1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
|
/*===---- __clang_hip_math.h - Device-side HIP math support ----------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CLANG_HIP_MATH_H__
#define __CLANG_HIP_MATH_H__
#if !defined(__HIP__) && !defined(__OPENMP_AMDGCN__)
#error "This file is for HIP and OpenMP AMDGCN device compilation only."
#endif
#if !defined(__HIPCC_RTC__)
#if defined(__cplusplus)
#include <algorithm>
#endif
#include <limits.h>
#include <stdint.h>
#ifdef __OPENMP_AMDGCN__
#include <omp.h>
#endif
#endif // !defined(__HIPCC_RTC__)
#pragma push_macro("__DEVICE__")
#ifdef __OPENMP_AMDGCN__
#define __DEVICE__ static inline __attribute__((always_inline, nothrow))
#else
#define __DEVICE__ static __device__ inline __attribute__((always_inline))
#endif
// A few functions return bool type starting only in C++11.
#pragma push_macro("__RETURN_TYPE")
#ifdef __OPENMP_AMDGCN__
#define __RETURN_TYPE int
#else
#if defined(__cplusplus)
#define __RETURN_TYPE bool
#else
#define __RETURN_TYPE int
#endif
#endif // __OPENMP_AMDGCN__
#if defined (__cplusplus) && __cplusplus < 201103L
// emulate static_assert on type sizes
template<bool>
struct __compare_result{};
template<>
struct __compare_result<true> {
static const __device__ bool valid;
};
__DEVICE__
void __suppress_unused_warning(bool b){};
template <unsigned int S, unsigned int T>
__DEVICE__ void __static_assert_equal_size() {
__suppress_unused_warning(__compare_result<S == T>::valid);
}
#define __static_assert_type_size_equal(A, B) \
__static_assert_equal_size<A,B>()
#else
#define __static_assert_type_size_equal(A,B) \
static_assert((A) == (B), "")
#endif
__DEVICE__
uint64_t __make_mantissa_base8(const char *__tagp) {
uint64_t __r = 0;
while (__tagp) {
char __tmp = *__tagp;
if (__tmp >= '0' && __tmp <= '7')
__r = (__r * 8u) + __tmp - '0';
else
return 0;
++__tagp;
}
return __r;
}
__DEVICE__
uint64_t __make_mantissa_base10(const char *__tagp) {
uint64_t __r = 0;
while (__tagp) {
char __tmp = *__tagp;
if (__tmp >= '0' && __tmp <= '9')
__r = (__r * 10u) + __tmp - '0';
else
return 0;
++__tagp;
}
return __r;
}
__DEVICE__
uint64_t __make_mantissa_base16(const char *__tagp) {
uint64_t __r = 0;
while (__tagp) {
char __tmp = *__tagp;
if (__tmp >= '0' && __tmp <= '9')
__r = (__r * 16u) + __tmp - '0';
else if (__tmp >= 'a' && __tmp <= 'f')
__r = (__r * 16u) + __tmp - 'a' + 10;
else if (__tmp >= 'A' && __tmp <= 'F')
__r = (__r * 16u) + __tmp - 'A' + 10;
else
return 0;
++__tagp;
}
return __r;
}
__DEVICE__
uint64_t __make_mantissa(const char *__tagp) {
if (!__tagp)
return 0u;
if (*__tagp == '0') {
++__tagp;
if (*__tagp == 'x' || *__tagp == 'X')
return __make_mantissa_base16(__tagp);
else
return __make_mantissa_base8(__tagp);
}
return __make_mantissa_base10(__tagp);
}
// BEGIN FLOAT
#if defined(__cplusplus)
__DEVICE__
int abs(int __x) {
int __sgn = __x >> (sizeof(int) * CHAR_BIT - 1);
return (__x ^ __sgn) - __sgn;
}
__DEVICE__
long labs(long __x) {
long __sgn = __x >> (sizeof(long) * CHAR_BIT - 1);
return (__x ^ __sgn) - __sgn;
}
__DEVICE__
long long llabs(long long __x) {
long long __sgn = __x >> (sizeof(long long) * CHAR_BIT - 1);
return (__x ^ __sgn) - __sgn;
}
#endif
__DEVICE__
float acosf(float __x) { return __ocml_acos_f32(__x); }
__DEVICE__
float acoshf(float __x) { return __ocml_acosh_f32(__x); }
__DEVICE__
float asinf(float __x) { return __ocml_asin_f32(__x); }
__DEVICE__
float asinhf(float __x) { return __ocml_asinh_f32(__x); }
__DEVICE__
float atan2f(float __x, float __y) { return __ocml_atan2_f32(__x, __y); }
__DEVICE__
float atanf(float __x) { return __ocml_atan_f32(__x); }
__DEVICE__
float atanhf(float __x) { return __ocml_atanh_f32(__x); }
__DEVICE__
float cbrtf(float __x) { return __ocml_cbrt_f32(__x); }
__DEVICE__
float ceilf(float __x) { return __ocml_ceil_f32(__x); }
__DEVICE__
float copysignf(float __x, float __y) { return __ocml_copysign_f32(__x, __y); }
__DEVICE__
float cosf(float __x) { return __ocml_cos_f32(__x); }
__DEVICE__
float coshf(float __x) { return __ocml_cosh_f32(__x); }
__DEVICE__
float cospif(float __x) { return __ocml_cospi_f32(__x); }
__DEVICE__
float cyl_bessel_i0f(float __x) { return __ocml_i0_f32(__x); }
__DEVICE__
float cyl_bessel_i1f(float __x) { return __ocml_i1_f32(__x); }
__DEVICE__
float erfcf(float __x) { return __ocml_erfc_f32(__x); }
__DEVICE__
float erfcinvf(float __x) { return __ocml_erfcinv_f32(__x); }
__DEVICE__
float erfcxf(float __x) { return __ocml_erfcx_f32(__x); }
