1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
//===- TypeErasedDataflowAnalysis.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines type-erased base types and functions for building dataflow
// analyses that run over Control-Flow Graphs (CFGs).
//
//===----------------------------------------------------------------------===//
#include <algorithm>
#include <memory>
#include <system_error>
#include <utility>
#include <vector>
#include "clang/AST/DeclCXX.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Analysis/Analyses/PostOrderCFGView.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
#include "clang/Analysis/FlowSensitive/Transfer.h"
#include "clang/Analysis/FlowSensitive/TypeErasedDataflowAnalysis.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
namespace clang {
namespace dataflow {
class StmtToEnvMapImpl : public StmtToEnvMap {
public:
StmtToEnvMapImpl(
const ControlFlowContext &CFCtx,
llvm::ArrayRef<llvm::Optional<TypeErasedDataflowAnalysisState>>
BlockToState)
: CFCtx(CFCtx), BlockToState(BlockToState) {}
const Environment *getEnvironment(const Stmt &S) const override {
auto BlockIt = CFCtx.getStmtToBlock().find(&ignoreCFGOmittedNodes(S));
assert(BlockIt != CFCtx.getStmtToBlock().end());
const auto &State = BlockToState[BlockIt->getSecond()->getBlockID()];
assert(State);
return &State.value().Env;
}
private:
const ControlFlowContext &CFCtx;
llvm::ArrayRef<llvm::Optional<TypeErasedDataflowAnalysisState>> BlockToState;
};
/// Returns the index of `Block` in the successors of `Pred`.
static int blockIndexInPredecessor(const CFGBlock &Pred,
const CFGBlock &Block) {
auto BlockPos = llvm::find_if(
Pred.succs(), [&Block](const CFGBlock::AdjacentBlock &Succ) {
return Succ && Succ->getBlockID() == Block.getBlockID();
});
return BlockPos - Pred.succ_begin();
}
/// Extends the flow condition of an environment based on a terminator
/// statement.
class TerminatorVisitor : public ConstStmtVisitor<TerminatorVisitor> {
public:
TerminatorVisitor(const StmtToEnvMap &StmtToEnv, Environment &Env,
int BlockSuccIdx, TransferOptions TransferOpts)
: StmtToEnv(StmtToEnv), Env(Env), BlockSuccIdx(BlockSuccIdx),
TransferOpts(TransferOpts) {}
void VisitIfStmt(const IfStmt *S) {
auto *Cond = S->getCond();
assert(Cond != nullptr);
extendFlowCondition(*Cond);
}
void VisitWhileStmt(const WhileStmt *S) {
auto *Cond = S->getCond();
assert(Cond != nullptr);
extendFlowCondition(*Cond);
}
void VisitDoStmt(const DoStmt *S) {
auto *Cond = S->getCond();
assert(Cond != nullptr);
extendFlowCondition(*Cond);
}
void VisitForStmt(const ForStmt *S) {
auto *Cond = S->getCond();
if (Cond != nullptr)
extendFlowCondition(*Cond);
}
void VisitBinaryOperator(const BinaryOperator *S) {
assert(S->getOpcode() == BO_LAnd || S->getOpcode() == BO_LOr);
auto *LHS = S->getLHS();
assert(LHS != nullptr);
extendFlowCondition(*LHS);
}
void VisitConditionalOperator(const ConditionalOperator *S) {
auto *Cond = S->getCond();
assert(Cond != nullptr);
extendFlowCondition(*Cond);
}
private:
void extendFlowCondition(const Expr &Cond) {
// The terminator sub-expression might not be evaluated.
if (Env.getStorageLocation(Cond, SkipPast::None) == nullptr)
transfer(StmtToEnv, Cond, Env, TransferOpts);
// FIXME: The flow condition must be an r-value, so `SkipPast::None` should
// suffice.
auto *Val =
cast_or_null<BoolValue>(Env.getValue(Cond, SkipPast::Reference));
// Value merging depends on flow conditions from different environments
// being mutually exclusive -- that is, they cannot both be true in their
// entirety (even if they may share some clauses). So, we need *some* value
// for the condition expression, even if just an atom.
