1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
|
//===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This provides a class for CUDA code generation targeting the NVIDIA CUDA
// runtime library.
//
//===----------------------------------------------------------------------===//
#include "CGCUDARuntime.h"
#include "CGCXXABI.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/Cuda.h"
#include "clang/CodeGen/CodeGenABITypes.h"
#include "clang/CodeGen/ConstantInitBuilder.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/ReplaceConstant.h"
#include "llvm/Support/Format.h"
using namespace clang;
using namespace CodeGen;
namespace {
constexpr unsigned CudaFatMagic = 0x466243b1;
constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF"
class CGNVCUDARuntime : public CGCUDARuntime {
private:
llvm::IntegerType *IntTy, *SizeTy;
llvm::Type *VoidTy;
llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy;
/// Convenience reference to LLVM Context
llvm::LLVMContext &Context;
/// Convenience reference to the current module
llvm::Module &TheModule;
/// Keeps track of kernel launch stubs and handles emitted in this module
struct KernelInfo {
llvm::Function *Kernel; // stub function to help launch kernel
const Decl *D;
};
llvm::SmallVector<KernelInfo, 16> EmittedKernels;
// Map a device stub function to a symbol for identifying kernel in host code.
// For CUDA, the symbol for identifying the kernel is the same as the device
// stub function. For HIP, they are different.
llvm::DenseMap<llvm::Function *, llvm::GlobalValue *> KernelHandles;
// Map a kernel handle to the kernel stub.
llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs;
struct VarInfo {
llvm::GlobalVariable *Var;
const VarDecl *D;
DeviceVarFlags Flags;
};
llvm::SmallVector<VarInfo, 16> DeviceVars;
/// Keeps track of variable containing handle of GPU binary. Populated by
/// ModuleCtorFunction() and used to create corresponding cleanup calls in
/// ModuleDtorFunction()
llvm::GlobalVariable *GpuBinaryHandle = nullptr;
/// Whether we generate relocatable device code.
bool RelocatableDeviceCode;
/// Mangle context for device.
std::unique_ptr<MangleContext> DeviceMC;
llvm::FunctionCallee getSetupArgumentFn() const;
llvm::FunctionCallee getLaunchFn() const;
llvm::FunctionType *getRegisterGlobalsFnTy() const;
llvm::FunctionType *getCallbackFnTy() const;
llvm::FunctionType *getRegisterLinkedBinaryFnTy() const;
std::string addPrefixToName(StringRef FuncName) const;
std::string addUnderscoredPrefixToName(StringRef FuncName) const;
/// Creates a function to register all kernel stubs generated in this module.
llvm::Function *makeRegisterGlobalsFn();
/// Helper function that generates a constant string and returns a pointer to
/// the start of the string. The result of this function can be used anywhere
/// where the C code specifies const char*.
llvm::Constant *makeConstantString(const std::string &Str,
const std::string &Name = "",
const std::string &SectionName = "",
unsigned Alignment = 0) {
llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
llvm::ConstantInt::get(SizeTy, 0)};
auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
llvm::GlobalVariable *GV =
cast<llvm::GlobalVariable>(ConstStr.getPointer());
if (!SectionName.empty()) {
GV->setSection(SectionName);
// Mark the address as used which make sure that this section isn't
// merged and we will really have it in the object file.
GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
}
if (Alignment)
GV->setAlignment(llvm::Align(Alignment));
return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(),
ConstStr.getPointer(), Zeros);
}
/// Helper function that generates an empty dummy function returning void.
llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) {
assert(FnTy->getReturnType()->isVoidTy() &&
"Can only generate dummy functions returning void!");
llvm::Function *DummyFunc = llvm::Function::Create(
FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule);
llvm::BasicBlock *DummyBlock =
llvm::BasicBlock::Create(Context, "", DummyFunc);
CGBuilderTy FuncBuilder(CGM, Context);
FuncBuilder.SetInsertPoint(DummyBlock);
FuncBuilder.CreateRetVoid();
return DummyFunc;
}
void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args);
void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args);
std::string getDeviceSideName(const NamedDecl *ND) override;
void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var,
bool Extern, bool Constant) {
DeviceVars.push_back({&Var,
VD,
{DeviceVarFlags::Variable, Extern, Constant,
VD->hasAttr<HIPManagedAttr>(),
/*Normalized*/ false, 0}});
}
void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var,
bool Extern, int Type) {
DeviceVars.push_back({&Var,
VD,
{DeviceVarFlags::Surface, Extern, /*Constant*/ false,
/*Managed*/ false,
/*Normalized*/ false, Type}});
}
void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var,
bool Extern, int Type, bool Normalized) {
DeviceVars.push_back({&Var,
VD,
{DeviceVarFlags::Texture, Extern, /*Constant*/ false,
/*Managed*/ false, Normalized, Type}});
}
/// Creates module constructor function
llvm::Function *makeModuleCtorFunction();
/// Creates module destructor function
llvm::Function *makeModuleDtorFunction();
/// Transform managed variables for device compilation.
