1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
|
//===- WatchedLiteralsSolver.cpp --------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a SAT solver implementation that can be used by dataflow
// analyses.
//
//===----------------------------------------------------------------------===//
#include <cassert>
#include <cstdint>
#include <iterator>
#include <queue>
#include <vector>
#include "clang/Analysis/FlowSensitive/Solver.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
namespace clang {
namespace dataflow {
// `WatchedLiteralsSolver` is an implementation of Algorithm D from Knuth's
// The Art of Computer Programming Volume 4: Satisfiability, Fascicle 6. It is
// based on the backtracking DPLL algorithm [1], keeps references to a single
// "watched" literal per clause, and uses a set of "active" variables to perform
// unit propagation.
//
// The solver expects that its input is a boolean formula in conjunctive normal
// form that consists of clauses of at least one literal. A literal is either a
// boolean variable or its negation. Below we define types, data structures, and
// utilities that are used to represent boolean formulas in conjunctive normal
// form.
//
// [1] https://en.wikipedia.org/wiki/DPLL_algorithm
/// Boolean variables are represented as positive integers.
using Variable = uint32_t;
/// A null boolean variable is used as a placeholder in various data structures
/// and algorithms.
static constexpr Variable NullVar = 0;
/// Literals are represented as positive integers. Specifically, for a boolean
/// variable `V` that is represented as the positive integer `I`, the positive
/// literal `V` is represented as the integer `2*I` and the negative literal
/// `!V` is represented as the integer `2*I+1`.
using Literal = uint32_t;
/// A null literal is used as a placeholder in various data structures and
/// algorithms.
static constexpr Literal NullLit = 0;
/// Returns the positive literal `V`.
static constexpr Literal posLit(Variable V) { return 2 * V; }
/// Returns the negative literal `!V`.
static constexpr Literal negLit(Variable V) { return 2 * V + 1; }
/// Returns the negated literal `!L`.
static constexpr Literal notLit(Literal L) { return L ^ 1; }
/// Returns the variable of `L`.
static constexpr Variable var(Literal L) { return L >> 1; }
/// Clause identifiers are represented as positive integers.
using ClauseID = uint32_t;
/// A null clause identifier is used as a placeholder in various data structures
/// and algorithms.
static constexpr ClauseID NullClause = 0;
/// A boolean formula in conjunctive normal form.
struct BooleanFormula {
/// `LargestVar` is equal to the largest positive integer that represents a
/// variable in the formula.
const Variable LargestVar;
/// Literals of all clauses in the formula.
///
/// The element at index 0 stands for the literal in the null clause. It is
/// set to 0 and isn't used. Literals of clauses in the formula start from the
/// element at index 1.
///
/// For example, for the formula `(L1 v L2) ^ (L2 v L3 v L4)` the elements of
/// `Clauses` will be `[0, L1, L2, L2, L3, L4]`.
std::vector<Literal> Clauses;
/// Start indices of clauses of the formula in `Clauses`.
///
/// The element at index 0 stands for the start index of the null clause. It
/// is set to 0 and isn't used. Start indices of clauses in the formula start
/// from the element at index 1.
///
/// For example, for the formula `(L1 v L2) ^ (L2 v L3 v L4)` the elements of
/// `ClauseStarts` will be `[0, 1, 3]`. Note that the literals of the first
/// clause always start at index 1. The start index for the literals of the
/// second clause depends on the size of the first clause and so on.
std::vector<size_t> ClauseStarts;
/// Maps literals (indices of the vector) to clause identifiers (elements of
/// the vector) that watch the respective literals.
///
/// For a given clause, its watched literal is always its first literal in
/// `Clauses`. This invariant is maintained when watched literals change.
std::vector<ClauseID> WatchedHead;
/// Maps clause identifiers (elements of the vector) to identifiers of other
/// clauses that watch the same literals, forming a set of linked lists.
