1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
//===--- MacroCallReconstructor.cpp - Format C++ code -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file contains the implementation of MacroCallReconstructor, which fits
/// an reconstructed macro call to a parsed set of UnwrappedLines.
///
//===----------------------------------------------------------------------===//
#include "Macros.h"
#include "UnwrappedLineParser.h"
#include "clang/Basic/TokenKinds.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/Debug.h"
#include <cassert>
#define DEBUG_TYPE "format-reconstruct"
namespace clang {
namespace format {
// Call \p Call for each token in the unwrapped line given, passing
// the token, its parent and whether it is the first token in the line.
template <typename T>
void forEachToken(const UnwrappedLine &Line, const T &Call,
FormatToken *Parent = nullptr) {
bool First = true;
for (const auto &N : Line.Tokens) {
Call(N.Tok, Parent, First);
First = false;
for (const auto &Child : N.Children) {
forEachToken(Child, Call, N.Tok);
}
}
}
MacroCallReconstructor::MacroCallReconstructor(
unsigned Level,
const llvm::DenseMap<FormatToken *, std::unique_ptr<UnwrappedLine>>
&ActiveExpansions)
: Level(Level), IdToReconstructed(ActiveExpansions) {
Result.Tokens.push_back(std::make_unique<LineNode>());
ActiveReconstructedLines.push_back(&Result);
}
void MacroCallReconstructor::addLine(const UnwrappedLine &Line) {
assert(State != Finalized);
LLVM_DEBUG(llvm::dbgs() << "MCR: new line...\n");
forEachToken(Line, [&](FormatToken *Token, FormatToken *Parent, bool First) {
add(Token, Parent, First);
});
assert(InProgress || finished());
}
UnwrappedLine MacroCallReconstructor::takeResult() && {
finalize();
assert(Result.Tokens.size() == 1 && Result.Tokens.front()->Children.size() == 1);
UnwrappedLine Final =
createUnwrappedLine(*Result.Tokens.front()->Children.front(), Level);
assert(!Final.Tokens.empty());
return Final;
}
// Reconstruct the position of the next \p Token, given its parent \p
// ExpandedParent in the incoming unwrapped line. \p First specifies whether it
// is the first token in a given unwrapped line.
void MacroCallReconstructor::add(FormatToken *Token,
FormatToken *ExpandedParent, bool First) {
LLVM_DEBUG(
llvm::dbgs() << "MCR: Token: " << Token->TokenText << ", Parent: "
<< (ExpandedParent ? ExpandedParent->TokenText : "<null>")
<< ", First: " << First << "\n");
// In order to be able to find the correct parent in the reconstructed token
// stream, we need to continue the last open reconstruction until we find the
// given token if it is part of the reconstructed token stream.
//
// Note that hidden tokens can be part of the reconstructed stream in nested
// macro calls.
// For example, given
// #define C(x, y) x y
// #define B(x) {x}
// And the call:
// C(a, B(b))
// The outer macro call will be C(a, {b}), and the hidden token '}' can be
// found in the reconstructed token stream of that expansion level.
// In the expanded token stream
// a {b}
// 'b' is a child of '{'. We need to continue the open expansion of the ','
// in the call of 'C' in order to correctly set the ',' as the parent of '{',
// so we later set the spelled token 'b' as a child of the ','.
if (!ActiveExpansions.empty() && Token->MacroCtx &&
(Token->MacroCtx->Role != MR_Hidden ||
ActiveExpansions.size() != Token->MacroCtx->ExpandedFrom.size())) {
if (/*PassedMacroComma = */ reconstructActiveCallUntil(Token))
First = true;
}
prepareParent(ExpandedParent, First);
if (Token->MacroCtx) {
// If this token was generated by a macro call, add the reconstructed
// equivalent of the token.
reconstruct(Token);
} else {
// Otherwise, we add it to the current line.
appendToken(Token);
}
}
// Adjusts the stack of active reconstructed lines so we're ready to push
// tokens. The tokens to be pushed are children of ExpandedParent in the
// expanded code.
//
// This may entail:
// - creating a new line, if the parent is on the active line
// - popping active lines, if the parent is further up the stack
//
// Postcondition:
// ActiveReconstructedLines.back() is the line that has \p ExpandedParent or its
// reconstructed replacement token as a parent (when possible) - that is, the
// last token in \c ActiveReconstructedLines[ActiveReconstructedLines.size()-2]
// is the parent of ActiveReconstructedLines.back() in the reconstructed
// unwrapped line.
void MacroCallReconstructor::prepareParent(FormatToken *ExpandedParent,
bool NewLine) {
LLVM_DEBUG({
llvm::dbgs() << "ParentMap:\n";
debugParentMap();
});
// We want to find the parent in the new unwrapped line, where the expanded
// parent might have been replaced during reconstruction.
