.toString()));
              return;
            }
            Results.push_back({R.Target, Storage});
          });
      assert(Storage.empty());
    }
    return Results;
  }
  void eliminateOptionalTail(llvm::ArrayRef<RuleSpec::Element> Elements,
                             std::vector<RuleSpec::Element> &Result,
                             llvm::function_ref<void()> CB) {
    if (Elements.empty())
      return CB();
    auto Front = Elements.front();
    if (!Front.Symbol.endswith(OptSuffix)) {
      Result.push_back(std::move(Front));
      eliminateOptionalTail(Elements.drop_front(1), Result, CB);
      Result.pop_back();
      return;
    }
    // Enumerate two options: skip the opt symbol, or inline the symbol.
    eliminateOptionalTail(Elements.drop_front(1), Result, CB); // skip
    Front.Symbol = Front.Symbol.drop_back(OptSuffix.size());   // drop "_opt"
    Result.push_back(std::move(Front));
    eliminateOptionalTail(Elements.drop_front(1), Result, CB);
    Result.pop_back();
  }

  // Diagnoses the grammar and emit warnings if any.
  void diagnoseGrammar(const Grammar &G) {
    const auto &T = G.table();
    for (SymbolID SID = 0; SID < T.Nonterminals.size(); ++SID) {
      auto Range = T.Nonterminals[SID].RuleRange;
      if (Range.Start == Range.End)
        Diagnostics.push_back(
            llvm::formatv("No rules for nonterminal: {0}", G.symbolName(SID)));
      llvm::StringRef NameRef = T.Nonterminals[SID].Name;
      if (llvm::all_of(NameRef, llvm::isAlpha) && NameRef.upper() == NameRef) {
        Diagnostics.push_back(llvm::formatv(
            "Token-like name {0} is used as a nonterminal", G.symbolName(SID)));
      }
    }
    for (RuleID RID = 0; RID + 1u < T.Rules.size(); ++RID) {
      if (T.Rules[RID] == T.Rules[RID + 1])
        Diagnostics.push_back(
            llvm::formatv("Duplicate rule: `{0}`", G.dumpRule(RID)));
    }
    // symbol-id -> used counts
    std::vector<unsigned> UseCounts(T.Nonterminals.size(), 0);
    for (const Rule &R : T.Rules)
      for (SymbolID SID : R.seq())
        if (isNonterminal(SID))
          ++UseCounts[SID];
    for (SymbolID SID = 0; SID < UseCounts.size(); ++SID)
      if (UseCounts[SID] == 0 && T.Nonterminals[SID].Name != StartSymbol)
        Diagnostics.push_back(
            llvm::formatv("Nonterminal never used: {0}", G.symbolName(SID)));
  }
  std::vector<std::string> &Diagnostics;
};
} // namespace

Grammar Grammar::parseBNF(llvm::StringRef BNF,
                          std::vector<std::string> &Diagnostics) {
  Diagnostics.clear();
  return GrammarBuilder(Diagnostics).build(BNF);
}

} // namespace pseudo
} // namespace clang