__DEVICE__
float erff(float __x) { return __ocml_erf_f32(__x); }
__DEVICE__
float erfinvf(float __x) { return __ocml_erfinv_f32(__x); }
__DEVICE__
float exp10f(float __x) { return __ocml_exp10_f32(__x); }
__DEVICE__
float exp2f(float __x) { return __ocml_exp2_f32(__x); }
__DEVICE__
float expf(float __x) { return __ocml_exp_f32(__x); }
__DEVICE__
float expm1f(float __x) { return __ocml_expm1_f32(__x); }
__DEVICE__
float fabsf(float __x) { return __ocml_fabs_f32(__x); }
__DEVICE__
float fdimf(float __x, float __y) { return __ocml_fdim_f32(__x, __y); }
__DEVICE__
float fdividef(float __x, float __y) { return __x / __y; }
__DEVICE__
float floorf(float __x) { return __ocml_floor_f32(__x); }
__DEVICE__
float fmaf(float __x, float __y, float __z) {
return __ocml_fma_f32(__x, __y, __z);
}
__DEVICE__
float fmaxf(float __x, float __y) { return __ocml_fmax_f32(__x, __y); }
__DEVICE__
float fminf(float __x, float __y) { return __ocml_fmin_f32(__x, __y); }
__DEVICE__
float fmodf(float __x, float __y) { return __ocml_fmod_f32(__x, __y); }
__DEVICE__
float frexpf(float __x, int *__nptr) {
int __tmp;
#ifdef __OPENMP_AMDGCN__
#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
#endif
float __r =
__ocml_frexp_f32(__x, (__attribute__((address_space(5))) int *)&__tmp);
*__nptr = __tmp;
return __r;
}
__DEVICE__
float hypotf(float __x, float __y) { return __ocml_hypot_f32(__x, __y); }
__DEVICE__
int ilogbf(float __x) { return __ocml_ilogb_f32(__x); }
__DEVICE__
__RETURN_TYPE __finitef(float __x) { return __ocml_isfinite_f32(__x); }
__DEVICE__
__RETURN_TYPE __isinff(float __x) { return __ocml_isinf_f32(__x); }
__DEVICE__
__RETURN_TYPE __isnanf(float __x) { return __ocml_isnan_f32(__x); }
__DEVICE__
float j0f(float __x) { return __ocml_j0_f32(__x); }
__DEVICE__
float j1f(float __x) { return __ocml_j1_f32(__x); }
__DEVICE__
float jnf(int __n, float __x) { // TODO: we could use Ahmes multiplication
// and the Miller & Brown algorithm
// for linear recurrences to get O(log n) steps, but it's unclear if
// it'd be beneficial in this case.
if (__n == 0)
return j0f(__x);
if (__n == 1)
return j1f(__x);
float __x0 = j0f(__x);
float __x1 = j1f(__x);
for (int __i = 1; __i < __n; ++__i) {
float __x2 = (2 * __i) / __x * __x1 - __x0;
__x0 = __x1;
__x1 = __x2;
}
return __x1;
}
__DEVICE__
float ldexpf(float __x, int __e) { return __ocml_ldexp_f32(__x, __e); }
__DEVICE__
float lgammaf(float __x) { return __ocml_lgamma_f32(__x); }
__DEVICE__
long long int llrintf(float __x) { return __ocml_rint_f32(__x); }
__DEVICE__
long long int llroundf(float __x) { return __ocml_round_f32(__x); }
__DEVICE__
float log10f(float __x) { return __ocml_log10_f32(__x); }
__DEVICE__
float log1pf(float __x) { return __ocml_log1p_f32(__x); }
__DEVICE__
float log2f(float __x) { return __ocml_log2_f32(__x); }
__DEVICE__
float logbf(float __x) { return __ocml_logb_f32(__x); }
__DEVICE__
float logf(float __x) { return __ocml_log_f32(__x); }
__DEVICE__
long int lrintf(float __x) { return __ocml_rint_f32(__x); }
__DEVICE__
long int lroundf(float __x) { return __ocml_round_f32(__x); }
__DEVICE__
float modff(float __x, float *__iptr) {
float __tmp;
#ifdef __OPENMP_AMDGCN__
#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
#endif
float __r =
__ocml_modf_f32(__x, (__attribute__((address_space(5))) float *)&__tmp);
*__iptr = __tmp;
return __r;
}
__DEVICE__
float nanf(const char *__tagp) {
union {
float val;
struct ieee_float {
unsigned int mantissa : 22;
unsigned int quiet : 1;
unsigned int exponent : 8;
unsigned int sign : 1;
} bits;
} __tmp;
__static_assert_type_size_equal(sizeof(__tmp.val), sizeof(__tmp.bits));
__tmp.bits.sign = 0u;
__tmp.bits.exponent = ~0u;
__tmp.bits.quiet = 1u;
__tmp.bits.mantissa = __make_mantissa(__tagp);
return __tmp.val;
}
__DEVICE__
float nearbyintf(float __x) { return __ocml_nearbyint_f32(__x); }
__DEVICE__
float nextafterf(float __x, float __y) {
return __ocml_nextafter_f32(__x, __y);
}
__DEVICE__
float norm3df(float __x, float __y, float __z) {
return __ocml_len3_f32(__x, __y, __z);
}
__DEVICE__
float norm4df(float __x, float __y, float __z, float __w) {
return __ocml_len4_f32(__x, __y, __z, __w);
}
__DEVICE__
float normcdff(float __x) { return __ocml_ncdf_f32(__x); }
__DEVICE__
float normcdfinvf(float __x) { return __ocml_ncdfinv_f32(__x); }
__DEVICE__
float normf(int __dim,
const float *__a) { // TODO: placeholder until OCML adds support.