///
/// The element at index 0 stands for the identifier of the clause that
/// follows the null clause. It is set to 0 and isn't used. Identifiers of
/// clauses in the formula start from the element at index 1.
std::vector<ClauseID> NextWatched;
/// Stores the variable identifier and value location for atomic booleans in
/// the formula.
llvm::DenseMap<Variable, AtomicBoolValue *> Atomics;
explicit BooleanFormula(Variable LargestVar,
llvm::DenseMap<Variable, AtomicBoolValue *> Atomics)
: LargestVar(LargestVar), Atomics(std::move(Atomics)) {
Clauses.push_back(0);
ClauseStarts.push_back(0);
NextWatched.push_back(0);
const size_t NumLiterals = 2 * LargestVar + 1;
WatchedHead.resize(NumLiterals + 1, 0);
}
/// Adds the `L1 v L2 v L3` clause to the formula. If `L2` or `L3` are
/// `NullLit` they are respectively omitted from the clause.
///
/// Requirements:
///
/// `L1` must not be `NullLit`.
///
/// All literals in the input that are not `NullLit` must be distinct.
void addClause(Literal L1, Literal L2 = NullLit, Literal L3 = NullLit) {
// The literals are guaranteed to be distinct from properties of BoolValue
// and the construction in `buildBooleanFormula`.
assert(L1 != NullLit && L1 != L2 && L1 != L3 &&
(L2 != L3 || L2 == NullLit));
const ClauseID C = ClauseStarts.size();
const size_t S = Clauses.size();
ClauseStarts.push_back(S);
Clauses.push_back(L1);
if (L2 != NullLit)
Clauses.push_back(L2);
if (L3 != NullLit)
Clauses.push_back(L3);
// Designate the first literal as the "watched" literal of the clause.
NextWatched.push_back(WatchedHead[L1]);
WatchedHead[L1] = C;
}
/// Returns the number of literals in clause `C`.
size_t clauseSize(ClauseID C) const {
return C == ClauseStarts.size() - 1 ? Clauses.size() - ClauseStarts[C]
: ClauseStarts[C + 1] - ClauseStarts[C];
}
/// Returns the literals of clause `C`.
llvm::ArrayRef<Literal> clauseLiterals(ClauseID C) const {
return llvm::ArrayRef<Literal>(&Clauses[ClauseStarts[C]], clauseSize(C));
}
};
/// Converts the conjunction of `Vals` into a formula in conjunctive normal
/// form where each clause has at least one and at most three literals.
BooleanFormula buildBooleanFormula(const llvm::DenseSet<BoolValue *> &Vals) {
// The general strategy of the algorithm implemented below is to map each
// of the sub-values in `Vals` to a unique variable and use these variables in
// the resulting CNF expression to avoid exponential blow up. The number of
// literals in the resulting formula is guaranteed to be linear in the number
// of sub-values in `Vals`.
// Map each sub-value in `Vals` to a unique variable.
llvm::DenseMap<BoolValue *, Variable> SubValsToVar;
// Store variable identifiers and value location of atomic booleans.
llvm::DenseMap<Variable, AtomicBoolValue *> Atomics;
Variable NextVar = 1;
{
std::queue<BoolValue *> UnprocessedSubVals;
for (BoolValue *Val : Vals)
UnprocessedSubVals.push(Val);
while (!UnprocessedSubVals.empty()) {
Variable Var = NextVar;
BoolValue *Val = UnprocessedSubVals.front();
UnprocessedSubVals.pop();
if (!SubValsToVar.try_emplace(Val, Var).second)
continue;
++NextVar;
// Visit the sub-values of `Val`.