if (Val == nullptr) {
// FIXME: Consider introducing a helper for this get-or-create pattern.
auto *Loc = Env.getStorageLocation(Cond, SkipPast::None);
if (Loc == nullptr) {
Loc = &Env.createStorageLocation(Cond);
Env.setStorageLocation(Cond, *Loc);
}
Val = &Env.makeAtomicBoolValue();
Env.setValue(*Loc, *Val);
}
// The condition must be inverted for the successor that encompasses the
// "else" branch, if such exists.
if (BlockSuccIdx == 1)
Val = &Env.makeNot(*Val);
Env.addToFlowCondition(*Val);
}
const StmtToEnvMap &StmtToEnv;
Environment &Env;
int BlockSuccIdx;
TransferOptions TransferOpts;
};
/// Computes the input state for a given basic block by joining the output
/// states of its predecessors.
///
/// Requirements:
///
/// All predecessors of `Block` except those with loop back edges must have
/// already been transferred. States in `BlockStates` that are set to
/// `llvm::None` represent basic blocks that are not evaluated yet.
static TypeErasedDataflowAnalysisState computeBlockInputState(
const ControlFlowContext &CFCtx,
std::vector<llvm::Optional<TypeErasedDataflowAnalysisState>> &BlockStates,
const CFGBlock &Block, const Environment &InitEnv,
TypeErasedDataflowAnalysis &Analysis) {
llvm::DenseSet<const CFGBlock *> Preds;
Preds.insert(Block.pred_begin(), Block.pred_end());
if (Block.getTerminator().isTemporaryDtorsBranch()) {
// This handles a special case where the code that produced the CFG includes
// a conditional operator with a branch that constructs a temporary and
// calls a destructor annotated as noreturn. The CFG models this as follows:
//
// B1 (contains the condition of the conditional operator) - succs: B2, B3
// B2 (contains code that does not call a noreturn destructor) - succs: B4
// B3 (contains code that calls a noreturn destructor) - succs: B4
// B4 (has temporary destructor terminator) - succs: B5, B6
// B5 (noreturn block that is associated with the noreturn destructor call)
// B6 (contains code that follows the conditional operator statement)
//
// The first successor (B5 above) of a basic block with a temporary
// destructor terminator (B4 above) is the block that evaluates the
// destructor. If that block has a noreturn element then the predecessor
// block that constructed the temporary object (B3 above) is effectively a
// noreturn block and its state should not be used as input for the state
// of the block that has a temporary destructor terminator (B4 above). This
// holds regardless of which branch of the ternary operator calls the
// noreturn destructor. However, it doesn't cases where a nested ternary
// operator includes a branch that contains a noreturn destructor call.
//
// See `NoreturnDestructorTest` for concrete examples.
if (Block.succ_begin()->getReachableBlock()->hasNoReturnElement()) {
auto StmtBlock = CFCtx.getStmtToBlock().find(Block.getTerminatorStmt());
assert(StmtBlock != CFCtx.getStmtToBlock().end());
Preds.erase(StmtBlock->getSecond());
}
}
llvm::Optional<TypeErasedDataflowAnalysisState> MaybeState;
bool ApplyBuiltinTransfer = Analysis.applyBuiltinTransfer();
for (const CFGBlock *Pred : Preds) {
// Skip if the `Block` is unreachable or control flow cannot get past it.
if (!Pred || Pred->hasNoReturnElement())
continue;
// Skip if `Pred` was not evaluated yet. This could happen if `Pred` has a
// loop back edge to `Block`.