float __r = 0;
while (__dim--) {
__r += __a[0] * __a[0];
++__a;
}
return __ocml_sqrt_f32(__r);
}
__DEVICE__
float powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); }
__DEVICE__
float powif(float __x, int __y) { return __ocml_pown_f32(__x, __y); }
__DEVICE__
float rcbrtf(float __x) { return __ocml_rcbrt_f32(__x); }
__DEVICE__
float remainderf(float __x, float __y) {
return __ocml_remainder_f32(__x, __y);
}
__DEVICE__
float remquof(float __x, float __y, int *__quo) {
int __tmp;
#ifdef __OPENMP_AMDGCN__
#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
#endif
float __r = __ocml_remquo_f32(
__x, __y, (__attribute__((address_space(5))) int *)&__tmp);
*__quo = __tmp;
return __r;
}
__DEVICE__
float rhypotf(float __x, float __y) { return __ocml_rhypot_f32(__x, __y); }
__DEVICE__
float rintf(float __x) { return __ocml_rint_f32(__x); }
__DEVICE__
float rnorm3df(float __x, float __y, float __z) {
return __ocml_rlen3_f32(__x, __y, __z);
}
__DEVICE__
float rnorm4df(float __x, float __y, float __z, float __w) {
return __ocml_rlen4_f32(__x, __y, __z, __w);
}
__DEVICE__
float rnormf(int __dim,
const float *__a) { // TODO: placeholder until OCML adds support.
float __r = 0;
while (__dim--) {
__r += __a[0] * __a[0];
++__a;
}
return __ocml_rsqrt_f32(__r);
}
__DEVICE__
float roundf(float __x) { return __ocml_round_f32(__x); }
__DEVICE__
float rsqrtf(float __x) { return __ocml_rsqrt_f32(__x); }
__DEVICE__
float scalblnf(float __x, long int __n) {
return (__n < INT_MAX) ? __ocml_scalbn_f32(__x, __n)
: __ocml_scalb_f32(__x, __n);
}
__DEVICE__
float scalbnf(float __x, int __n) { return __ocml_scalbn_f32(__x, __n); }
__DEVICE__
__RETURN_TYPE __signbitf(float __x) { return __ocml_signbit_f32(__x); }
__DEVICE__
void sincosf(float __x, float *__sinptr, float *__cosptr) {
float __tmp;
#ifdef __OPENMP_AMDGCN__
#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
#endif
*__sinptr =
__ocml_sincos_f32(__x, (__attribute__((address_space(5))) float *)&__tmp);
*__cosptr = __tmp;
}
__DEVICE__
void sincospif(float __x, float *__sinptr, float *__cosptr) {
float __tmp;
#ifdef __OPENMP_AMDGCN__
#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
#endif
*__sinptr = __ocml_sincospi_f32(
__x, (__attribute__((address_space(5))) float *)&__tmp);
*__cosptr = __tmp;
}
__DEVICE__
float sinf(float __x) { return __ocml_sin_f32(__x); }
__DEVICE__
float sinhf(float __x) { return __ocml_sinh_f32(__x); }
__DEVICE__
float sinpif(float __x) { return __ocml_sinpi_f32(__x); }
__DEVICE__
float sqrtf(float __x) { return __ocml_sqrt_f32(__x); }
__DEVICE__
float tanf(float __x) { return __ocml_tan_f32(__x); }
__DEVICE__
float tanhf(float __x) { return __ocml_tanh_f32(__x); }
__DEVICE__
float tgammaf(float __x) { return __ocml_tgamma_f32(__x); }
__DEVICE__
float truncf(float __x) { return __ocml_trunc_f32(__x); }
__DEVICE__
float y0f(float __x) { return __ocml_y0_f32(__x); }
__DEVICE__
float y1f(float __x) { return __ocml_y1_f32(__x); }
__DEVICE__
float ynf(int __n, float __x) { // TODO: we could use Ahmes multiplication
// and the Miller & Brown algorithm
// for linear recurrences to get O(log n) steps, but it's unclear if
// it'd be beneficial in this case. Placeholder until OCML adds
// support.