void transformManagedVars();
/// Create offloading entries to register globals in RDC mode.
void createOffloadingEntries();
public:
CGNVCUDARuntime(CodeGenModule &CGM);
llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override;
llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override {
auto Loc = KernelStubs.find(Handle);
assert(Loc != KernelStubs.end());
return Loc->second;
}
void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override;
void handleVarRegistration(const VarDecl *VD,
llvm::GlobalVariable &Var) override;
void
internalizeDeviceSideVar(const VarDecl *D,
llvm::GlobalValue::LinkageTypes &Linkage) override;
llvm::Function *finalizeModule() override;
};
} // end anonymous namespace
std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const {
if (CGM.getLangOpts().HIP)
return ((Twine("hip") + Twine(FuncName)).str());
return ((Twine("cuda") + Twine(FuncName)).str());
}
std::string
CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const {
if (CGM.getLangOpts().HIP)
return ((Twine("__hip") + Twine(FuncName)).str());
return ((Twine("__cuda") + Twine(FuncName)).str());
}
static std::unique_ptr<MangleContext> InitDeviceMC(CodeGenModule &CGM) {
// If the host and device have different C++ ABIs, mark it as the device
// mangle context so that the mangling needs to retrieve the additional
// device lambda mangling number instead of the regular host one.
if (CGM.getContext().getAuxTargetInfo() &&
CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() &&
CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) {
return std::unique_ptr<MangleContext>(
CGM.getContext().createDeviceMangleContext(
*CGM.getContext().getAuxTargetInfo()));
}
return std::unique_ptr<MangleContext>(CGM.getContext().createMangleContext(
CGM.getContext().getAuxTargetInfo()));
}
CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM)
: CGCUDARuntime(CGM), Context(CGM.getLLVMContext()),
TheModule(CGM.getModule()),
RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode),
DeviceMC(InitDeviceMC(CGM)) {
CodeGen::CodeGenTypes &Types = CGM.getTypes();
ASTContext &Ctx = CGM.getContext();
IntTy = CGM.IntTy;
SizeTy = CGM.SizeTy;
VoidTy = CGM.VoidTy;
CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy));
VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy));
VoidPtrPtrTy = VoidPtrTy->getPointerTo();
}
llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const {
// cudaError_t cudaSetupArgument(void *, size_t, size_t)
llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy};
return CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, Params, false),
addPrefixToName("SetupArgument"));
}
llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const {
if (CGM.getLangOpts().HIP) {
// hipError_t hipLaunchByPtr(char *);
return CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr");
}
// cudaError_t cudaLaunch(char *);
return CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch");
}
llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const {
return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false);
}
llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const {
return llvm::FunctionType::get(VoidTy, VoidPtrTy, false);
}
llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const {
auto *CallbackFnTy = getCallbackFnTy();
auto *RegisterGlobalsFnTy = getRegisterGlobalsFnTy();
llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy,
VoidPtrTy, CallbackFnTy->getPointerTo()};
return llvm::FunctionType::get(VoidTy, Params, false);
}
std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) {
GlobalDecl GD;
// D could be either a kernel or a variable.
if (auto *FD = dyn_cast<FunctionDecl>(ND))
GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
else
GD = GlobalDecl(ND);
std::string DeviceSideName;
MangleContext *MC;
if (CGM.getLangOpts().CUDAIsDevice)
MC = &CGM.getCXXABI().getMangleContext();
else
MC = DeviceMC.get();
if (MC->shouldMangleDeclName(ND)) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
MC->mangleName(GD, Out);
DeviceSideName = std::string(Out.str());
} else
DeviceSideName = std::string(ND->getIdentifier()->getName());
// Make unique name for device side static file-scope variable for HIP.
if (CGM.getContext().shouldExternalize(ND) &&
CGM.getLangOpts().GPURelocatableDeviceCode) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
Out << DeviceSideName;
CGM.printPostfixForExternalizedDecl(Out, ND);
DeviceSideName = std::string(Out.str());
}
return DeviceSideName;
}
void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF,
FunctionArgList &Args) {
EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl});
if (auto *GV = dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn])) {
GV->setLinkage(CGF.CurFn->getLinkage());
GV->setInitializer(CGF.CurFn);
}
if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
CudaFeature::CUDA_USES_NEW_LAUNCH) ||
(CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI))
emitDeviceStubBodyNew(CGF, Args);
else
emitDeviceStubBodyLegacy(CGF, Args);
}
// CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local
// array and kernels are launched using cudaLaunchKernel().
void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF,
FunctionArgList &Args) {
// Build the shadow stack entry at the very start of the function.
// Calculate amount of space we will need for all arguments. If we have no
// args, allocate a single pointer so we still have a valid pointer to the
// argument array that we can pass to runtime, even if it will be unused.
Address KernelArgs = CGF.CreateTempAlloca(
VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args",
llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size())));
// Store pointers to the arguments in a locally allocated launch_args.
for (unsigned i = 0; i < Args.size(); ++i) {
llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer();
llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy);
CGF.Builder.CreateDefaultAlignedStore(
VoidVarPtr,
CGF.Builder.CreateConstGEP1_32(VoidPtrTy, KernelArgs.getPointer(), i));
}
llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
// Lookup cudaLaunchKernel/hipLaunchKernel function.
