1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
|
//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is the code that handles AST -> LLVM type lowering.
//
//===----------------------------------------------------------------------===//
#include "CodeGenTypes.h"
#include "CGCXXABI.h"
#include "CGCall.h"
#include "CGOpenCLRuntime.h"
#include "CGRecordLayout.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
using namespace clang;
using namespace CodeGen;
CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
: CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
SkippedLayout = false;
}
CodeGenTypes::~CodeGenTypes() {
for (llvm::FoldingSet<CGFunctionInfo>::iterator
I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
delete &*I++;
}
const CodeGenOptions &CodeGenTypes::getCodeGenOpts() const {
return CGM.getCodeGenOpts();
}
void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
llvm::StructType *Ty,
StringRef suffix) {
SmallString<256> TypeName;
llvm::raw_svector_ostream OS(TypeName);
OS << RD->getKindName() << '.';
// FIXME: We probably want to make more tweaks to the printing policy. For
// example, we should probably enable PrintCanonicalTypes and
// FullyQualifiedNames.
PrintingPolicy Policy = RD->getASTContext().getPrintingPolicy();
Policy.SuppressInlineNamespace = false;
// Name the codegen type after the typedef name
// if there is no tag type name available
if (RD->getIdentifier()) {
// FIXME: We should not have to check for a null decl context here.
// Right now we do it because the implicit Obj-C decls don't have one.
if (RD->getDeclContext())
RD->printQualifiedName(OS, Policy);
else
RD->printName(OS);
} else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
// FIXME: We should not have to check for a null decl context here.
// Right now we do it because the implicit Obj-C decls don't have one.
if (TDD->getDeclContext())
TDD->printQualifiedName(OS, Policy);
else
TDD->printName(OS);
} else
OS << "anon";
if (!suffix.empty())
OS << suffix;
Ty->setName(OS.str());
}
/// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
/// ConvertType in that it is used to convert to the memory representation for
/// a type. For example, the scalar representation for _Bool is i1, but the
/// memory representation is usually i8 or i32, depending on the target.
llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T, bool ForBitField) {
if (T->isConstantMatrixType()) {
const Type *Ty = Context.getCanonicalType(T).getTypePtr();
const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty);
return llvm::ArrayType::get(ConvertType(MT->getElementType()),
MT->getNumRows() * MT->getNumColumns());
}
llvm::Type *R = ConvertType(T);
// Check for the boolean vector case.
if (T->isExtVectorBoolType()) {
auto *FixedVT = cast<llvm::FixedVectorType>(R);
// Pad to at least one byte.
uint64_t BytePadded = std::max<uint64_t>(FixedVT->getNumElements(), 8);
return llvm::IntegerType::get(FixedVT->getContext(), BytePadded);
}
// If this is a bool type, or a bit-precise integer type in a bitfield
// representation, map this integer to the target-specified size.
if ((ForBitField && T->isBitIntType()) ||
(!T->isBitIntType() && R->isIntegerTy(1)))
return llvm::IntegerType::get(getLLVMContext(),
(unsigned)Context.getTypeSize(T));
// Else, don't map it.
return R;
}
/// isRecordLayoutComplete - Return true if the specified type is already
/// completely laid out.
bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
RecordDeclTypes.find(Ty);
return I != RecordDeclTypes.end() && !I->second->isOpaque();
}
static bool
isSafeToConvert(QualType T, CodeGenTypes &CGT,
llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
/// isSafeToConvert - Return true if it is safe to convert the specified record
/// decl to IR and lay it out, false if doing so would cause us to get into a
/// recursive compilation mess.
static bool
isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
// If we have already checked this type (maybe the same type is used by-value
// multiple times in multiple structure fields, don't check again.
if (!AlreadyChecked.insert(RD).second)
return true;
const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
// If this type is already laid out, converting it is a noop.
if (CGT.isRecordLayoutComplete(Key)) return true;
// If this type is currently being laid out, we can't recursively compile it.
if (CGT.isRecordBeingLaidOut(Key))
return false;
// If this type would require laying out bases that are currently being laid
// out, don't do it. This includes virtual base classes which get laid out
// when a class is translated, even though they aren't embedded by-value into
// the class.
if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
for (const auto &I : CRD->bases())
if (!isSafeToConvert(I.getType()->castAs<RecordType>()->getDecl(), CGT,
AlreadyChecked))
return false;
}
// If this type would require laying out members that are currently being laid
// out, don't do it.