if (__n == 0)
return y0f(__x);
if (__n == 1)
return y1f(__x);
float __x0 = y0f(__x);
float __x1 = y1f(__x);
for (int __i = 1; __i < __n; ++__i) {
float __x2 = (2 * __i) / __x * __x1 - __x0;
__x0 = __x1;
__x1 = __x2;
}
return __x1;
}
// BEGIN INTRINSICS
__DEVICE__
float __cosf(float __x) { return __ocml_native_cos_f32(__x); }
__DEVICE__
float __exp10f(float __x) { return __ocml_native_exp10_f32(__x); }
__DEVICE__
float __expf(float __x) { return __ocml_native_exp_f32(__x); }
#if defined OCML_BASIC_ROUNDED_OPERATIONS
__DEVICE__
float __fadd_rd(float __x, float __y) { return __ocml_add_rtn_f32(__x, __y); }
__DEVICE__
float __fadd_rn(float __x, float __y) { return __ocml_add_rte_f32(__x, __y); }
__DEVICE__
float __fadd_ru(float __x, float __y) { return __ocml_add_rtp_f32(__x, __y); }
__DEVICE__
float __fadd_rz(float __x, float __y) { return __ocml_add_rtz_f32(__x, __y); }
#else
__DEVICE__
float __fadd_rn(float __x, float __y) { return __x + __y; }
#endif
#if defined OCML_BASIC_ROUNDED_OPERATIONS
__DEVICE__
float __fdiv_rd(float __x, float __y) { return __ocml_div_rtn_f32(__x, __y); }
__DEVICE__
float __fdiv_rn(float __x, float __y) { return __ocml_div_rte_f32(__x, __y); }
__DEVICE__
float __fdiv_ru(float __x, float __y) { return __ocml_div_rtp_f32(__x, __y); }
__DEVICE__
float __fdiv_rz(float __x, float __y) { return __ocml_div_rtz_f32(__x, __y); }
#else
__DEVICE__
float __fdiv_rn(float __x, float __y) { return __x / __y; }
#endif
__DEVICE__
float __fdividef(float __x, float __y) { return __x / __y; }
#if defined OCML_BASIC_ROUNDED_OPERATIONS
__DEVICE__
float __fmaf_rd(float __x, float __y, float __z) {
return __ocml_fma_rtn_f32(__x, __y, __z);
}
__DEVICE__
float __fmaf_rn(float __x, float __y, float __z) {
return __ocml_fma_rte_f32(__x, __y, __z);
}
__DEVICE__
float __fmaf_ru(float __x, float __y, float __z) {
return __ocml_fma_rtp_f32(__x, __y, __z);
}
__DEVICE__
float __fmaf_rz(float __x, float __y, float __z) {
return __ocml_fma_rtz_f32(__x, __y, __z);
}
#else
__DEVICE__
float __fmaf_rn(float __x, float __y, float __z) {
return __ocml_fma_f32(__x, __y, __z);
}
#endif
#if defined OCML_BASIC_ROUNDED_OPERATIONS
__DEVICE__
float __fmul_rd(float __x, float __y) { return __ocml_mul_rtn_f32(__x, __y); }
__DEVICE__
float __fmul_rn(float __x, float __y) { return __ocml_mul_rte_f32(__x, __y); }
__DEVICE__
float __fmul_ru(float __x, float __y) { return __ocml_mul_rtp_f32(__x, __y); }
__DEVICE__
float __fmul_rz(float __x, float __y) { return __ocml_mul_rtz_f32(__x, __y); }
#else
__DEVICE__
float __fmul_rn(float __x, float __y) { return __x * __y; }
#endif
#if defined OCML_BASIC_ROUNDED_OPERATIONS
__DEVICE__
float __frcp_rd(float __x) { return __ocml_div_rtn_f32(1.0f, __x); }
__DEVICE__
float __frcp_rn(float __x) { return __ocml_div_rte_f32(1.0f, __x); }
__DEVICE__
float __frcp_ru(float __x) { return __ocml_div_rtp_f32(1.0f, __x); }
__DEVICE__
float __frcp_rz(float __x) { return __ocml_div_rtz_f32(1.0f, __x); }
#else
__DEVICE__
float __frcp_rn(float __x) { return 1.0f / __x; }
#endif
__DEVICE__
float __frsqrt_rn(float __x) { return __llvm_amdgcn_rsq_f32(__x); }
#if defined OCML_BASIC_ROUNDED_OPERATIONS
__DEVICE__
float __fsqrt_rd(float __x) { return __ocml_sqrt_rtn_f32(__x); }
__DEVICE__
float __fsqrt_rn(float __x) { return __ocml_sqrt_rte_f32(__x); }
__DEVICE__
float __fsqrt_ru(float __x) { return __ocml_sqrt_rtp_f32(__x); }
__DEVICE__
float __fsqrt_rz(float __x) { return __ocml_sqrt_rtz_f32(__x); }
#else
__DEVICE__
float __fsqrt_rn(float __x) { return __ocml_native_sqrt_f32(__x); }
#endif
#if defined OCML_BASIC_ROUNDED_OPERATIONS
__DEVICE__
float __fsub_rd(float __x, float __y) { return __ocml_sub_rtn_f32(__x, __y); }
__DEVICE__
float __fsub_rn(float __x, float __y) { return __ocml_sub_rte_f32(__x, __y); }
__DEVICE__
float __fsub_ru(float __x, float __y) { return __ocml_sub_rtp_f32(__x, __y); }
__DEVICE__
float __fsub_rz(float __x, float __y) { return __ocml_sub_rtz_f32(__x, __y); }
#else
__DEVICE__
float __fsub_rn(float __x, float __y) { return __x - __y; }
#endif