switch (Val->getKind()) {
case Value::Kind::Conjunction: {
auto *C = cast<ConjunctionValue>(Val);
UnprocessedSubVals.push(&C->getLeftSubValue());
UnprocessedSubVals.push(&C->getRightSubValue());
break;
}
case Value::Kind::Disjunction: {
auto *D = cast<DisjunctionValue>(Val);
UnprocessedSubVals.push(&D->getLeftSubValue());
UnprocessedSubVals.push(&D->getRightSubValue());
break;
}
case Value::Kind::Negation: {
auto *N = cast<NegationValue>(Val);
UnprocessedSubVals.push(&N->getSubVal());
break;
}
case Value::Kind::Implication: {
auto *I = cast<ImplicationValue>(Val);
UnprocessedSubVals.push(&I->getLeftSubValue());
UnprocessedSubVals.push(&I->getRightSubValue());
break;
}
case Value::Kind::Biconditional: {
auto *B = cast<BiconditionalValue>(Val);
UnprocessedSubVals.push(&B->getLeftSubValue());
UnprocessedSubVals.push(&B->getRightSubValue());
break;
}
case Value::Kind::AtomicBool: {
Atomics[Var] = cast<AtomicBoolValue>(Val);
break;
}
default:
llvm_unreachable("buildBooleanFormula: unhandled value kind");
}
}
}
auto GetVar = [&SubValsToVar](const BoolValue *Val) {
auto ValIt = SubValsToVar.find(Val);
assert(ValIt != SubValsToVar.end());
return ValIt->second;
};
BooleanFormula Formula(NextVar - 1, std::move(Atomics));
std::vector<bool> ProcessedSubVals(NextVar, false);
// Add a conjunct for each variable that represents a top-level conjunction
// value in `Vals`.
for (BoolValue *Val : Vals)
Formula.addClause(posLit(GetVar(Val)));
// Add conjuncts that represent the mapping between newly-created variables
// and their corresponding sub-values.
std::queue<BoolValue *> UnprocessedSubVals;
for (BoolValue *Val : Vals)
UnprocessedSubVals.push(Val);
while (!UnprocessedSubVals.empty()) {
const BoolValue *Val = UnprocessedSubVals.front();
UnprocessedSubVals.pop();
const Variable Var = GetVar(Val);
if (ProcessedSubVals[Var])
continue;
ProcessedSubVals[Var] = true;
if (auto *C = dyn_cast<ConjunctionValue>(Val)) {
const Variable LeftSubVar = GetVar(&C->getLeftSubValue());
const Variable RightSubVar = GetVar(&C->getRightSubValue());
if (LeftSubVar == RightSubVar) {
// `X <=> (A ^ A)` is equivalent to `(!X v A) ^ (X v !A)` which is
// already in conjunctive normal form. Below we add each of the
// conjuncts of the latter expression to the result.
Formula.addClause(negLit(Var), posLit(LeftSubVar));
Formula.addClause(posLit(Var), negLit(LeftSubVar));
// Visit a sub-value of `Val` (pick any, they are identical).
UnprocessedSubVals.push(&C->getLeftSubValue());
} else {
// `X <=> (A ^ B)` is equivalent to `(!X v A) ^ (!X v B) ^ (X v !A v !B)`
// which is already in conjunctive normal form. Below we add each of the
// conjuncts of the latter expression to the result.
Formula.addClause(negLit(Var), posLit(LeftSubVar));
Formula.addClause(negLit(Var), posLit(RightSubVar));
Formula.addClause(posLit(Var), negLit(LeftSubVar), negLit(RightSubVar));
// Visit the sub-values of `Val`.
UnprocessedSubVals.push(&C->getLeftSubValue());
UnprocessedSubVals.push(&C->getRightSubValue());
}
} else if (auto *D = dyn_cast<DisjunctionValue>(Val)) {
const Variable LeftSubVar = GetVar(&D->getLeftSubValue());
const Variable RightSubVar = GetVar(&D->getRightSubValue());
if (LeftSubVar == RightSubVar) {
// `X <=> (A v A)` is equivalent to `(!X v A) ^ (X v !A)` which is
// already in conjunctive normal form. Below we add each of the
// conjuncts of the latter expression to the result.
Formula.addClause(negLit(Var), posLit(LeftSubVar));
Formula.addClause(posLit(Var), negLit(LeftSubVar));
// Visit a sub-value of `Val` (pick any, they are identical).