for (const auto *I : RD->fields())
if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
return false;
// If there are no problems, lets do it.
return true;
}
/// isSafeToConvert - Return true if it is safe to convert this field type,
/// which requires the structure elements contained by-value to all be
/// recursively safe to convert.
static bool
isSafeToConvert(QualType T, CodeGenTypes &CGT,
llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
// Strip off atomic type sugar.
if (const auto *AT = T->getAs<AtomicType>())
T = AT->getValueType();
// If this is a record, check it.
if (const auto *RT = T->getAs<RecordType>())
return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
// If this is an array, check the elements, which are embedded inline.
if (const auto *AT = CGT.getContext().getAsArrayType(T))
return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
// Otherwise, there is no concern about transforming this. We only care about
// things that are contained by-value in a structure that can have another
// structure as a member.
return true;
}
/// isSafeToConvert - Return true if it is safe to convert the specified record
/// decl to IR and lay it out, false if doing so would cause us to get into a
/// recursive compilation mess.
static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
// If no structs are being laid out, we can certainly do this one.
if (CGT.noRecordsBeingLaidOut()) return true;
llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
return isSafeToConvert(RD, CGT, AlreadyChecked);
}
/// isFuncParamTypeConvertible - Return true if the specified type in a
/// function parameter or result position can be converted to an IR type at this
/// point. This boils down to being whether it is complete, as well as whether
/// we've temporarily deferred expanding the type because we're in a recursive
/// context.
bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
// Some ABIs cannot have their member pointers represented in IR unless
// certain circumstances have been reached.
if (const auto *MPT = Ty->getAs<MemberPointerType>())
return getCXXABI().isMemberPointerConvertible(MPT);
// If this isn't a tagged type, we can convert it!
const TagType *TT = Ty->getAs<TagType>();
if (!TT) return true;
// Incomplete types cannot be converted.
if (TT->isIncompleteType())
return false;
// If this is an enum, then it is always safe to convert.
const RecordType *RT = dyn_cast<RecordType>(TT);
if (!RT) return true;
// Otherwise, we have to be careful. If it is a struct that we're in the
// process of expanding, then we can't convert the function type. That's ok
// though because we must be in a pointer context under the struct, so we can
// just convert it to a dummy type.
//
// We decide this by checking whether ConvertRecordDeclType returns us an
// opaque type for a struct that we know is defined.
return isSafeToConvert(RT->getDecl(), *this);
}
/// Code to verify a given function type is complete, i.e. the return type
/// and all of the parameter types are complete. Also check to see if we are in
/// a RS_StructPointer context, and if so whether any struct types have been
/// pended. If so, we don't want to ask the ABI lowering code to handle a type
/// that cannot be converted to an IR type.
bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
if (!isFuncParamTypeConvertible(FT->getReturnType()))
return false;
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
return false;
return true;
}
/// UpdateCompletedType - When we find the full definition for a TagDecl,
/// replace the 'opaque' type we previously made for it if applicable.
void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
// If this is an enum being completed, then we flush all non-struct types from
// the cache. This allows function types and other things that may be derived
// from the enum to be recomputed.
if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
// Only flush the cache if we've actually already converted this type.
if (TypeCache.count(ED->getTypeForDecl())) {
// Okay, we formed some types based on this. We speculated that the enum
// would be lowered to i32, so we only need to flush the cache if this
// didn't happen.
if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
TypeCache.clear();
}
// If necessary, provide the full definition of a type only used with a
// declaration so far.
if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
DI->completeType(ED);
return;
}
// If we completed a RecordDecl that we previously used and converted to an
// anonymous type, then go ahead and complete it now.
const RecordDecl *RD = cast<RecordDecl>(TD);
if (RD->isDependentType()) return;
// Only complete it if we converted it already. If we haven't converted it
// yet, we'll just do it lazily.
if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
ConvertRecordDeclType(RD);
// If necessary, provide the full definition of a type only used with a
// declaration so far.