__DEVICE__
float __log10f(float __x) { return __ocml_native_log10_f32(__x); }
__DEVICE__
float __log2f(float __x) { return __ocml_native_log2_f32(__x); }
__DEVICE__
float __logf(float __x) { return __ocml_native_log_f32(__x); }
__DEVICE__
float __powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); }
__DEVICE__
float __saturatef(float __x) { return (__x < 0) ? 0 : ((__x > 1) ? 1 : __x); }
__DEVICE__
void __sincosf(float __x, float *__sinptr, float *__cosptr) {
*__sinptr = __ocml_native_sin_f32(__x);
*__cosptr = __ocml_native_cos_f32(__x);
}
__DEVICE__
float __sinf(float __x) { return __ocml_native_sin_f32(__x); }
__DEVICE__
float __tanf(float __x) { return __ocml_tan_f32(__x); }
// END INTRINSICS
// END FLOAT
// BEGIN DOUBLE
__DEVICE__
double acos(double __x) { return __ocml_acos_f64(__x); }
__DEVICE__
double acosh(double __x) { return __ocml_acosh_f64(__x); }
__DEVICE__
double asin(double __x) { return __ocml_asin_f64(__x); }
__DEVICE__
double asinh(double __x) { return __ocml_asinh_f64(__x); }
__DEVICE__
double atan(double __x) { return __ocml_atan_f64(__x); }
__DEVICE__
double atan2(double __x, double __y) { return __ocml_atan2_f64(__x, __y); }
__DEVICE__
double atanh(double __x) { return __ocml_atanh_f64(__x); }
__DEVICE__
double cbrt(double __x) { return __ocml_cbrt_f64(__x); }
__DEVICE__
double ceil(double __x) { return __ocml_ceil_f64(__x); }
__DEVICE__
double copysign(double __x, double __y) {
return __ocml_copysign_f64(__x, __y);
}
__DEVICE__
double cos(double __x) { return __ocml_cos_f64(__x); }
__DEVICE__
double cosh(double __x) { return __ocml_cosh_f64(__x); }
__DEVICE__
double cospi(double __x) { return __ocml_cospi_f64(__x); }
__DEVICE__
double cyl_bessel_i0(double __x) { return __ocml_i0_f64(__x); }
__DEVICE__
double cyl_bessel_i1(double __x) { return __ocml_i1_f64(__x); }
__DEVICE__
double erf(double __x) { return __ocml_erf_f64(__x); }
__DEVICE__
double erfc(double __x) { return __ocml_erfc_f64(__x); }
__DEVICE__
double erfcinv(double __x) { return __ocml_erfcinv_f64(__x); }
__DEVICE__
double erfcx(double __x) { return __ocml_erfcx_f64(__x); }
__DEVICE__
double erfinv(double __x) { return __ocml_erfinv_f64(__x); }
__DEVICE__
double exp(double __x) { return __ocml_exp_f64(__x); }
__DEVICE__
double exp10(double __x) { return __ocml_exp10_f64(__x); }
__DEVICE__
double exp2(double __x) { return __ocml_exp2_f64(__x); }
__DEVICE__
double expm1(double __x) { return __ocml_expm1_f64(__x); }
__DEVICE__
double fabs(double __x) { return __ocml_fabs_f64(__x); }
__DEVICE__
double fdim(double __x, double __y) { return __ocml_fdim_f64(__x, __y); }
__DEVICE__
double floor(double __x) { return __ocml_floor_f64(__x); }
__DEVICE__
double fma(double __x, double __y, double __z) {
return __ocml_fma_f64(__x, __y, __z);
}
__DEVICE__
double fmax(double __x, double __y) { return __ocml_fmax_f64(__x, __y); }
__DEVICE__
double fmin(double __x, double __y) { return __ocml_fmin_f64(__x, __y); }
__DEVICE__
double fmod(double __x, double __y) { return __ocml_fmod_f64(__x, __y); }
__DEVICE__
double frexp(double __x, int *__nptr) {
int __tmp;
#ifdef __OPENMP_AMDGCN__
#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
#endif
double __r =
__ocml_frexp_f64(__x, (__attribute__((address_space(5))) int *)&__tmp);
*__nptr = __tmp;
return __r;
}
__DEVICE__
double hypot(double __x, double __y) { return __ocml_hypot_f64(__x, __y); }
__DEVICE__
int ilogb(double __x) { return __ocml_ilogb_f64(__x); }
__DEVICE__
__RETURN_TYPE __finite(double __x) { return __ocml_isfinite_f64(__x); }
__DEVICE__
__RETURN_TYPE __isinf(double __x) { return __ocml_isinf_f64(__x); }
__DEVICE__
__RETURN_TYPE __isnan(double __x) { return __ocml_isnan_f64(__x); }
__DEVICE__
double j0(double __x) { return __ocml_j0_f64(__x); }
__DEVICE__
double j1(double __x) { return __ocml_j1_f64(__x); }
__DEVICE__
double jn(int __n, double __x) { // TODO: we could use Ahmes multiplication
// and the Miller & Brown algorithm
// for linear recurrences to get O(log n) steps, but it's unclear if
// it'd be beneficial in this case. Placeholder until OCML adds
// support.