UnprocessedSubVals.push(&D->getLeftSubValue());
} else {
// `X <=> (A v B)` is equivalent to `(!X v A v B) ^ (X v !A) ^ (X v !B)`
// which is already in conjunctive normal form. Below we add each of the
// conjuncts of the latter expression to the result.
Formula.addClause(negLit(Var), posLit(LeftSubVar), posLit(RightSubVar));
Formula.addClause(posLit(Var), negLit(LeftSubVar));
Formula.addClause(posLit(Var), negLit(RightSubVar));
// Visit the sub-values of `Val`.
UnprocessedSubVals.push(&D->getLeftSubValue());
UnprocessedSubVals.push(&D->getRightSubValue());
}
} else if (auto *N = dyn_cast<NegationValue>(Val)) {
const Variable SubVar = GetVar(&N->getSubVal());
// `X <=> !Y` is equivalent to `(!X v !Y) ^ (X v Y)` which is already in
// conjunctive normal form. Below we add each of the conjuncts of the
// latter expression to the result.
Formula.addClause(negLit(Var), negLit(SubVar));
Formula.addClause(posLit(Var), posLit(SubVar));
// Visit the sub-values of `Val`.
UnprocessedSubVals.push(&N->getSubVal());
} else if (auto *I = dyn_cast<ImplicationValue>(Val)) {
const Variable LeftSubVar = GetVar(&I->getLeftSubValue());
const Variable RightSubVar = GetVar(&I->getRightSubValue());
// `X <=> (A => B)` is equivalent to
// `(X v A) ^ (X v !B) ^ (!X v !A v B)` which is already in
// conjunctive normal form. Below we add each of the conjuncts of the
// latter expression to the result.
Formula.addClause(posLit(Var), posLit(LeftSubVar));
Formula.addClause(posLit(Var), negLit(RightSubVar));
Formula.addClause(negLit(Var), negLit(LeftSubVar), posLit(RightSubVar));
// Visit the sub-values of `Val`.
UnprocessedSubVals.push(&I->getLeftSubValue());
UnprocessedSubVals.push(&I->getRightSubValue());
} else if (auto *B = dyn_cast<BiconditionalValue>(Val)) {
const Variable LeftSubVar = GetVar(&B->getLeftSubValue());
const Variable RightSubVar = GetVar(&B->getRightSubValue());
if (LeftSubVar == RightSubVar) {
// `X <=> (A <=> A)` is equvalent to `X` which is already in
// conjunctive normal form. Below we add each of the conjuncts of the
// latter expression to the result.
Formula.addClause(posLit(Var));
// No need to visit the sub-values of `Val`.
} else {
// `X <=> (A <=> B)` is equivalent to
// `(X v A v B) ^ (X v !A v !B) ^ (!X v A v !B) ^ (!X v !A v B)` which is
// already in conjunctive normal form. Below we add each of the conjuncts
// of the latter expression to the result.
Formula.addClause(posLit(Var), posLit(LeftSubVar), posLit(RightSubVar));
Formula.addClause(posLit(Var), negLit(LeftSubVar), negLit(RightSubVar));
Formula.addClause(negLit(Var), posLit(LeftSubVar), negLit(RightSubVar));
Formula.addClause(negLit(Var), negLit(LeftSubVar), posLit(RightSubVar));
// Visit the sub-values of `Val`.
UnprocessedSubVals.push(&B->getLeftSubValue());
UnprocessedSubVals.push(&B->getRightSubValue());
}
}
}
return Formula;
}
class WatchedLiteralsSolverImpl {
/// A boolean formula in conjunctive normal form that the solver will attempt
/// to prove satisfiable. The formula will be modified in the process.
BooleanFormula Formula;
/// The search for a satisfying assignment of the variables in `Formula` will
/// proceed in levels, starting from 1 and going up to `Formula.LargestVar`
/// (inclusive). The current level is stored in `Level`. At each level the
/// solver will assign a value to an unassigned variable. If this leads to a
/// consistent partial assignment, `Level` will be incremented. Otherwise, if
/// it results in a conflict, the solver will backtrack by decrementing
/// `Level` until it reaches the most recent level where a decision was made.
size_t Level = 0;
/// Maps levels (indices of the vector) to variables (elements of the vector)
/// that are assigned values at the respective levels.