// HIP kernel launching API name depends on -fgpu-default-stream option. For
// the default value 'legacy', it is hipLaunchKernel. For 'per-thread',
// it is hipLaunchKernel_spt.
// cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
// void **args, size_t sharedMem,
// cudaStream_t stream);
// hipError_t hipLaunchKernel[_spt](const void *func, dim3 gridDim,
// dim3 blockDim, void **args,
// size_t sharedMem, hipStream_t stream);
TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
std::string KernelLaunchAPI = "LaunchKernel";
if (CGF.getLangOpts().HIP && CGF.getLangOpts().GPUDefaultStream ==
LangOptions::GPUDefaultStreamKind::PerThread)
KernelLaunchAPI = KernelLaunchAPI + "_spt";
auto LaunchKernelName = addPrefixToName(KernelLaunchAPI);
IdentifierInfo &cudaLaunchKernelII =
CGM.getContext().Idents.get(LaunchKernelName);
FunctionDecl *cudaLaunchKernelFD = nullptr;
for (auto *Result : DC->lookup(&cudaLaunchKernelII)) {
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result))
cudaLaunchKernelFD = FD;
}
if (cudaLaunchKernelFD == nullptr) {
CGM.Error(CGF.CurFuncDecl->getLocation(),
"Can't find declaration for " + LaunchKernelName);
return;
}
// Create temporary dim3 grid_dim, block_dim.
ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1);
QualType Dim3Ty = GridDimParam->getType();
Address GridDim =
CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim");
Address BlockDim =
CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim");
Address ShmemSize =
CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size");
Address Stream =
CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream");
llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy,
{/*gridDim=*/GridDim.getType(),
/*blockDim=*/BlockDim.getType(),
/*ShmemSize=*/ShmemSize.getType(),
/*Stream=*/Stream.getType()},
/*isVarArg=*/false),
addUnderscoredPrefixToName("PopCallConfiguration"));
CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn,
{GridDim.getPointer(), BlockDim.getPointer(),
ShmemSize.getPointer(), Stream.getPointer()});
// Emit the call to cudaLaunch
llvm::Value *Kernel =
CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], VoidPtrTy);
CallArgList LaunchKernelArgs;
LaunchKernelArgs.add(RValue::get(Kernel),
cudaLaunchKernelFD->getParamDecl(0)->getType());
LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty);
LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty);
LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()),
cudaLaunchKernelFD->getParamDecl(3)->getType());
LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)),
cudaLaunchKernelFD->getParamDecl(4)->getType());
LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)),
cudaLaunchKernelFD->getParamDecl(5)->getType());
QualType QT = cudaLaunchKernelFD->getType();
QualType CQT = QT.getCanonicalType();
llvm::Type *Ty = CGM.getTypes().ConvertType(CQT);
llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
const CGFunctionInfo &FI =
CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD);
llvm::FunctionCallee cudaLaunchKernelFn =
CGM.CreateRuntimeFunction(FTy, LaunchKernelName);
CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(),
LaunchKernelArgs);
CGF.EmitBranch(EndBlock);
CGF.EmitBlock(EndBlock);
}
void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF,
FunctionArgList &Args) {
// Emit a call to cudaSetupArgument for each arg in Args.
llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn();
llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
CharUnits Offset = CharUnits::Zero();
for (const VarDecl *A : Args) {
auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType());
Offset = Offset.alignTo(TInfo.Align);
llvm::Value *Args[] = {
CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(),
VoidPtrTy),
llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()),
llvm::ConstantInt::get(SizeTy, Offset.getQuantity()),
};
llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args);
llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0);
llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero);
llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next");
CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock);
CGF.EmitBlock(NextBlock);
Offset += TInfo.Width;
}
// Emit the call to cudaLaunch
llvm::FunctionCallee cudaLaunchFn = getLaunchFn();
llvm::Value *Arg =
CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], CharPtrTy);
CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg);
CGF.EmitBranch(EndBlock);
CGF.EmitBlock(EndBlock);
}
// Replace the original variable Var with the address loaded from variable
// ManagedVar populated by HIP runtime.
static void replaceManagedVar(llvm::GlobalVariable *Var,
llvm::GlobalVariable *ManagedVar) {
SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList;
for (auto &&VarUse : Var->uses()) {
WorkList.push_back({VarUse.getUser()});
}
while (!WorkList.empty()) {
auto &&WorkItem = WorkList.pop_back_val();
auto *U = WorkItem.back();
if (isa<llvm::ConstantExpr>(U)) {
for (auto &&UU : U->uses()) {
WorkItem.push_back(UU.getUser());
WorkList.push_back(WorkItem);
WorkItem.pop_back();
}
continue;
}
if (auto *I = dyn_cast<llvm::Instruction>(U)) {
llvm::Value *OldV = Var;
llvm::Instruction *NewV =
new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false,
llvm::Align(Var->getAlignment()), I);
WorkItem.pop_back();
// Replace constant expressions directly or indirectly using the managed
// variable with instructions.