if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
DI->completeType(RD);
}
void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
QualType T = Context.getRecordType(RD);
T = Context.getCanonicalType(T);
const Type *Ty = T.getTypePtr();
if (RecordsWithOpaqueMemberPointers.count(Ty)) {
TypeCache.clear();
RecordsWithOpaqueMemberPointers.clear();
}
}
static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
const llvm::fltSemantics &format,
bool UseNativeHalf = false) {
if (&format == &llvm::APFloat::IEEEhalf()) {
if (UseNativeHalf)
return llvm::Type::getHalfTy(VMContext);
else
return llvm::Type::getInt16Ty(VMContext);
}
if (&format == &llvm::APFloat::BFloat())
return llvm::Type::getBFloatTy(VMContext);
if (&format == &llvm::APFloat::IEEEsingle())
return llvm::Type::getFloatTy(VMContext);
if (&format == &llvm::APFloat::IEEEdouble())
return llvm::Type::getDoubleTy(VMContext);
if (&format == &llvm::APFloat::IEEEquad())
return llvm::Type::getFP128Ty(VMContext);
if (&format == &llvm::APFloat::PPCDoubleDouble())
return llvm::Type::getPPC_FP128Ty(VMContext);
if (&format == &llvm::APFloat::x87DoubleExtended())
return llvm::Type::getX86_FP80Ty(VMContext);
llvm_unreachable("Unknown float format!");
}
llvm::Type *CodeGenTypes::ConvertFunctionTypeInternal(QualType QFT) {
assert(QFT.isCanonical());
const Type *Ty = QFT.getTypePtr();
const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr());
// First, check whether we can build the full function type. If the
// function type depends on an incomplete type (e.g. a struct or enum), we
// cannot lower the function type.
if (!isFuncTypeConvertible(FT)) {
// This function's type depends on an incomplete tag type.
// Force conversion of all the relevant record types, to make sure
// we re-convert the FunctionType when appropriate.
if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
ConvertRecordDeclType(RT->getDecl());
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
ConvertRecordDeclType(RT->getDecl());
SkippedLayout = true;
// Return a placeholder type.
return llvm::StructType::get(getLLVMContext());
}
// While we're converting the parameter types for a function, we don't want
// to recursively convert any pointed-to structs. Converting directly-used
// structs is ok though.
if (!RecordsBeingLaidOut.insert(Ty).second) {
SkippedLayout = true;
return llvm::StructType::get(getLLVMContext());
}
// The function type can be built; call the appropriate routines to
// build it.
const CGFunctionInfo *FI;
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
FI = &arrangeFreeFunctionType(
CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
} else {
const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
FI = &arrangeFreeFunctionType(
CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
}
llvm::Type *ResultType = nullptr;
// If there is something higher level prodding our CGFunctionInfo, then
// don't recurse into it again.
if (FunctionsBeingProcessed.count(FI)) {
ResultType = llvm::StructType::get(getLLVMContext());
SkippedLayout = true;
} else {
// Otherwise, we're good to go, go ahead and convert it.
ResultType = GetFunctionType(*FI);
}
RecordsBeingLaidOut.erase(Ty);
if (RecordsBeingLaidOut.empty())
while (!DeferredRecords.empty())
ConvertRecordDeclType(DeferredRecords.pop_back_val());
return ResultType;
}
/// ConvertType - Convert the specified type to its LLVM form.
llvm::Type *CodeGenTypes::ConvertType(QualType T) {
T = Context.getCanonicalType(T);
const Type *Ty = T.getTypePtr();
// For the device-side compilation, CUDA device builtin surface/texture types
// may be represented in different types.
if (Context.getLangOpts().CUDAIsDevice) {
if (T->isCUDADeviceBuiltinSurfaceType()) {
if (auto *Ty = CGM.getTargetCodeGenInfo()
.getCUDADeviceBuiltinSurfaceDeviceType())
return Ty;
} else if (T->isCUDADeviceBuiltinTextureType()) {
if (auto *Ty = CGM.getTargetCodeGenInfo()
.getCUDADeviceBuiltinTextureDeviceType())
return Ty;
}
}
// RecordTypes are cached and processed specially.
if (const RecordType *RT = dyn_cast<RecordType>(Ty))
return ConvertRecordDeclType(RT->getDecl());
// The LLVM type we return for a given Clang type may not always be the same,
// most notably when dealing with recursive structs. We mark these potential
// cases with ShouldUseCache below. Builtin types cannot be recursive.