FormatToken *Parent = getParentInResult(ExpandedParent);
LLVM_DEBUG(llvm::dbgs() << "MCR: New parent: "
<< (Parent ? Parent->TokenText : "<null>") << "\n");
FormatToken *OpenMacroParent = nullptr;
if (!MacroCallStructure.empty()) {
// Inside a macro expansion, it is possible to lose track of the correct
// parent - either because it is already popped, for example because it was
// in a different macro argument (e.g. M({, })), or when we work on invalid
// code.
// Thus, we use the innermost macro call's parent as the parent at which
// we stop; this allows us to stay within the macro expansion and keeps
// any problems confined to the extent of the macro call.
OpenMacroParent =
getParentInResult(MacroCallStructure.back().MacroCallLParen);
LLVM_DEBUG(llvm::dbgs()
<< "MacroCallLParen: "
<< MacroCallStructure.back().MacroCallLParen->TokenText
<< ", OpenMacroParent: "
<< (OpenMacroParent ? OpenMacroParent->TokenText : "<null>")
<< "\n");
}
if (NewLine ||
(!ActiveReconstructedLines.back()->Tokens.empty() &&
Parent == ActiveReconstructedLines.back()->Tokens.back()->Tok)) {
// If we are at the first token in a new line, we want to also
// create a new line in the resulting reconstructed unwrapped line.
while (ActiveReconstructedLines.back()->Tokens.empty() ||
(Parent != ActiveReconstructedLines.back()->Tokens.back()->Tok &&
ActiveReconstructedLines.back()->Tokens.back()->Tok !=
OpenMacroParent)) {
ActiveReconstructedLines.pop_back();
assert(!ActiveReconstructedLines.empty());
}
assert(!ActiveReconstructedLines.empty());
ActiveReconstructedLines.back()->Tokens.back()->Children.push_back(
std::make_unique<ReconstructedLine>());
ActiveReconstructedLines.push_back(
&*ActiveReconstructedLines.back()->Tokens.back()->Children.back());
} else if (parentLine().Tokens.back()->Tok != Parent) {
// If we're not the first token in a new line, pop lines until we find
// the child of \c Parent in the stack.
while (Parent != parentLine().Tokens.back()->Tok &&
parentLine().Tokens.back()->Tok &&
parentLine().Tokens.back()->Tok != OpenMacroParent) {
ActiveReconstructedLines.pop_back();
assert(!ActiveReconstructedLines.empty());
}
}
assert(!ActiveReconstructedLines.empty());
}
// For a given \p Parent in the incoming expanded token stream, find the
// corresponding parent in the output.
FormatToken *MacroCallReconstructor::getParentInResult(FormatToken *Parent) {
FormatToken *Mapped = SpelledParentToReconstructedParent.lookup(Parent);
if (!Mapped)
return Parent;
for (; Mapped; Mapped = SpelledParentToReconstructedParent.lookup(Parent)) {
Parent = Mapped;
}
// If we use a different token than the parent in the expanded token stream
// as parent, mark it as a special parent, so the formatting code knows it
// needs to have its children formatted.
Parent->MacroParent = true;
return Parent;
}
// Reconstruct a \p Token that was expanded from a macro call.
void MacroCallReconstructor::reconstruct(FormatToken *Token) {
assert(Token->MacroCtx);
// A single token can be the only result of a macro call:
// Given: #define ID(x, y) ;
// And the call: ID(<some>, <tokens>)
// ';' in the expanded stream will reconstruct all of ID(<some>, <tokens>).
if (Token->MacroCtx->StartOfExpansion) {
startReconstruction(Token);
// If the order of tokens in the expanded token stream is not the
// same as the order of tokens in the reconstructed stream, we need
// to reconstruct tokens that arrive later in the stream.
if (Token->MacroCtx->Role != MR_Hidden) {
reconstructActiveCallUntil(Token);
}
}
assert(!ActiveExpansions.empty());
if (ActiveExpansions.back().SpelledI != ActiveExpansions.back().SpelledE) {
assert(ActiveExpansions.size() == Token->MacroCtx->ExpandedFrom.size());
if (Token->MacroCtx->Role != MR_Hidden) {
// The current token in the reconstructed token stream must be the token
// we're looking for - we either arrive here after startReconstruction,
// which initiates the stream to the first token, or after
// continueReconstructionUntil skipped until the expected token in the
// reconstructed stream at the start of add(...).
assert(ActiveExpansions.back().SpelledI->Tok == Token);
processNextReconstructed();
} else if (!currentLine()->Tokens.empty()) {
// Map all hidden tokens to the last visible token in the output.