for (auto &&Op : WorkItem) {
auto *CE = cast<llvm::ConstantExpr>(Op);
auto *NewInst = CE->getAsInstruction(I);
NewInst->replaceUsesOfWith(OldV, NewV);
OldV = CE;
NewV = NewInst;
}
I->replaceUsesOfWith(OldV, NewV);
} else {
llvm_unreachable("Invalid use of managed variable");
}
}
}
/// Creates a function that sets up state on the host side for CUDA objects that
/// have a presence on both the host and device sides. Specifically, registers
/// the host side of kernel functions and device global variables with the CUDA
/// runtime.
/// \code
/// void __cuda_register_globals(void** GpuBinaryHandle) {
/// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
/// ...
/// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
/// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
/// ...
/// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
/// }
/// \endcode
llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() {
// No need to register anything
if (EmittedKernels.empty() && DeviceVars.empty())
return nullptr;
llvm::Function *RegisterKernelsFunc = llvm::Function::Create(
getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage,
addUnderscoredPrefixToName("_register_globals"), &TheModule);
llvm::BasicBlock *EntryBB =
llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc);
CGBuilderTy Builder(CGM, Context);
Builder.SetInsertPoint(EntryBB);
// void __cudaRegisterFunction(void **, const char *, char *, const char *,
// int, uint3*, uint3*, dim3*, dim3*, int*)
llvm::Type *RegisterFuncParams[] = {
VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy,
VoidPtrTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()};
llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, RegisterFuncParams, false),
addUnderscoredPrefixToName("RegisterFunction"));
// Extract GpuBinaryHandle passed as the first argument passed to
// __cuda_register_globals() and generate __cudaRegisterFunction() call for
// each emitted kernel.
llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin();
for (auto &&I : EmittedKernels) {
llvm::Constant *KernelName =
makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D)));
llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy);
llvm::Value *Args[] = {
&GpuBinaryHandlePtr,
Builder.CreateBitCast(KernelHandles[I.Kernel], VoidPtrTy),
KernelName,
KernelName,
llvm::ConstantInt::get(IntTy, -1),
NullPtr,
NullPtr,
NullPtr,
NullPtr,
llvm::ConstantPointerNull::get(IntTy->getPointerTo())};
Builder.CreateCall(RegisterFunc, Args);
}
llvm::Type *VarSizeTy = IntTy;
// For HIP or CUDA 9.0+, device variable size is type of `size_t`.
if (CGM.getLangOpts().HIP ||
ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90)
VarSizeTy = SizeTy;
// void __cudaRegisterVar(void **, char *, char *, const char *,
// int, int, int, int)
llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
CharPtrTy, IntTy, VarSizeTy,
IntTy, IntTy};
llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(VoidTy, RegisterVarParams, false),
addUnderscoredPrefixToName("RegisterVar"));
// void __hipRegisterManagedVar(void **, char *, char *, const char *,
// size_t, unsigned)
llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
CharPtrTy, VarSizeTy, IntTy};
llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false),
addUnderscoredPrefixToName("RegisterManagedVar"));
// void __cudaRegisterSurface(void **, const struct surfaceReference *,
// const void **, const char *, int, int);
llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(
VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy},
false),
addUnderscoredPrefixToName("RegisterSurface"));
// void __cudaRegisterTexture(void **, const struct textureReference *,
// const void **, const char *, int, int, int)
llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(
VoidTy,
{VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy},
false),
addUnderscoredPrefixToName("RegisterTexture"));
for (auto &&Info : DeviceVars) {
llvm::GlobalVariable *Var = Info.Var;
assert((!Var->isDeclaration() || Info.Flags.isManaged()) &&
"External variables should not show up here, except HIP managed "
"variables");
llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D));
switch (Info.Flags.getKind()) {
case DeviceVarFlags::Variable: {
uint64_t VarSize =
CGM.getDataLayout().getTypeAllocSize(Var->getValueType());
if (Info.Flags.isManaged()) {
auto *ManagedVar = new llvm::GlobalVariable(
CGM.getModule(), Var->getType(),
/*isConstant=*/false, Var->getLinkage(),
/*Init=*/Var->isDeclaration()
? nullptr
: llvm::ConstantPointerNull::get(Var->getType()),
/*Name=*/"", /*InsertBefore=*/nullptr,
llvm::GlobalVariable::NotThreadLocal);
ManagedVar->setDSOLocal(Var->isDSOLocal());
ManagedVar->setVisibility(Var->getVisibility());
ManagedVar->setExternallyInitialized(true);
ManagedVar->takeName(Var);
Var->setName(Twine(ManagedVar->getName() + ".managed"));
replaceManagedVar(Var, ManagedVar);
llvm::Value *Args[] = {
&GpuBinaryHandlePtr,
Builder.CreateBitCast(ManagedVar, VoidPtrTy),
Builder.CreateBitCast(Var, VoidPtrTy),