// TODO: when clang uses LLVM opaque pointers we won't be able to represent
// recursive types with LLVM types, making this logic much simpler.
llvm::Type *CachedType = nullptr;
bool ShouldUseCache =
Ty->isBuiltinType() ||
(noRecordsBeingLaidOut() && FunctionsBeingProcessed.empty());
if (ShouldUseCache) {
llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI =
TypeCache.find(Ty);
if (TCI != TypeCache.end())
CachedType = TCI->second;
// With expensive checks, check that the type we compute matches the
// cached type.
#ifndef EXPENSIVE_CHECKS
if (CachedType)
return CachedType;
#endif
}
// If we don't have it in the cache, convert it now.
llvm::Type *ResultType = nullptr;
switch (Ty->getTypeClass()) {
case Type::Record: // Handled above.
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.inc"
llvm_unreachable("Non-canonical or dependent types aren't possible.");
case Type::Builtin: {
switch (cast<BuiltinType>(Ty)->getKind()) {
case BuiltinType::Void:
case BuiltinType::ObjCId:
case BuiltinType::ObjCClass:
case BuiltinType::ObjCSel:
// LLVM void type can only be used as the result of a function call. Just
// map to the same as char.
ResultType = llvm::Type::getInt8Ty(getLLVMContext());
break;
case BuiltinType::Bool:
// Note that we always return bool as i1 for use as a scalar type.
ResultType = llvm::Type::getInt1Ty(getLLVMContext());
break;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
case BuiltinType::Short:
case BuiltinType::UShort:
case BuiltinType::Int:
case BuiltinType::UInt:
case BuiltinType::Long:
case BuiltinType::ULong:
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
case BuiltinType::WChar_S:
case BuiltinType::WChar_U:
case BuiltinType::Char8:
case BuiltinType::Char16:
case BuiltinType::Char32:
case BuiltinType::ShortAccum:
case BuiltinType::Accum:
case BuiltinType::LongAccum:
case BuiltinType::UShortAccum:
case BuiltinType::UAccum:
case BuiltinType::ULongAccum:
case BuiltinType::ShortFract:
case BuiltinType::Fract:
case BuiltinType::LongFract:
case BuiltinType::UShortFract:
case BuiltinType::UFract:
case BuiltinType::ULongFract:
case BuiltinType::SatShortAccum:
case BuiltinType::SatAccum:
case BuiltinType::SatLongAccum:
case BuiltinType::SatUShortAccum:
case BuiltinType::SatUAccum:
case BuiltinType::SatULongAccum:
case BuiltinType::SatShortFract:
case BuiltinType::SatFract:
case BuiltinType::SatLongFract:
case BuiltinType::SatUShortFract:
case BuiltinType::SatUFract:
case BuiltinType::SatULongFract:
ResultType = llvm::IntegerType::get(getLLVMContext(),
static_cast<unsigned>(Context.getTypeSize(T)));
break;
case BuiltinType::Float16:
ResultType =
getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
/* UseNativeHalf = */ true);
break;
case BuiltinType::Half:
// Half FP can either be storage-only (lowered to i16) or native.
ResultType = getTypeForFormat(
getLLVMContext(), Context.getFloatTypeSemantics(T),
Context.getLangOpts().NativeHalfType ||
!Context.getTargetInfo().useFP16ConversionIntrinsics());
break;
case BuiltinType::BFloat16:
case BuiltinType::Float:
case BuiltinType::Double:
case BuiltinType::LongDouble:
case BuiltinType::Float128:
case BuiltinType::Ibm128:
ResultType = getTypeForFormat(getLLVMContext(),
Context.getFloatTypeSemantics(T),
/* UseNativeHalf = */ false);
break;
case BuiltinType::NullPtr:
// Model std::nullptr_t as i8*
ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
break;
case BuiltinType::UInt128:
case BuiltinType::Int128:
ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
break;
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
case BuiltinType::Id:
#include "clang/Basic/OpenCLImageTypes.def"
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
case BuiltinType::Id:
#include "clang/Basic/OpenCLExtensionTypes.def"
case BuiltinType::OCLSampler:
case BuiltinType::OCLEvent:
case BuiltinType::OCLClkEvent:
case BuiltinType::OCLQueue:
case BuiltinType::OCLReserveID:
ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
break;
case BuiltinType::SveInt8:
case BuiltinType::SveUint8:
case BuiltinType::SveInt8x2:
case BuiltinType::SveUint8x2:
case BuiltinType::SveInt8x3:
case BuiltinType::SveUint8x3:
case BuiltinType::SveInt8x4:
case BuiltinType::SveUint8x4:
case BuiltinType::SveInt16:
case BuiltinType::SveUint16:
case BuiltinType::SveInt16x2:
case BuiltinType::SveUint16x2:
case BuiltinType::SveInt16x3:
case BuiltinType::SveUint16x3:
case BuiltinType::SveInt16x4:
case BuiltinType::SveUint16x4:
case BuiltinType::SveInt32:
case BuiltinType::SveUint32:
case BuiltinType::SveInt32x2:
case BuiltinType::SveUint32x2:
case BuiltinType::SveInt32x3:
case BuiltinType::SveUint32x3:
case BuiltinType::SveInt32x4:
case BuiltinType::SveUint32x4:
case BuiltinType::SveInt64:
case BuiltinType::SveUint64:
case BuiltinType::SveInt64x2:
case BuiltinType::SveUint64x2:
case BuiltinType::SveInt64x3:
case BuiltinType::SveUint64x3:
case BuiltinType::SveInt64x4:
case BuiltinType::SveUint64x4:
case BuiltinType::SveBool:
case BuiltinType::SveFloat16:
case BuiltinType::SveFloat16x2:
case BuiltinType::SveFloat16x3:
case BuiltinType::SveFloat16x4:
case BuiltinType::SveFloat32:
case BuiltinType::SveFloat32x2:
case BuiltinType::SveFloat32x3:
case BuiltinType::SveFloat32x4:
case BuiltinType::SveFloat64:
case BuiltinType::SveFloat64x2:
case BuiltinType::SveFloat64x3:
case BuiltinType::SveFloat64x4:
case BuiltinType::SveBFloat16:
case BuiltinType::SveBFloat16x2:
case BuiltinType::SveBFloat16x3:
case BuiltinType::SveBFloat16x4: {
ASTContext::BuiltinVectorTypeInfo Info =
Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty));
return llvm::ScalableVectorType::get(ConvertType(Info.ElementType),
Info.EC.getKnownMinValue() *
Info.NumVectors);
}
#define PPC_VECTOR_TYPE(Name, Id, Size) \
case BuiltinType::Id: \
ResultType = \
llvm::FixedVectorType::get(ConvertType(Context.BoolTy), Size); \
break;
#include "clang/Basic/PPCTypes.def"
#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
#include "clang/Basic/RISCVVTypes.def"
{
ASTContext::BuiltinVectorTypeInfo Info =
Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty));
return llvm::ScalableVectorType::get(ConvertType(Info.ElementType),
Info.EC.getKnownMinValue() *
Info.NumVectors);
}
case BuiltinType::Dependent:
#define BUILTIN_TYPE(Id, SingletonId)
#define PLACEHOLDER_TYPE(Id, SingletonId) \
case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
llvm_unreachable("Unexpected placeholder builtin type!");
}
break;
}
case Type::Auto:
case Type::DeducedTemplateSpecialization:
llvm_unreachable("Unexpected undeduced type!");
case Type::Complex: {
llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
ResultType = llvm::StructType::get(EltTy, EltTy);
break;
}
case Type::LValueReference:
case Type::RValueReference: {
const ReferenceType *RTy = cast<ReferenceType>(Ty);
QualType ETy = RTy->getPointeeType();
llvm::Type *PointeeType = ConvertTypeForMem(ETy);
unsigned AS = Context.getTargetAddressSpace(ETy);
ResultType = llvm::PointerType::get(PointeeType, AS);
break;
}
case Type::Pointer: {
const PointerType *PTy = cast<PointerType>(Ty);
QualType ETy = PTy->getPointeeType();
llvm::Type *PointeeType = ConvertTypeForMem(ETy);
if (PointeeType->isVoidTy())
PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
unsigned AS = Context.getTargetAddressSpace(ETy);
ResultType = llvm::PointerType::get(PointeeType, AS);
break;
}
case Type::VariableArray: {
const VariableArrayType *A = cast<VariableArrayType>(Ty);
assert(A->getIndexTypeCVRQualifiers() == 0 &&
"FIXME: We only handle trivial array types so far!");
// VLAs resolve to the innermost element type; this matches
// the return of alloca, and there isn't any obviously better choice.