const llvm::Optional<TypeErasedDataflowAnalysisState> &MaybePredState =
BlockStates[Pred->getBlockID()];
if (!MaybePredState)
continue;
TypeErasedDataflowAnalysisState PredState = MaybePredState.value();
if (ApplyBuiltinTransfer) {
if (const Stmt *PredTerminatorStmt = Pred->getTerminatorStmt()) {
const StmtToEnvMapImpl StmtToEnv(CFCtx, BlockStates);
TerminatorVisitor(StmtToEnv, PredState.Env,
blockIndexInPredecessor(*Pred, Block),
Analysis.builtinTransferOptions())
.Visit(PredTerminatorStmt);
}
}
if (MaybeState) {
Analysis.joinTypeErased(MaybeState->Lattice, PredState.Lattice);
MaybeState->Env.join(PredState.Env, Analysis);
} else {
MaybeState = std::move(PredState);
}
}
if (!MaybeState) {
// FIXME: Consider passing `Block` to `Analysis.typeErasedInitialElement()`
// to enable building analyses like computation of dominators that
// initialize the state of each basic block differently.
MaybeState.emplace(Analysis.typeErasedInitialElement(), InitEnv);
}
return *MaybeState;
}
/// Transfers `State` by evaluating `CfgStmt` in the context of `Analysis`.
/// `HandleTransferredStmt` (if provided) will be applied to `CfgStmt`, after it
/// is evaluated.
static void transferCFGStmt(
const ControlFlowContext &CFCtx,
llvm::ArrayRef<llvm::Optional<TypeErasedDataflowAnalysisState>> BlockStates,
const CFGStmt &CfgStmt, TypeErasedDataflowAnalysis &Analysis,
TypeErasedDataflowAnalysisState &State,
std::function<void(const CFGStmt &,
const TypeErasedDataflowAnalysisState &)>
HandleTransferredStmt) {
const Stmt *S = CfgStmt.getStmt();
assert(S != nullptr);
if (Analysis.applyBuiltinTransfer())
transfer(StmtToEnvMapImpl(CFCtx, BlockStates), *S, State.Env,
Analysis.builtinTransferOptions());
Analysis.transferTypeErased(S, State.Lattice, State.Env);
if (HandleTransferredStmt != nullptr)
HandleTransferredStmt(CfgStmt, State);
}
/// Transfers `State` by evaluating `CfgInit`.
static void transferCFGInitializer(const CFGInitializer &CfgInit,
TypeErasedDataflowAnalysisState &State) {
const auto &ThisLoc = *cast<AggregateStorageLocation>(
State.Env.getThisPointeeStorageLocation());
const CXXCtorInitializer *Initializer = CfgInit.getInitializer();
assert(Initializer != nullptr);
const FieldDecl *Member = Initializer->getMember();
if (Member == nullptr)
// Not a field initializer.
return;
auto *InitStmt = Initializer->getInit();
assert(InitStmt != nullptr);
auto *InitStmtLoc =
State.Env.getStorageLocation(*InitStmt, SkipPast::Reference);
if (InitStmtLoc == nullptr)
return;
auto *InitStmtVal = State.Env.getValue(*InitStmtLoc);
if (InitStmtVal == nullptr)
return;
if (Member->getType()->isReferenceType()) {
auto &MemberLoc = ThisLoc.getChild(*Member);
State.Env.setValue(MemberLoc,
State.Env.takeOwnership(
std::make_unique<ReferenceValue>(*InitStmtLoc)));
} else {
auto &MemberLoc = ThisLoc.getChild(*Member);
State.Env.setValue(MemberLoc, *InitStmtVal);
}
}
TypeErasedDataflowAnalysisState transferBlock(
const ControlFlowContext &CFCtx,
std::vector<llvm::Optional<TypeErasedDataflowAnalysisState>> &BlockStates,
const CFGBlock &Block, const Environment &InitEnv,
TypeErasedDataflowAnalysis &Analysis,
std::function<void(const CFGStmt &,
const TypeErasedDataflowAnalysisState &)>
HandleTransferredStmt) {
TypeErasedDataflowAnalysisState State =
computeBlockInputState(CFCtx, BlockStates, Block, InitEnv, Analysis);
for (const CFGElement &Element : Block) {
switch (Element.getKind()) {
case CFGElement::Statement:
transferCFGStmt(CFCtx, BlockStates, *Element.getAs<CFGStmt>(), Analysis,
State, HandleTransferredStmt);
break;
case CFGElement::Initializer:
if (Analysis.applyBuiltinTransfer())
transferCFGInitializer(*Element.getAs<CFGInitializer>(), State);
break;
default:
// FIXME: Evaluate other kinds of `CFGElement`.