if (__n == 0)
return j0(__x);
if (__n == 1)
return j1(__x);
double __x0 = j0(__x);
double __x1 = j1(__x);
for (int __i = 1; __i < __n; ++__i) {
double __x2 = (2 * __i) / __x * __x1 - __x0;
__x0 = __x1;
__x1 = __x2;
}
return __x1;
}
__DEVICE__
double ldexp(double __x, int __e) { return __ocml_ldexp_f64(__x, __e); }
__DEVICE__
double lgamma(double __x) { return __ocml_lgamma_f64(__x); }
__DEVICE__
long long int llrint(double __x) { return __ocml_rint_f64(__x); }
__DEVICE__
long long int llround(double __x) { return __ocml_round_f64(__x); }
__DEVICE__
double log(double __x) { return __ocml_log_f64(__x); }
__DEVICE__
double log10(double __x) { return __ocml_log10_f64(__x); }
__DEVICE__
double log1p(double __x) { return __ocml_log1p_f64(__x); }
__DEVICE__
double log2(double __x) { return __ocml_log2_f64(__x); }
__DEVICE__
double logb(double __x) { return __ocml_logb_f64(__x); }
__DEVICE__
long int lrint(double __x) { return __ocml_rint_f64(__x); }
__DEVICE__
long int lround(double __x) { return __ocml_round_f64(__x); }
__DEVICE__
double modf(double __x, double *__iptr) {
double __tmp;
#ifdef __OPENMP_AMDGCN__
#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
#endif
double __r =
__ocml_modf_f64(__x, (__attribute__((address_space(5))) double *)&__tmp);
*__iptr = __tmp;
return __r;
}
__DEVICE__
double nan(const char *__tagp) {
#if !_WIN32
union {
double val;
struct ieee_double {
uint64_t mantissa : 51;
uint32_t quiet : 1;
uint32_t exponent : 11;
uint32_t sign : 1;
} bits;
} __tmp;
__static_assert_type_size_equal(sizeof(__tmp.val), sizeof(__tmp.bits));
__tmp.bits.sign = 0u;
__tmp.bits.exponent = ~0u;
__tmp.bits.quiet = 1u;
__tmp.bits.mantissa = __make_mantissa(__tagp);
return __tmp.val;
#else
__static_assert_type_size_equal(sizeof(uint64_t), sizeof(double));
uint64_t __val = __make_mantissa(__tagp);
__val |= 0xFFF << 51;
return *reinterpret_cast<double *>(&__val);
#endif
}
__DEVICE__
double nearbyint(double __x) { return __ocml_nearbyint_f64(__x); }
__DEVICE__
double nextafter(double __x, double __y) {
return __ocml_nextafter_f64(__x, __y);
}
__DEVICE__
double norm(int __dim,
const double *__a) { // TODO: placeholder until OCML adds support.
double __r = 0;
while (__dim--) {
__r += __a[0] * __a[0];
++__a;
}
return __ocml_sqrt_f64(__r);
}
__DEVICE__
double norm3d(double __x, double __y, double __z) {
return __ocml_len3_f64(__x, __y, __z);
}
__DEVICE__
double norm4d(double __x, double __y, double __z, double __w) {
return __ocml_len4_f64(__x, __y, __z, __w);
}
__DEVICE__
double normcdf(double __x) { return __ocml_ncdf_f64(__x); }
__DEVICE__
double normcdfinv(double __x) { return __ocml_ncdfinv_f64(__x); }
__DEVICE__
double pow(double __x, double __y) { return __ocml_pow_f64(__x, __y); }
__DEVICE__
double powi(double __x, int __y) { return __ocml_pown_f64(__x, __y); }
__DEVICE__
double rcbrt(double __x) { return __ocml_rcbrt_f64(__x); }
__DEVICE__
double remainder(double __x, double __y) {
return __ocml_remainder_f64(__x, __y);
}
__DEVICE__
double remquo(double __x, double __y, int *__quo) {
int __tmp;
#ifdef __OPENMP_AMDGCN__
#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
#endif
double __r = __ocml_remquo_f64(
__x, __y, (__attribute__((address_space(5))) int *)&__tmp);
*__quo = __tmp;
return __r;
}
__DEVICE__
double rhypot(double __x, double __y) { return __ocml_rhypot_f64(__x, __y); }
__DEVICE__
double rint(double __x) { return __ocml_rint_f64(__x); }
__DEVICE__
double rnorm(int __dim,
const double *__a) { // TODO: placeholder until OCML adds support.