///
/// The element at index 0 isn't used. Variables start from the element at
/// index 1.
std::vector<Variable> LevelVars;
/// State of the solver at a particular level.
enum class State : uint8_t {
/// Indicates that the solver made a decision.
Decision = 0,
/// Indicates that the solver made a forced move.
Forced = 1,
};
/// State of the solver at a particular level. It keeps track of previous
/// decisions that the solver can refer to when backtracking.
///
/// The element at index 0 isn't used. States start from the element at index
/// 1.
std::vector<State> LevelStates;
enum class Assignment : int8_t {
Unassigned = -1,
AssignedFalse = 0,
AssignedTrue = 1
};
/// Maps variables (indices of the vector) to their assignments (elements of
/// the vector).
///
/// The element at index 0 isn't used. Variable assignments start from the
/// element at index 1.
std::vector<Assignment> VarAssignments;
/// A set of unassigned variables that appear in watched literals in
/// `Formula`. The vector is guaranteed to contain unique elements.
std::vector<Variable> ActiveVars;
public:
explicit WatchedLiteralsSolverImpl(const llvm::DenseSet<BoolValue *> &Vals)
: Formula(buildBooleanFormula(Vals)), LevelVars(Formula.LargestVar + 1),
LevelStates(Formula.LargestVar + 1) {
assert(!Vals.empty());
// Initialize the state at the root level to a decision so that in
// `reverseForcedMoves` we don't have to check that `Level >= 0` on each
// iteration.
LevelStates[0] = State::Decision;
// Initialize all variables as unassigned.
VarAssignments.resize(Formula.LargestVar + 1, Assignment::Unassigned);
// Initialize the active variables.
for (Variable Var = Formula.LargestVar; Var != NullVar; --Var) {
if (isWatched(posLit(Var)) || isWatched(negLit(Var)))
ActiveVars.push_back(Var);
}
}
Solver::Result solve() && {
size_t I = 0;
while (I < ActiveVars.size()) {
// Assert that the following invariants hold:
// 1. All active variables are unassigned.
// 2. All active variables form watched literals.
// 3. Unassigned variables that form watched literals are active.
// FIXME: Consider replacing these with test cases that fail if the any
// of the invariants is broken. That might not be easy due to the
// transformations performed by `buildBooleanFormula`.
assert(activeVarsAreUnassigned());
assert(activeVarsFormWatchedLiterals());
assert(unassignedVarsFormingWatchedLiteralsAreActive());
const Variable ActiveVar = ActiveVars[I];
// Look for unit clauses that contain the active variable.
const bool unitPosLit = watchedByUnitClause(posLit(ActiveVar));
const bool unitNegLit = watchedByUnitClause(negLit(ActiveVar));
if (unitPosLit && unitNegLit) {
// We found a conflict!
// Backtrack and rewind the `Level` until the most recent non-forced
// assignment.
reverseForcedMoves();
// If the root level is reached, then all possible assignments lead to
// a conflict.
if (Level == 0)
return Solver::Result::Unsatisfiable();
// Otherwise, take the other branch at the most recent level where a
// decision was made.
LevelStates[Level] = State::Forced;
const Variable Var = LevelVars[Level];
VarAssignments[Var] = VarAssignments[Var] == Assignment::AssignedTrue
? Assignment::AssignedFalse
: Assignment::AssignedTrue;
updateWatchedLiterals();
} else if (unitPosLit || unitNegLit) {
// We found a unit clause! The value of its unassigned variable is
// forced.