// If the hidden token is a parent, we'll use the last visible
// token as the parent of the hidden token's children.
SpelledParentToReconstructedParent[Token] =
currentLine()->Tokens.back()->Tok;
} else {
for (auto I = ActiveReconstructedLines.rbegin(),
E = ActiveReconstructedLines.rend();
I != E; ++I) {
if (!(*I)->Tokens.empty()) {
SpelledParentToReconstructedParent[Token] = (*I)->Tokens.back()->Tok;
break;
}
}
}
}
if (Token->MacroCtx->EndOfExpansion)
endReconstruction(Token);
}
// Given a \p Token that starts an expansion, reconstruct the beginning of the
// macro call.
// For example, given: #define ID(x) x
// And the call: ID(int a)
// Reconstructs: ID(
void MacroCallReconstructor::startReconstruction(FormatToken *Token) {
assert(Token->MacroCtx);
assert(!Token->MacroCtx->ExpandedFrom.empty());
assert(ActiveExpansions.size() <= Token->MacroCtx->ExpandedFrom.size());
#ifndef NDEBUG
// Check that the token's reconstruction stack matches our current
// reconstruction stack.
for (size_t I = 0; I < ActiveExpansions.size(); ++I) {
assert(ActiveExpansions[I].ID ==
Token->MacroCtx
->ExpandedFrom[Token->MacroCtx->ExpandedFrom.size() - 1 - I]);
}
#endif
// Start reconstruction for all calls for which this token is the first token
// generated by the call.
// Note that the token's expanded from stack is inside-to-outside, and the
// expansions for which this token is not the first are the outermost ones.
ArrayRef<FormatToken *> StartedMacros =
makeArrayRef(Token->MacroCtx->ExpandedFrom)
.drop_back(ActiveExpansions.size());
assert(StartedMacros.size() == Token->MacroCtx->StartOfExpansion);
// We reconstruct macro calls outside-to-inside.
for (FormatToken *ID : llvm::reverse(StartedMacros)) {
// We found a macro call to be reconstructed; the next time our
// reconstruction stack is empty we know we finished an reconstruction.
#ifndef NDEBUG
State = InProgress;
#endif
// Put the reconstructed macro call's token into our reconstruction stack.
auto IU = IdToReconstructed.find(ID);
assert(IU != IdToReconstructed.end());
ActiveExpansions.push_back(
{ID, IU->second->Tokens.begin(), IU->second->Tokens.end()});
// Process the macro call's identifier.
processNextReconstructed();
if (ActiveExpansions.back().SpelledI == ActiveExpansions.back().SpelledE)
continue;
if (ActiveExpansions.back().SpelledI->Tok->is(tok::l_paren)) {
// Process the optional opening parenthesis.
processNextReconstructed();
}
}
}
// Add all tokens in the reconstruction stream to the output until we find the
// given \p Token.
bool MacroCallReconstructor::reconstructActiveCallUntil(FormatToken *Token) {
assert(!ActiveExpansions.empty());
bool PassedMacroComma = false;
// FIXME: If Token was already expanded earlier, due to
// a change in order, we will not find it, but need to
// skip it.
while (ActiveExpansions.back().SpelledI != ActiveExpansions.back().SpelledE &&
ActiveExpansions.back().SpelledI->Tok != Token) {
PassedMacroComma = processNextReconstructed() || PassedMacroComma;
}
return PassedMacroComma;
}
// End all reconstructions for which \p Token is the final token.
void MacroCallReconstructor::endReconstruction(FormatToken *Token) {
assert(Token->MacroCtx &&
(ActiveExpansions.size() >= Token->MacroCtx->EndOfExpansion));
for (size_t I = 0; I < Token->MacroCtx->EndOfExpansion; ++I) {
#ifndef NDEBUG
// Check all remaining tokens but the final closing parenthesis and optional
// trailing comment were already reconstructed at an inner expansion level.
for (auto T = ActiveExpansions.back().SpelledI;
T != ActiveExpansions.back().SpelledE; ++T) {
FormatToken *Token = T->Tok;
bool ClosingParen = (std::next(T) == ActiveExpansions.back().SpelledE ||
std::next(T)->Tok->isTrailingComment()) &&
!Token->MacroCtx && Token->is(tok::r_paren);
bool TrailingComment = Token->isTrailingComment();
bool PreviousLevel =
Token->MacroCtx &&
(ActiveExpansions.size() < Token->MacroCtx->ExpandedFrom.size());
if (!ClosingParen && !TrailingComment && !PreviousLevel) {
llvm::dbgs() << "At token: " << Token->TokenText << "\n";
}
// In addition to the following cases, we can also run into this
// when a macro call had more arguments than expected; in that case,
// the comma and the remaining tokens in the macro call will potentially
// end up in the line when we finish the expansion.