ResultType = ConvertTypeForMem(A->getElementType());
break;
}
case Type::IncompleteArray: {
const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
assert(A->getIndexTypeCVRQualifiers() == 0 &&
"FIXME: We only handle trivial array types so far!");
// int X[] -> [0 x int], unless the element type is not sized. If it is
// unsized (e.g. an incomplete struct) just use [0 x i8].
ResultType = ConvertTypeForMem(A->getElementType());
if (!ResultType->isSized()) {
SkippedLayout = true;
ResultType = llvm::Type::getInt8Ty(getLLVMContext());
}
ResultType = llvm::ArrayType::get(ResultType, 0);
break;
}
case Type::ConstantArray: {
const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
// Lower arrays of undefined struct type to arrays of i8 just to have a
// concrete type.
if (!EltTy->isSized()) {
SkippedLayout = true;
EltTy = llvm::Type::getInt8Ty(getLLVMContext());
}
ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
break;
}
case Type::ExtVector:
case Type::Vector: {
const auto *VT = cast<VectorType>(Ty);
// An ext_vector_type of Bool is really a vector of bits.
llvm::Type *IRElemTy = VT->isExtVectorBoolType()
? llvm::Type::getInt1Ty(getLLVMContext())
: ConvertType(VT->getElementType());
ResultType = llvm::FixedVectorType::get(IRElemTy, VT->getNumElements());
break;
}
case Type::ConstantMatrix: {
const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty);
ResultType =
llvm::FixedVectorType::get(ConvertType(MT->getElementType()),
MT->getNumRows() * MT->getNumColumns());
break;
}
case Type::FunctionNoProto:
case Type::FunctionProto:
ResultType = ConvertFunctionTypeInternal(T);
break;
case Type::ObjCObject:
ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
break;
case Type::ObjCInterface: {
// Objective-C interfaces are always opaque (outside of the
// runtime, which can do whatever it likes); we never refine
// these.
llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
if (!T)
T = llvm::StructType::create(getLLVMContext());
ResultType = T;
break;
}
case Type::ObjCObjectPointer: {
// Protocol qualifications do not influence the LLVM type, we just return a
// pointer to the underlying interface type. We don't need to worry about
// recursive conversion.
llvm::Type *T =
ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
ResultType = T->getPointerTo();
break;
}
case Type::Enum: {
const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
if (ED->isCompleteDefinition() || ED->isFixed())
return ConvertType(ED->getIntegerType());
// Return a placeholder 'i32' type. This can be changed later when the
// type is defined (see UpdateCompletedType), but is likely to be the
// "right" answer.
ResultType = llvm::Type::getInt32Ty(getLLVMContext());
break;
}
case Type::BlockPointer: {
const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
llvm::Type *PointeeType = CGM.getLangOpts().OpenCL
? CGM.getGenericBlockLiteralType()
: ConvertTypeForMem(FTy);
// Block pointers lower to function type. For function type,
// getTargetAddressSpace() returns default address space for
// function pointer i.e. program address space. Therefore, for block
// pointers, it is important to pass qualifiers when calling
// getTargetAddressSpace(), to ensure that we get the address space
// for data pointers and not function pointers.
unsigned AS = Context.getTargetAddressSpace(FTy.getQualifiers());
ResultType = llvm::PointerType::get(PointeeType, AS);
break;
}
case Type::MemberPointer: {
auto *MPTy = cast<MemberPointerType>(Ty);
if (!getCXXABI().isMemberPointerConvertible(MPTy)) {
auto *C = MPTy->getClass();
auto Insertion = RecordsWithOpaqueMemberPointers.insert({C, nullptr});
if (Insertion.second)
Insertion.first->second = llvm::StructType::create(getLLVMContext());
ResultType = Insertion.first->second;
} else {
ResultType = getCXXABI().ConvertMemberPointerType(MPTy);
}
break;
}
case Type::Atomic: {
QualType valueType = cast<AtomicType>(Ty)->getValueType();
ResultType = ConvertTypeForMem(valueType);
// Pad out to the inflated size if necessary.