VarName,
llvm::ConstantInt::get(VarSizeTy, VarSize),
llvm::ConstantInt::get(IntTy, Var->getAlignment())};
if (!Var->isDeclaration())
Builder.CreateCall(RegisterManagedVar, Args);
} else {
llvm::Value *Args[] = {
&GpuBinaryHandlePtr,
Builder.CreateBitCast(Var, VoidPtrTy),
VarName,
VarName,
llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()),
llvm::ConstantInt::get(VarSizeTy, VarSize),
llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()),
llvm::ConstantInt::get(IntTy, 0)};
Builder.CreateCall(RegisterVar, Args);
}
break;
}
case DeviceVarFlags::Surface:
Builder.CreateCall(
RegisterSurf,
{&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
break;
case DeviceVarFlags::Texture:
Builder.CreateCall(
RegisterTex,
{&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()),
llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
break;
}
}
Builder.CreateRetVoid();
return RegisterKernelsFunc;
}
/// Creates a global constructor function for the module:
///
/// For CUDA:
/// \code
/// void __cuda_module_ctor() {
/// Handle = __cudaRegisterFatBinary(GpuBinaryBlob);
/// __cuda_register_globals(Handle);
/// }
/// \endcode
///
/// For HIP:
/// \code
/// void __hip_module_ctor() {
/// if (__hip_gpubin_handle == 0) {
/// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob);
/// __hip_register_globals(__hip_gpubin_handle);
/// }
/// }
/// \endcode
llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() {
bool IsHIP = CGM.getLangOpts().HIP;
bool IsCUDA = CGM.getLangOpts().CUDA;
// No need to generate ctors/dtors if there is no GPU binary.
StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName;
if (CudaGpuBinaryFileName.empty() && !IsHIP)
return nullptr;
if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() &&
DeviceVars.empty())
return nullptr;
// void __{cuda|hip}_register_globals(void* handle);
llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn();
// We always need a function to pass in as callback. Create a dummy
// implementation if we don't need to register anything.
if (RelocatableDeviceCode && !RegisterGlobalsFunc)
RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy());
// void ** __{cuda|hip}RegisterFatBinary(void *);
llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false),
addUnderscoredPrefixToName("RegisterFatBinary"));
// struct { int magic, int version, void * gpu_binary, void * dont_care };
llvm::StructType *FatbinWrapperTy =
llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy);
// Register GPU binary with the CUDA runtime, store returned handle in a
// global variable and save a reference in GpuBinaryHandle to be cleaned up
// in destructor on exit. Then associate all known kernels with the GPU binary
// handle so CUDA runtime can figure out what to call on the GPU side.
std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr;
if (!CudaGpuBinaryFileName.empty()) {
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr =
llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName);
if (std::error_code EC = CudaGpuBinaryOrErr.getError()) {
CGM.getDiags().Report(diag::err_cannot_open_file)
<< CudaGpuBinaryFileName << EC.message();
return nullptr;
}
CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get());
}
llvm::Function *ModuleCtorFunc = llvm::Function::Create(
llvm::FunctionType::get(VoidTy, false),
llvm::GlobalValue::InternalLinkage,
addUnderscoredPrefixToName("_module_ctor"), &TheModule);
llvm::BasicBlock *CtorEntryBB =
llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc);
CGBuilderTy CtorBuilder(CGM, Context);
CtorBuilder.SetInsertPoint(CtorEntryBB);
const char *FatbinConstantName;
const char *FatbinSectionName;
const char *ModuleIDSectionName;
StringRef ModuleIDPrefix;
llvm::Constant *FatBinStr;
unsigned FatMagic;
if (IsHIP) {
FatbinConstantName = ".hip_fatbin";
FatbinSectionName = ".hipFatBinSegment";
ModuleIDSectionName = "__hip_module_id";
ModuleIDPrefix = "__hip_";
if (CudaGpuBinary) {
// If fatbin is available from early finalization, create a string
// literal containing the fat binary loaded from the given file.
const unsigned HIPCodeObjectAlign = 4096;
FatBinStr =
makeConstantString(std::string(CudaGpuBinary->getBuffer()), "",
FatbinConstantName, HIPCodeObjectAlign);
} else {
// If fatbin is not available, create an external symbol
// __hip_fatbin in section .hip_fatbin. The external symbol is supposed
// to contain the fat binary but will be populated somewhere else,
// e.g. by lld through link script.
FatBinStr = new llvm::GlobalVariable(
CGM.getModule(), CGM.Int8Ty,
/*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr,
"__hip_fatbin", nullptr,
llvm::GlobalVariable::NotThreadLocal);
cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName);
}
FatMagic = HIPFatMagic;
} else {
if (RelocatableDeviceCode)
FatbinConstantName = CGM.getTriple().isMacOSX()
? "__NV_CUDA,__nv_relfatbin"
: "__nv_relfatbin";
else
FatbinConstantName =
CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin";
// NVIDIA's cuobjdump looks for fatbins in this section.