double __r = 0;
while (__dim--) {
__r += __a[0] * __a[0];
++__a;
}
return __ocml_rsqrt_f64(__r);
}
__DEVICE__
double rnorm3d(double __x, double __y, double __z) {
return __ocml_rlen3_f64(__x, __y, __z);
}
__DEVICE__
double rnorm4d(double __x, double __y, double __z, double __w) {
return __ocml_rlen4_f64(__x, __y, __z, __w);
}
__DEVICE__
double round(double __x) { return __ocml_round_f64(__x); }
__DEVICE__
double rsqrt(double __x) { return __ocml_rsqrt_f64(__x); }
__DEVICE__
double scalbln(double __x, long int __n) {
return (__n < INT_MAX) ? __ocml_scalbn_f64(__x, __n)
: __ocml_scalb_f64(__x, __n);
}
__DEVICE__
double scalbn(double __x, int __n) { return __ocml_scalbn_f64(__x, __n); }
__DEVICE__
__RETURN_TYPE __signbit(double __x) { return __ocml_signbit_f64(__x); }
__DEVICE__
double sin(double __x) { return __ocml_sin_f64(__x); }
__DEVICE__
void sincos(double __x, double *__sinptr, double *__cosptr) {
double __tmp;
#ifdef __OPENMP_AMDGCN__
#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
#endif
*__sinptr = __ocml_sincos_f64(
__x, (__attribute__((address_space(5))) double *)&__tmp);
*__cosptr = __tmp;
}
__DEVICE__
void sincospi(double __x, double *__sinptr, double *__cosptr) {
double __tmp;
#ifdef __OPENMP_AMDGCN__
#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
#endif
*__sinptr = __ocml_sincospi_f64(
__x, (__attribute__((address_space(5))) double *)&__tmp);
*__cosptr = __tmp;
}
__DEVICE__
double sinh(double __x) { return __ocml_sinh_f64(__x); }
__DEVICE__
double sinpi(double __x) { return __ocml_sinpi_f64(__x); }
__DEVICE__
double sqrt(double __x) { return __ocml_sqrt_f64(__x); }
__DEVICE__
double tan(double __x) { return __ocml_tan_f64(__x); }
__DEVICE__
double tanh(double __x) { return __ocml_tanh_f64(__x); }
__DEVICE__
double tgamma(double __x) { return __ocml_tgamma_f64(__x); }
__DEVICE__
double trunc(double __x) { return __ocml_trunc_f64(__x); }
__DEVICE__
double y0(double __x) { return __ocml_y0_f64(__x); }
__DEVICE__
double y1(double __x) { return __ocml_y1_f64(__x); }
__DEVICE__
double yn(int __n, double __x) { // TODO: we could use Ahmes multiplication
// and the Miller & Brown algorithm
// for linear recurrences to get O(log n) steps, but it's unclear if
// it'd be beneficial in this case. Placeholder until OCML adds
// support.
if (__n == 0)
return y0(__x);
if (__n == 1)
return y1(__x);
double __x0 = y0(__x);
double __x1 = y1(__x);
for (int __i = 1; __i < __n; ++__i) {
double __x2 = (2 * __i) / __x * __x1 - __x0;
__x0 = __x1;
__x1 = __x2;
}
return __x1;
}
// BEGIN INTRINSICS
#if defined OCML_BASIC_ROUNDED_OPERATIONS
__DEVICE__
double __dadd_rd(double __x, double __y) {
return __ocml_add_rtn_f64(__x, __y);
}
__DEVICE__
double __dadd_rn(double __x, double __y) {
return __ocml_add_rte_f64(__x, __y);
}
__DEVICE__
double __dadd_ru(double __x, double __y) {
return __ocml_add_rtp_f64(__x, __y);
}
__DEVICE__
double __dadd_rz(double __x, double __y) {
return __ocml_add_rtz_f64(__x, __y);
}
#else
__DEVICE__
double __dadd_rn(double __x, double __y) { return __x + __y; }
#endif
#if defined OCML_BASIC_ROUNDED_OPERATIONS
__DEVICE__
double __ddiv_rd(double __x, double __y) {
return __ocml_div_rtn_f64(__x, __y);
}
__DEVICE__
double __ddiv_rn(double __x, double __y) {
return __ocml_div_rte_f64(__x, __y);
}
__DEVICE__
double __ddiv_ru(double __x, double __y) {
return __ocml_div_rtp_f64(__x, __y);
}
__DEVICE__
double __ddiv_rz(double __x, double __y) {
return __ocml_div_rtz_f64(__x, __y);
}
#else
__DEVICE__
double __ddiv_rn(double __x, double __y) { return __x / __y; }
#endif
#if defined OCML_BASIC_ROUNDED_OPERATIONS
__DEVICE__
double __dmul_rd(double __x, double __y) {
return __ocml_mul_rtn_f64(__x, __y);
}
__DEVICE__
double __dmul_rn(double __x, double __y) {
return __ocml_mul_rte_f64(__x, __y);
}
__DEVICE__
double __dmul_ru(double __x, double __y) {