uint64_t valueSize = Context.getTypeSize(valueType);
uint64_t atomicSize = Context.getTypeSize(Ty);
if (valueSize != atomicSize) {
assert(valueSize < atomicSize);
llvm::Type *elts[] = {
ResultType,
llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
};
ResultType = llvm::StructType::get(getLLVMContext(),
llvm::makeArrayRef(elts));
}
break;
}
case Type::Pipe: {
ResultType = CGM.getOpenCLRuntime().getPipeType(cast<PipeType>(Ty));
break;
}
case Type::BitInt: {
const auto &EIT = cast<BitIntType>(Ty);
ResultType = llvm::Type::getIntNTy(getLLVMContext(), EIT->getNumBits());
break;
}
}
assert(ResultType && "Didn't convert a type?");
assert((!CachedType || CachedType == ResultType) &&
"Cached type doesn't match computed type");
if (ShouldUseCache)
TypeCache[Ty] = ResultType;
return ResultType;
}
bool CodeGenModule::isPaddedAtomicType(QualType type) {
return isPaddedAtomicType(type->castAs<AtomicType>());
}
bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
}
/// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
// TagDecl's are not necessarily unique, instead use the (clang)
// type connected to the decl.
const Type *Key = Context.getTagDeclType(RD).getTypePtr();
llvm::StructType *&Entry = RecordDeclTypes[Key];
// If we don't have a StructType at all yet, create the forward declaration.
if (!Entry) {
Entry = llvm::StructType::create(getLLVMContext());
addRecordTypeName(RD, Entry, "");
}
llvm::StructType *Ty = Entry;
// If this is still a forward declaration, or the LLVM type is already
// complete, there's nothing more to do.
RD = RD->getDefinition();
if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
return Ty;
// If converting this type would cause us to infinitely loop, don't do it!
if (!isSafeToConvert(RD, *this)) {
DeferredRecords.push_back(RD);
return Ty;
}
// Okay, this is a definition of a type. Compile the implementation now.
bool InsertResult = RecordsBeingLaidOut.insert(Key).second;
(void)InsertResult;
assert(InsertResult && "Recursively compiling a struct?");
// Force conversion of non-virtual base classes recursively.
if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
for (const auto &I : CRD->bases()) {
if (I.isVirtual()) continue;
ConvertRecordDeclType(I.getType()->castAs<RecordType>()->getDecl());
}
}
// Layout fields.
std::unique_ptr<CGRecordLayout> Layout = ComputeRecordLayout(RD, Ty);
CGRecordLayouts[Key] = std::move(Layout);
// We're done laying out this struct.
bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
// If this struct blocked a FunctionType conversion, then recompute whatever
// was derived from that.
// FIXME: This is hugely overconservative.
if (SkippedLayout)
TypeCache.clear();
// If we're done converting the outer-most record, then convert any deferred
// structs as well.
if (RecordsBeingLaidOut.empty())
while (!DeferredRecords.empty())
ConvertRecordDeclType(DeferredRecords.pop_back_val());
return Ty;
}
/// getCGRecordLayout - Return record layout info for the given record decl.
const CGRecordLayout &
CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
const Type *Key = Context.getTagDeclType(RD).getTypePtr();
auto I = CGRecordLayouts.find(Key);
if (I != CGRecordLayouts.end())
return *I->second;
// Compute the type information.
ConvertRecordDeclType(RD);
// Now try again.
I = CGRecordLayouts.find(Key);
assert(I != CGRecordLayouts.end() &&
"Unable to find record layout information for type");
return *I->second;
}
bool CodeGenTypes::isPointerZeroInitializable(QualType T) {
assert((T->isAnyPointerType() || T->isBlockPointerType()) && "Invalid type");
return isZeroInitializable(T);
}
bool CodeGenTypes::isZeroInitializable(QualType T) {
if (T->getAs<PointerType>())
return Context.getTargetNullPointerValue(T) == 0;
if (const auto *AT = Context.getAsArrayType(T)) {
if (isa<IncompleteArrayType>(AT))
return true;
if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
if (Context.getConstantArrayElementCount(CAT) == 0)
return true;
T = Context.getBaseElementType(T);
}
// Records are non-zero-initializable if they contain any
// non-zero-initializable subobjects.
if (const RecordType *RT = T->getAs<RecordType>()) {
const RecordDecl *RD = RT->getDecl();
return isZeroInitializable(RD);
}
// We have to ask the ABI about member pointers.
if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
return getCXXABI().isZeroInitializable(MPT);
// Everything else is okay.
return true;
}
bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) {
return getCGRecordLayout(RD).isZeroInitializable();
}
|