FatbinSectionName =
CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment";
ModuleIDSectionName = CGM.getTriple().isMacOSX()
? "__NV_CUDA,__nv_module_id"
: "__nv_module_id";
ModuleIDPrefix = "__nv_";
// For CUDA, create a string literal containing the fat binary loaded from
// the given file.
FatBinStr = makeConstantString(std::string(CudaGpuBinary->getBuffer()), "",
FatbinConstantName, 8);
FatMagic = CudaFatMagic;
}
// Create initialized wrapper structure that points to the loaded GPU binary
ConstantInitBuilder Builder(CGM);
auto Values = Builder.beginStruct(FatbinWrapperTy);
// Fatbin wrapper magic.
Values.addInt(IntTy, FatMagic);
// Fatbin version.
Values.addInt(IntTy, 1);
// Data.
Values.add(FatBinStr);
// Unused in fatbin v1.
Values.add(llvm::ConstantPointerNull::get(VoidPtrTy));
llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal(
addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(),
/*constant*/ true);
FatbinWrapper->setSection(FatbinSectionName);
// There is only one HIP fat binary per linked module, however there are
// multiple constructor functions. Make sure the fat binary is registered
// only once. The constructor functions are executed by the dynamic loader
// before the program gains control. The dynamic loader cannot execute the
// constructor functions concurrently since doing that would not guarantee
// thread safety of the loaded program. Therefore we can assume sequential
// execution of constructor functions here.
if (IsHIP) {
auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage :
llvm::GlobalValue::LinkOnceAnyLinkage;
llvm::BasicBlock *IfBlock =
llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc);
llvm::BasicBlock *ExitBlock =
llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc);
// The name, size, and initialization pattern of this variable is part
// of HIP ABI.
GpuBinaryHandle = new llvm::GlobalVariable(
TheModule, VoidPtrPtrTy, /*isConstant=*/false,
Linkage,
/*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy),
"__hip_gpubin_handle");
if (Linkage == llvm::GlobalValue::LinkOnceAnyLinkage)
GpuBinaryHandle->setComdat(
CGM.getModule().getOrInsertComdat(GpuBinaryHandle->getName()));
GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
// Prevent the weak symbol in different shared libraries being merged.
if (Linkage != llvm::GlobalValue::InternalLinkage)
GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility);
Address GpuBinaryAddr(
GpuBinaryHandle, VoidPtrPtrTy,
CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
{
auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
llvm::Constant *Zero =
llvm::Constant::getNullValue(HandleValue->getType());
llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero);
CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock);
}
{
CtorBuilder.SetInsertPoint(IfBlock);
// GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper);
llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
RegisterFatbinFunc,
CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr);
CtorBuilder.CreateBr(ExitBlock);
}
{
CtorBuilder.SetInsertPoint(ExitBlock);
// Call __hip_register_globals(GpuBinaryHandle);
if (RegisterGlobalsFunc) {
auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue);
}
}
} else if (!RelocatableDeviceCode) {
// Register binary with CUDA runtime. This is substantially different in
// default mode vs. separate compilation!
// GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
RegisterFatbinFunc,
CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
GpuBinaryHandle = new llvm::GlobalVariable(
TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage,
llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle");
GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle,
CGM.getPointerAlign());
// Call __cuda_register_globals(GpuBinaryHandle);
if (RegisterGlobalsFunc)
CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall);
// Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it.
if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) {
// void __cudaRegisterFatBinaryEnd(void **);
llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
"__cudaRegisterFatBinaryEnd");
CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall);
}
} else {
// Generate a unique module ID.
SmallString<64> ModuleID;
llvm::raw_svector_ostream OS(ModuleID);
OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID());
llvm::Constant *ModuleIDConstant = makeConstantString(
std::string(ModuleID.str()), "", ModuleIDSectionName, 32);
// Create an alias for the FatbinWrapper that nvcc will look for.
llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage,
Twine("__fatbinwrap") + ModuleID, FatbinWrapper);
// void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *,
// void *, void (*)(void **))
SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary");
RegisterLinkedBinaryName += ModuleID;
llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction(
getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName);
assert(RegisterGlobalsFunc && "Expecting at least dummy function!");
llvm::Value *Args[] = {RegisterGlobalsFunc,
CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy),
ModuleIDConstant,
makeDummyFunction(getCallbackFnTy())};
CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args);
}
// Create destructor and register it with atexit() the way NVCC does it. Doing
// it during regular destructor phase worked in CUDA before 9.2 but results in
// double-free in 9.2.
if (llvm::Function *CleanupFn = makeModuleDtorFunction()) {
// extern "C" int atexit(void (*f)(void));
llvm::FunctionType *AtExitTy =
llvm::FunctionType::get(IntTy, CleanupFn->getType(), false);
llvm::FunctionCallee AtExitFunc =
CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(),
/*Local=*/true);
CtorBuilder.CreateCall(AtExitFunc, CleanupFn);
}
CtorBuilder.CreateRetVoid();
return ModuleCtorFunc;
}
/// Creates a global destructor function that unregisters the GPU code blob
/// registered by constructor.