// FIXME: Add the information which arguments are unused, and assert
// one of the cases below plus reconstructed macro argument tokens.
// assert(ClosingParen || TrailingComment || PreviousLevel);
}
#endif
// Handle the remaining open tokens:
// - expand the closing parenthesis, if it exists, including an optional
// trailing comment
// - handle tokens that were already reconstructed at an inner expansion
// level
// - handle tokens when a macro call had more than the expected number of
// arguments, i.e. when #define M(x) is called as M(a, b, c) we'll end
// up with the sequence ", b, c)" being open at the end of the
// reconstruction; we want to gracefully handle that case
//
// FIXME: See the above debug-check for what we will need to do to be
// able to assert this.
for (auto T = ActiveExpansions.back().SpelledI;
T != ActiveExpansions.back().SpelledE; ++T) {
processNextReconstructed();
}
ActiveExpansions.pop_back();
}
}
void MacroCallReconstructor::debugParentMap() const {
llvm::DenseSet<FormatToken *> Values;
for (const auto &P : SpelledParentToReconstructedParent)
Values.insert(P.second);
for (const auto &P : SpelledParentToReconstructedParent) {
if (Values.contains(P.first))
continue;
llvm::dbgs() << (P.first ? P.first->TokenText : "<null>");
for (auto I = SpelledParentToReconstructedParent.find(P.first),
E = SpelledParentToReconstructedParent.end();
I != E; I = SpelledParentToReconstructedParent.find(I->second)) {
llvm::dbgs() << " -> " << (I->second ? I->second->TokenText : "<null>");
}
llvm::dbgs() << "\n";
}
}
// If visible, add the next token of the reconstructed token sequence to the
// output. Returns whether reconstruction passed a comma that is part of a
// macro call.
bool MacroCallReconstructor::processNextReconstructed() {
FormatToken *Token = ActiveExpansions.back().SpelledI->Tok;
++ActiveExpansions.back().SpelledI;
if (Token->MacroCtx) {
// Skip tokens that are not part of the macro call.
if (Token->MacroCtx->Role == MR_Hidden) {
return false;
}
// Skip tokens we already expanded during an inner reconstruction.
// For example, given: #define ID(x) {x}
// And the call: ID(ID(f))
// We get two reconstructions:
// ID(f) -> {f}
// ID({f}) -> {{f}}
// We reconstruct f during the first reconstruction, and skip it during the
// second reconstruction.
if (ActiveExpansions.size() < Token->MacroCtx->ExpandedFrom.size()) {
return false;
}
}
// Tokens that do not have a macro context are tokens in that are part of the
// macro call that have not taken part in expansion.
if (!Token->MacroCtx) {
// Put the parentheses and commas of a macro call into the same line;
// if the arguments produce new unwrapped lines, they will become children
// of the corresponding opening parenthesis or comma tokens in the
// reconstructed call.
if (Token->is(tok::l_paren)) {
MacroCallStructure.push_back(MacroCallState(
currentLine(), parentLine().Tokens.back()->Tok, Token));
// All tokens that are children of the previous line's last token in the
// reconstructed token stream will now be children of the l_paren token.
// For example, for the line containing the macro calls:
// auto x = ID({ID(2)});
// We will build up a map <null> -> ( -> ( with the first and second
// l_paren of the macro call respectively. New lines that come in with a
// <null> parent will then become children of the l_paren token of the
// currently innermost macro call.
SpelledParentToReconstructedParent[MacroCallStructure.back()
.ParentLastToken] = Token;
appendToken(Token);
prepareParent(Token, /*NewLine=*/true);
Token->MacroParent = true;
return false;
}
if (!MacroCallStructure.empty()) {
if (Token->is(tok::comma)) {
// Make new lines inside the next argument children of the comma token.