++Level;
LevelVars[Level] = ActiveVar;
LevelStates[Level] = State::Forced;
VarAssignments[ActiveVar] =
unitPosLit ? Assignment::AssignedTrue : Assignment::AssignedFalse;
// Remove the variable that was just assigned from the set of active
// variables.
if (I + 1 < ActiveVars.size()) {
// Replace the variable that was just assigned with the last active
// variable for efficient removal.
ActiveVars[I] = ActiveVars.back();
} else {
// This was the last active variable. Repeat the process from the
// beginning.
I = 0;
}
ActiveVars.pop_back();
updateWatchedLiterals();
} else if (I + 1 == ActiveVars.size()) {
// There are no remaining unit clauses in the formula! Make a decision
// for one of the active variables at the current level.
++Level;
LevelVars[Level] = ActiveVar;
LevelStates[Level] = State::Decision;
VarAssignments[ActiveVar] = decideAssignment(ActiveVar);
// Remove the variable that was just assigned from the set of active
// variables.
ActiveVars.pop_back();
updateWatchedLiterals();
// This was the last active variable. Repeat the process from the
// beginning.
I = 0;
} else {
++I;
}
}
return Solver::Result::Satisfiable(buildSolution());
}
private:
/// Returns a satisfying truth assignment to the atomic values in the boolean
/// formula.
llvm::DenseMap<AtomicBoolValue *, Solver::Result::Assignment>
buildSolution() {
llvm::DenseMap<AtomicBoolValue *, Solver::Result::Assignment> Solution;
for (auto &Atomic : Formula.Atomics) {
// A variable may have a definite true/false assignment, or it may be
// unassigned indicating its truth value does not affect the result of
// the formula. Unassigned variables are assigned to true as a default.
Solution[Atomic.second] =
VarAssignments[Atomic.first] == Assignment::AssignedFalse
? Solver::Result::Assignment::AssignedFalse
: Solver::Result::Assignment::AssignedTrue;
}
return Solution;
}
/// Reverses forced moves until the most recent level where a decision was
/// made on the assignment of a variable.
void reverseForcedMoves() {
for (; LevelStates[Level] == State::Forced; --Level) {
const Variable Var = LevelVars[Level];
VarAssignments[Var] = Assignment::Unassigned;
// If the variable that we pass through is watched then we add it to the
// active variables.
if (isWatched(posLit(Var)) || isWatched(negLit(Var)))
ActiveVars.push_back(Var);
}
}
/// Updates watched literals that are affected by a variable assignment.
void updateWatchedLiterals() {
const Variable Var = LevelVars[Level];
// Update the watched literals of clauses that currently watch the literal
// that falsifies `Var`.
const Literal FalseLit = VarAssignments[Var] == Assignment::AssignedTrue
? negLit(Var)
: posLit(Var);
ClauseID FalseLitWatcher = Formula.WatchedHead[FalseLit];
Formula.WatchedHead[FalseLit] = NullClause;
while (FalseLitWatcher != NullClause) {
const ClauseID NextFalseLitWatcher = Formula.NextWatched[FalseLitWatcher];
// Pick the first non-false literal as the new watched literal.
const size_t FalseLitWatcherStart = Formula.ClauseStarts[FalseLitWatcher];
size_t NewWatchedLitIdx = FalseLitWatcherStart + 1;
while (isCurrentlyFalse(Formula.Clauses[NewWatchedLitIdx]))
++NewWatchedLitIdx;
const Literal NewWatchedLit = Formula.Clauses[NewWatchedLitIdx];
const Variable NewWatchedLitVar = var(NewWatchedLit);
// Swap the old watched literal for the new one in `FalseLitWatcher` to
// maintain the invariant that the watched literal is at the beginning of
// the clause.
Formula.Clauses[NewWatchedLitIdx] = FalseLit;
Formula.Clauses[FalseLitWatcherStart] = NewWatchedLit;
// If the new watched literal isn't watched by any other clause and its
// variable isn't assigned we need to add it to the active variables.
if (!isWatched(NewWatchedLit) && !isWatched(notLit(NewWatchedLit)) &&
VarAssignments[NewWatchedLitVar] == Assignment::Unassigned)
ActiveVars.push_back(NewWatchedLitVar);
Formula.NextWatched[FalseLitWatcher] = Formula.WatchedHead[NewWatchedLit];
Formula.WatchedHead[NewWatchedLit] = FalseLitWatcher;
// Go to the next clause that watches `FalseLit`.