///
/// For CUDA:
/// \code
/// void __cuda_module_dtor() {
/// __cudaUnregisterFatBinary(Handle);
/// }
/// \endcode
///
/// For HIP:
/// \code
/// void __hip_module_dtor() {
/// if (__hip_gpubin_handle) {
/// __hipUnregisterFatBinary(__hip_gpubin_handle);
/// __hip_gpubin_handle = 0;
/// }
/// }
/// \endcode
llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() {
// No need for destructor if we don't have a handle to unregister.
if (!GpuBinaryHandle)
return nullptr;
// void __cudaUnregisterFatBinary(void ** handle);
llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
addUnderscoredPrefixToName("UnregisterFatBinary"));
llvm::Function *ModuleDtorFunc = llvm::Function::Create(
llvm::FunctionType::get(VoidTy, false),
llvm::GlobalValue::InternalLinkage,
addUnderscoredPrefixToName("_module_dtor"), &TheModule);
llvm::BasicBlock *DtorEntryBB =
llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc);
CGBuilderTy DtorBuilder(CGM, Context);
DtorBuilder.SetInsertPoint(DtorEntryBB);
Address GpuBinaryAddr(
GpuBinaryHandle, GpuBinaryHandle->getValueType(),
CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
auto *HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr);
// There is only one HIP fat binary per linked module, however there are
// multiple destructor functions. Make sure the fat binary is unregistered
// only once.
if (CGM.getLangOpts().HIP) {
llvm::BasicBlock *IfBlock =
llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc);
llvm::BasicBlock *ExitBlock =
llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc);
llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType());
llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero);
DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock);
DtorBuilder.SetInsertPoint(IfBlock);
DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
DtorBuilder.CreateStore(Zero, GpuBinaryAddr);
DtorBuilder.CreateBr(ExitBlock);
DtorBuilder.SetInsertPoint(ExitBlock);
} else {
DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
}
DtorBuilder.CreateRetVoid();
return ModuleDtorFunc;
}
CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) {
return new CGNVCUDARuntime(CGM);
}
void CGNVCUDARuntime::internalizeDeviceSideVar(
const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) {
// For -fno-gpu-rdc, host-side shadows of external declarations of device-side
// global variables become internal definitions. These have to be internal in
// order to prevent name conflicts with global host variables with the same
// name in a different TUs.
//
// For -fgpu-rdc, the shadow variables should not be internalized because
// they may be accessed by different TU.
if (CGM.getLangOpts().GPURelocatableDeviceCode)
return;
// __shared__ variables are odd. Shadows do get created, but
// they are not registered with the CUDA runtime, so they
// can't really be used to access their device-side
// counterparts. It's not clear yet whether it's nvcc's bug or
// a feature, but we've got to do the same for compatibility.
if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
D->hasAttr<CUDASharedAttr>() ||
D->getType()->isCUDADeviceBuiltinSurfaceType() ||
D->getType()->isCUDADeviceBuiltinTextureType()) {
Linkage = llvm::GlobalValue::InternalLinkage;
}
}
void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D,
llvm::GlobalVariable &GV) {
if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
// Shadow variables and their properties must be registered with CUDA
// runtime. Skip Extern global variables, which will be registered in
// the TU where they are defined.
//
// Don't register a C++17 inline variable. The local symbol can be
// discarded and referencing a discarded local symbol from outside the
// comdat (__cuda_register_globals) is disallowed by the ELF spec.
//
// HIP managed variables need to be always recorded in device and host
// compilations for transformation.
//
// HIP managed variables and variables in CUDADeviceVarODRUsedByHost are
// added to llvm.compiler-used, therefore they are safe to be registered.
if ((!D->hasExternalStorage() && !D->isInline()) ||
CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) ||
D->hasAttr<HIPManagedAttr>()) {
registerDeviceVar(D, GV, !D->hasDefinition(),
D->hasAttr<CUDAConstantAttr>());
}
} else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
D->getType()->isCUDADeviceBuiltinTextureType()) {
// Builtin surfaces and textures and their template arguments are
// also registered with CUDA runtime.
const auto *TD = cast<ClassTemplateSpecializationDecl>(
D->getType()->castAs<RecordType>()->getDecl());
const TemplateArgumentList &Args = TD->getTemplateArgs();
if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
assert(Args.size() == 2 &&
"Unexpected number of template arguments of CUDA device "
"builtin surface type.");
auto SurfType = Args[1].getAsIntegral();
if (!D->hasExternalStorage())
registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue());
} else {
assert(Args.size() == 3 &&
"Unexpected number of template arguments of CUDA device "
"builtin texture type.");
auto TexType = Args[1].getAsIntegral();
auto Normalized = Args[2].getAsIntegral();
if (!D->hasExternalStorage())
registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(),
Normalized.getZExtValue());
}
}
}
// Transform managed variables to pointers to managed variables in device code.