break;
}
}
return State;
}
llvm::Expected<std::vector<llvm::Optional<TypeErasedDataflowAnalysisState>>>
runTypeErasedDataflowAnalysis(
const ControlFlowContext &CFCtx, TypeErasedDataflowAnalysis &Analysis,
const Environment &InitEnv,
std::function<void(const Stmt *, const TypeErasedDataflowAnalysisState &)>
PostVisitStmt) {
PostOrderCFGView POV(&CFCtx.getCFG());
ForwardDataflowWorklist Worklist(CFCtx.getCFG(), &POV);
std::vector<llvm::Optional<TypeErasedDataflowAnalysisState>> BlockStates;
BlockStates.resize(CFCtx.getCFG().size(), llvm::None);
// The entry basic block doesn't contain statements so it can be skipped.
const CFGBlock &Entry = CFCtx.getCFG().getEntry();
BlockStates[Entry.getBlockID()] = {Analysis.typeErasedInitialElement(),
InitEnv};
Worklist.enqueueSuccessors(&Entry);
// Bugs in lattices and transfer functions can prevent the analysis from
// converging. To limit the damage (infinite loops) that these bugs can cause,
// limit the number of iterations.
// FIXME: Consider making the maximum number of iterations configurable.
// FIXME: Consider restricting the number of backedges followed, rather than
// iterations.
// FIXME: Set up statistics (see llvm/ADT/Statistic.h) to count average number
// of iterations, number of functions that time out, etc.
static constexpr uint32_t MaxAverageVisitsPerBlock = 4;
static constexpr uint32_t AbsoluteMaxIterations = 1 << 16;
const uint32_t RelativeMaxIterations =
MaxAverageVisitsPerBlock * BlockStates.size();
const uint32_t MaxIterations =
std::min(RelativeMaxIterations, AbsoluteMaxIterations);
uint32_t Iterations = 0;
while (const CFGBlock *Block = Worklist.dequeue()) {
if (++Iterations > MaxIterations) {
return llvm::createStringError(std::errc::timed_out,
"maximum number of iterations reached");
}
const llvm::Optional<TypeErasedDataflowAnalysisState> &OldBlockState =
BlockStates[Block->getBlockID()];
TypeErasedDataflowAnalysisState NewBlockState =
transferBlock(CFCtx, BlockStates, *Block, InitEnv, Analysis);
if (OldBlockState &&
Analysis.isEqualTypeErased(OldBlockState.value().Lattice,
NewBlockState.Lattice) &&
OldBlockState->Env.equivalentTo(NewBlockState.Env, Analysis)) {
// The state of `Block` didn't change after transfer so there's no need to
// revisit its successors.
continue;
}
BlockStates[Block->getBlockID()] = std::move(NewBlockState);
// Do not add unreachable successor blocks to `Worklist`.
if (Block->hasNoReturnElement())
continue;
Worklist.enqueueSuccessors(Block);
}
// FIXME: Consider evaluating unreachable basic blocks (those that have a
// state set to `llvm::None` at this point) to also analyze dead code.
if (PostVisitStmt) {
for (const CFGBlock *Block : CFCtx.getCFG()) {
// Skip blocks that were not evaluated.
if (!BlockStates[Block->getBlockID()])
continue;
transferBlock(
CFCtx, BlockStates, *Block, InitEnv, Analysis,
[&PostVisitStmt](const clang::CFGStmt &Stmt,
const TypeErasedDataflowAnalysisState &State) {
PostVisitStmt(Stmt.getStmt(), State);
});
}
}
return BlockStates;
}
} // namespace dataflow
} // namespace clang
|