FalseLitWatcher = NextFalseLitWatcher;
}
}
/// Returns true if and only if one of the clauses that watch `Lit` is a unit
/// clause.
bool watchedByUnitClause(Literal Lit) const {
for (ClauseID LitWatcher = Formula.WatchedHead[Lit];
LitWatcher != NullClause;
LitWatcher = Formula.NextWatched[LitWatcher]) {
llvm::ArrayRef<Literal> Clause = Formula.clauseLiterals(LitWatcher);
// Assert the invariant that the watched literal is always the first one
// in the clause.
// FIXME: Consider replacing this with a test case that fails if the
// invariant is broken by `updateWatchedLiterals`. That might not be easy
// due to the transformations performed by `buildBooleanFormula`.
assert(Clause.front() == Lit);
if (isUnit(Clause))
return true;
}
return false;
}
/// Returns true if and only if `Clause` is a unit clause.
bool isUnit(llvm::ArrayRef<Literal> Clause) const {
return llvm::all_of(Clause.drop_front(),
[this](Literal L) { return isCurrentlyFalse(L); });
}
/// Returns true if and only if `Lit` evaluates to `false` in the current
/// partial assignment.
bool isCurrentlyFalse(Literal Lit) const {
return static_cast<int8_t>(VarAssignments[var(Lit)]) ==
static_cast<int8_t>(Lit & 1);
}
/// Returns true if and only if `Lit` is watched by a clause in `Formula`.
bool isWatched(Literal Lit) const {
return Formula.WatchedHead[Lit] != NullClause;
}
/// Returns an assignment for an unassigned variable.
Assignment decideAssignment(Variable Var) const {
return !isWatched(posLit(Var)) || isWatched(negLit(Var))
? Assignment::AssignedFalse
: Assignment::AssignedTrue;
}
/// Returns a set of all watched literals.
llvm::DenseSet<Literal> watchedLiterals() const {
llvm::DenseSet<Literal> WatchedLiterals;
for (Literal Lit = 2; Lit < Formula.WatchedHead.size(); Lit++) {
if (Formula.WatchedHead[Lit] == NullClause)
continue;
WatchedLiterals.insert(Lit);
}
return WatchedLiterals;
}
/// Returns true if and only if all active variables are unassigned.
bool activeVarsAreUnassigned() const {
return llvm::all_of(ActiveVars, [this](Variable Var) {
return VarAssignments[Var] == Assignment::Unassigned;
});
}
/// Returns true if and only if all active variables form watched literals.
bool activeVarsFormWatchedLiterals() const {
const llvm::DenseSet<Literal> WatchedLiterals = watchedLiterals();
return llvm::all_of(ActiveVars, [&WatchedLiterals](Variable Var) {
return WatchedLiterals.contains(posLit(Var)) ||
WatchedLiterals.contains(negLit(Var));
});
}
/// Returns true if and only if all unassigned variables that are forming
/// watched literals are active.
bool unassignedVarsFormingWatchedLiteralsAreActive() const {
const llvm::DenseSet<Variable> ActiveVarsSet(ActiveVars.begin(),
ActiveVars.end());
for (Literal Lit : watchedLiterals()) {
const Variable Var = var(Lit);
if (VarAssignments[Var] != Assignment::Unassigned)
continue;
if (ActiveVarsSet.contains(Var))
continue;
return false;
}
return true;
}
};
Solver::Result WatchedLiteralsSolver::solve(llvm::DenseSet<BoolValue *> Vals) {
return Vals.empty() ? Solver::Result::Satisfiable({{}})
: WatchedLiteralsSolverImpl(Vals).solve();
}
} // namespace dataflow
} // namespace clang
|