// Each use of the original managed variable is replaced by a load from the
// transformed managed variable. The transformed managed variable contains
// the address of managed memory which will be allocated by the runtime.
void CGNVCUDARuntime::transformManagedVars() {
for (auto &&Info : DeviceVars) {
llvm::GlobalVariable *Var = Info.Var;
if (Info.Flags.getKind() == DeviceVarFlags::Variable &&
Info.Flags.isManaged()) {
auto *ManagedVar = new llvm::GlobalVariable(
CGM.getModule(), Var->getType(),
/*isConstant=*/false, Var->getLinkage(),
/*Init=*/Var->isDeclaration()
? nullptr
: llvm::ConstantPointerNull::get(Var->getType()),
/*Name=*/"", /*InsertBefore=*/nullptr,
llvm::GlobalVariable::NotThreadLocal,
CGM.getContext().getTargetAddressSpace(LangAS::cuda_device));
ManagedVar->setDSOLocal(Var->isDSOLocal());
ManagedVar->setVisibility(Var->getVisibility());
ManagedVar->setExternallyInitialized(true);
replaceManagedVar(Var, ManagedVar);
ManagedVar->takeName(Var);
Var->setName(Twine(ManagedVar->getName()) + ".managed");
// Keep managed variables even if they are not used in device code since
// they need to be allocated by the runtime.
if (!Var->isDeclaration()) {
assert(!ManagedVar->isDeclaration());
CGM.addCompilerUsedGlobal(Var);
CGM.addCompilerUsedGlobal(ManagedVar);
}
}
}
}
// Creates offloading entries for all the kernels and globals that must be
// registered. The linker will provide a pointer to this section so we can
// register the symbols with the linked device image.
void CGNVCUDARuntime::createOffloadingEntries() {
llvm::OpenMPIRBuilder OMPBuilder(CGM.getModule());
OMPBuilder.initialize();
StringRef Section = CGM.getLangOpts().HIP ? "hip_offloading_entries"
: "cuda_offloading_entries";
for (KernelInfo &I : EmittedKernels)
OMPBuilder.emitOffloadingEntry(KernelHandles[I.Kernel],
getDeviceSideName(cast<NamedDecl>(I.D)), 0,
DeviceVarFlags::OffloadGlobalEntry, Section);
for (VarInfo &I : DeviceVars) {
uint64_t VarSize =
CGM.getDataLayout().getTypeAllocSize(I.Var->getValueType());
if (I.Flags.getKind() == DeviceVarFlags::Variable) {
OMPBuilder.emitOffloadingEntry(
I.Var, getDeviceSideName(I.D), VarSize,
I.Flags.isManaged() ? DeviceVarFlags::OffloadGlobalManagedEntry
: DeviceVarFlags::OffloadGlobalEntry,
Section);
} else if (I.Flags.getKind() == DeviceVarFlags::Surface) {
OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize,
DeviceVarFlags::OffloadGlobalSurfaceEntry,
Section);
} else if (I.Flags.getKind() == DeviceVarFlags::Texture) {
OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize,
DeviceVarFlags::OffloadGlobalTextureEntry,
Section);
}
}
}
// Returns module constructor to be added.
llvm::Function *CGNVCUDARuntime::finalizeModule() {
if (CGM.getLangOpts().CUDAIsDevice) {
transformManagedVars();
// Mark ODR-used device variables as compiler used to prevent it from being
// eliminated by optimization. This is necessary for device variables
// ODR-used by host functions. Sema correctly marks them as ODR-used no
// matter whether they are ODR-used by device or host functions.
//
// We do not need to do this if the variable has used attribute since it
// has already been added.
//
// Static device variables have been externalized at this point, therefore
// variables with LLVM private or internal linkage need not be added.
for (auto &&Info : DeviceVars) {
auto Kind = Info.Flags.getKind();
if (!Info.Var->isDeclaration() &&
!llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) &&
(Kind == DeviceVarFlags::Variable ||
Kind == DeviceVarFlags::Surface ||
Kind == DeviceVarFlags::Texture) &&
Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) {
CGM.addCompilerUsedGlobal(Info.Var);
}
}
return nullptr;
}
if (CGM.getLangOpts().OffloadingNewDriver && RelocatableDeviceCode)
createOffloadingEntries();
else
return makeModuleCtorFunction();
return nullptr;
}
llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F,
GlobalDecl GD) {
auto Loc = KernelHandles.find(F);
if (Loc != KernelHandles.end())
return Loc->second;
if (!CGM.getLangOpts().HIP) {
KernelHandles[F] = F;
KernelStubs[F] = F;
return F;
}
auto *Var = new llvm::GlobalVariable(
TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(),
/*Initializer=*/nullptr,
CGM.getMangledName(
GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel)));
Var->setAlignment(CGM.getPointerAlign().getAsAlign());
Var->setDSOLocal(F->isDSOLocal());
Var->setVisibility(F->getVisibility());
CGM.maybeSetTrivialComdat(*GD.getDecl(), *Var);
KernelHandles[F] = Var;
KernelStubs[Var] = F;
return Var;
}
|