return __ocml_mul_rtp_f64(__x, __y);
}
__DEVICE__
double __dmul_rz(double __x, double __y) {
return __ocml_mul_rtz_f64(__x, __y);
}
#else
__DEVICE__
double __dmul_rn(double __x, double __y) { return __x * __y; }
#endif
#if defined OCML_BASIC_ROUNDED_OPERATIONS
__DEVICE__
double __drcp_rd(double __x) { return __ocml_div_rtn_f64(1.0, __x); }
__DEVICE__
double __drcp_rn(double __x) { return __ocml_div_rte_f64(1.0, __x); }
__DEVICE__
double __drcp_ru(double __x) { return __ocml_div_rtp_f64(1.0, __x); }
__DEVICE__
double __drcp_rz(double __x) { return __ocml_div_rtz_f64(1.0, __x); }
#else
__DEVICE__
double __drcp_rn(double __x) { return 1.0 / __x; }
#endif
#if defined OCML_BASIC_ROUNDED_OPERATIONS
__DEVICE__
double __dsqrt_rd(double __x) { return __ocml_sqrt_rtn_f64(__x); }
__DEVICE__
double __dsqrt_rn(double __x) { return __ocml_sqrt_rte_f64(__x); }
__DEVICE__
double __dsqrt_ru(double __x) { return __ocml_sqrt_rtp_f64(__x); }
__DEVICE__
double __dsqrt_rz(double __x) { return __ocml_sqrt_rtz_f64(__x); }
#else
__DEVICE__
double __dsqrt_rn(double __x) { return __ocml_sqrt_f64(__x); }
#endif
#if defined OCML_BASIC_ROUNDED_OPERATIONS
__DEVICE__
double __dsub_rd(double __x, double __y) {
return __ocml_sub_rtn_f64(__x, __y);
}
__DEVICE__
double __dsub_rn(double __x, double __y) {
return __ocml_sub_rte_f64(__x, __y);
}
__DEVICE__
double __dsub_ru(double __x, double __y) {
return __ocml_sub_rtp_f64(__x, __y);
}
__DEVICE__
double __dsub_rz(double __x, double __y) {
return __ocml_sub_rtz_f64(__x, __y);
}
#else
__DEVICE__
double __dsub_rn(double __x, double __y) { return __x - __y; }
#endif
#if defined OCML_BASIC_ROUNDED_OPERATIONS
__DEVICE__
double __fma_rd(double __x, double __y, double __z) {
return __ocml_fma_rtn_f64(__x, __y, __z);
}
__DEVICE__
double __fma_rn(double __x, double __y, double __z) {
return __ocml_fma_rte_f64(__x, __y, __z);
}
__DEVICE__
double __fma_ru(double __x, double __y, double __z) {
return __ocml_fma_rtp_f64(__x, __y, __z);
}
__DEVICE__
double __fma_rz(double __x, double __y, double __z) {
return __ocml_fma_rtz_f64(__x, __y, __z);
}
#else
__DEVICE__
double __fma_rn(double __x, double __y, double __z) {
return __ocml_fma_f64(__x, __y, __z);
}
#endif
// END INTRINSICS
// END DOUBLE
// C only macros
#if !defined(__cplusplus) && __STDC_VERSION__ >= 201112L
#define isfinite(__x) _Generic((__x), float : __finitef, double : __finite)(__x)
#define isinf(__x) _Generic((__x), float : __isinff, double : __isinf)(__x)
#define isnan(__x) _Generic((__x), float : __isnanf, double : __isnan)(__x)
#define signbit(__x) \
_Generic((__x), float : __signbitf, double : __signbit)(__x)
#endif // !defined(__cplusplus) && __STDC_VERSION__ >= 201112L
#if defined(__cplusplus)
template <class T> __DEVICE__ T min(T __arg1, T __arg2) {
return (__arg1 < __arg2) ? __arg1 : __arg2;
}
template <class T> __DEVICE__ T max(T __arg1, T __arg2) {
return (__arg1 > __arg2) ? __arg1 : __arg2;
}
__DEVICE__ int min(int __arg1, int __arg2) {
return (__arg1 < __arg2) ? __arg1 : __arg2;
}
__DEVICE__ int max(int __arg1, int __arg2) {
return (__arg1 > __arg2) ? __arg1 : __arg2;
}
__DEVICE__
float max(float __x, float __y) { return fmaxf(__x, __y); }
__DEVICE__
double max(double __x, double __y) { return fmax(__x, __y); }
__DEVICE__
float min(float __x, float __y) { return fminf(__x, __y); }
__DEVICE__
double min(double __x, double __y) { return fmin(__x, __y); }
#if !defined(__HIPCC_RTC__) && !defined(__OPENMP_AMDGCN__)
__host__ inline static int min(int __arg1, int __arg2) {
return std::min(__arg1, __arg2);
}
__host__ inline static int max(int __arg1, int __arg2) {
return std::max(__arg1, __arg2);
}
#endif // !defined(__HIPCC_RTC__) && !defined(__OPENMP_AMDGCN__)
#endif
#pragma pop_macro("__DEVICE__")
#pragma pop_macro("__RETURN_TYPE")
#endif // __CLANG_HIP_MATH_H__
|