SpelledParentToReconstructedParent
[MacroCallStructure.back().Line->Tokens.back()->Tok] = Token;
Token->MacroParent = true;
appendToken(Token, MacroCallStructure.back().Line);
prepareParent(Token, /*NewLine=*/true);
return true;
}
if (Token->is(tok::r_paren)) {
appendToken(Token, MacroCallStructure.back().Line);
SpelledParentToReconstructedParent.erase(
MacroCallStructure.back().ParentLastToken);
MacroCallStructure.pop_back();
return false;
}
}
}
// Note that any tokens that are tagged with MR_None have been passed as
// arguments to the macro that have not been expanded, for example:
// Given: #define ID(X) x
// When calling: ID(a, b)
// 'b' will be part of the reconstructed token stream, but tagged MR_None.
// Given that erroring out in this case would be disruptive, we continue
// pushing the (unformatted) token.
// FIXME: This can lead to unfortunate formatting decisions - give the user
// a hint that their macro definition is broken.
appendToken(Token);
return false;
}
void MacroCallReconstructor::finalize() {
#ifndef NDEBUG
assert(State != Finalized && finished());
State = Finalized;
#endif
// We created corresponding unwrapped lines for each incoming line as children
// the the toplevel null token.
assert(Result.Tokens.size() == 1 && !Result.Tokens.front()->Children.empty());
LLVM_DEBUG({
llvm::dbgs() << "Finalizing reconstructed lines:\n";
debug(Result, 0);
});
// The first line becomes the top level line in the resulting unwrapped line.
LineNode &Top = *Result.Tokens.front();
auto *I = Top.Children.begin();
// Every subsequent line will become a child of the last token in the previous
// line, which is the token prior to the first token in the line.
LineNode *Last = (*I)->Tokens.back().get();
++I;
for (auto *E = Top.Children.end(); I != E; ++I) {
assert(Last->Children.empty());
Last->Children.push_back(std::move(*I));
// Mark the previous line's last token as generated by a macro expansion
// so the formatting algorithm can take that into account.
Last->Tok->MacroParent = true;
Last = Last->Children.back()->Tokens.back().get();
}
Top.Children.resize(1);
}
void MacroCallReconstructor::appendToken(FormatToken *Token,
ReconstructedLine *L) {
L = L ? L : currentLine();
LLVM_DEBUG(llvm::dbgs() << "-> " << Token->TokenText << "\n");
L->Tokens.push_back(std::make_unique<LineNode>(Token));
}
UnwrappedLine
MacroCallReconstructor::createUnwrappedLine(const ReconstructedLine &Line,
int Level) {
UnwrappedLine Result;
Result.Level = Level;
for (const auto &N : Line.Tokens) {
Result.Tokens.push_back(N->Tok);
UnwrappedLineNode &Current = Result.Tokens.back();
for (const auto &Child : N->Children) {
if (Child->Tokens.empty())
continue;
Current.Children.push_back(createUnwrappedLine(*Child, Level + 1));
}
if (Current.Children.size() == 1 &&
Current.Tok->isOneOf(tok::l_paren, tok::comma)) {
Result.Tokens.splice(Result.Tokens.end(),
Current.Children.front().Tokens);
Current.Children.clear();
}
}
return Result;
}
void MacroCallReconstructor::debug(const ReconstructedLine &Line, int Level) {
for (int i = 0; i < Level; ++i)
llvm::dbgs() << " ";
for (const auto &N : Line.Tokens) {
if (!N)
continue;
if (N->Tok)
llvm::dbgs() << N->Tok->TokenText << " ";
for (const auto &Child : N->Children) {
llvm::dbgs() << "\n";
debug(*Child, Level + 1);
for (int i = 0; i < Level; ++i)
llvm::dbgs() << " ";
}
}
llvm::dbgs() << "\n";
}
MacroCallReconstructor::ReconstructedLine &
MacroCallReconstructor::parentLine() {
return **std::prev(std::prev(ActiveReconstructedLines.end()));
}
MacroCallReconstructor::ReconstructedLine *
MacroCallReconstructor::currentLine() {
return ActiveReconstructedLines.back();
}
MacroCallReconstructor::MacroCallState::MacroCallState(
MacroCallReconstructor::ReconstructedLine *Line,
FormatToken *ParentLastToken, FormatToken *MacroCallLParen)
: Line(Line), ParentLastToken(ParentLastToken),
MacroCallLParen(MacroCallLParen) {
LLVM_DEBUG(
llvm::dbgs() << "ParentLastToken: "
<< (ParentLastToken ? ParentLastToken->TokenText : "<null>")
<< "\n");
assert(MacroCallLParen->is(tok::l_paren));
}
} // namespace format
} // namespace clang
|