1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
|
//===- DynamicTypePropagation.cpp ------------------------------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains two checkers. One helps the static analyzer core to track
// types, the other does type inference on Obj-C generics and report type
// errors.
//
// Dynamic Type Propagation:
// This checker defines the rules for dynamic type gathering and propagation.
//
// Generics Checker for Objective-C:
// This checker tries to find type errors that the compiler is not able to catch
// due to the implicit conversions that were introduced for backward
// compatibility.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ParentMap.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
using namespace clang;
using namespace ento;
// ProgramState trait - The type inflation is tracked by DynamicTypeMap. This is
// an auxiliary map that tracks more information about generic types, because in
// some cases the most derived type is not the most informative one about the
// type parameters. This types that are stored for each symbol in this map must
// be specialized.
// TODO: In some case the type stored in this map is exactly the same that is
// stored in DynamicTypeMap. We should no store duplicated information in those
// cases.
REGISTER_MAP_WITH_PROGRAMSTATE(MostSpecializedTypeArgsMap, SymbolRef,
const ObjCObjectPointerType *)
namespace {
class DynamicTypePropagation:
public Checker< check::PreCall,
check::PostCall,
check::DeadSymbols,
check::PostStmt<CastExpr>,
check::PostStmt<CXXNewExpr>,
check::PreObjCMessage,
check::PostObjCMessage > {
/// Return a better dynamic type if one can be derived from the cast.
const ObjCObjectPointerType *getBetterObjCType(const Expr *CastE,
CheckerContext &C) const;
ExplodedNode *dynamicTypePropagationOnCasts(const CastExpr *CE,
ProgramStateRef &State,
CheckerContext &C) const;
mutable std::unique_ptr<BugType> ObjCGenericsBugType;
void initBugType() const {
if (!ObjCGenericsBugType)
ObjCGenericsBugType.reset(new BugType(
GenericCheckName, "Generics", categories::CoreFoundationObjectiveC));
}
class GenericsBugVisitor : public BugReporterVisitor {
public:
GenericsBugVisitor(SymbolRef S) : Sym(S) {}
void Profile(llvm::FoldingSetNodeID &ID) const override {
static int X = 0;
ID.AddPointer(&X);
ID.AddPointer(Sym);
}
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
BugReporterContext &BRC,
PathSensitiveBugReport &BR) override;
private:
// The tracked symbol.
SymbolRef Sym;
};
void reportGenericsBug(const ObjCObjectPointerType *From,
const ObjCObjectPointerType *To, ExplodedNode *N,
SymbolRef Sym, CheckerContext &C,
const Stmt *ReportedNode = nullptr) const;
public:
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
void checkPostStmt(const CastExpr *CastE, CheckerContext &C) const;
void checkPostStmt(const CXXNewExpr *NewE, CheckerContext &C) const;
void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
void checkPreObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
/// This value is set to true, when the Generics checker is turned on.
bool CheckGenerics = false;
CheckerNameRef GenericCheckName;
};
bool isObjCClassType(QualType Type) {
if (const auto *PointerType = dyn_cast<ObjCObjectPointerType>(Type)) {
return PointerType->getObjectType()->isObjCClass();
}
return false;
}
struct RuntimeType {
const ObjCObjectType *Type = nullptr;
bool Precise = false;
operator bool() const { return Type != nullptr; }
};
RuntimeType inferReceiverType(const ObjCMethodCall &Message,
CheckerContext &C) {
const ObjCMessageExpr *MessageExpr = Message.getOriginExpr();
// Check if we can statically infer the actual type precisely.
//
// 1. Class is written directly in the message:
// \code
// [ActualClass classMethod];
// \endcode
if (MessageExpr->getReceiverKind() == ObjCMessageExpr::Class) {
return {MessageExpr->getClassReceiver()->getAs<ObjCObjectType>(),
/*Precise=*/true};
}
// 2. Receiver is 'super' from a class method (a.k.a 'super' is a
// class object).
// \code
// [super classMethod];
// \endcode
if (MessageExpr->getReceiverKind() == ObjCMessageExpr::SuperClass) {
return {MessageExpr->getSuperType()->getAs<ObjCObjectType>(),
/*Precise=*/true};
}
// 3. Receiver is 'super' from an instance method (a.k.a 'super' is an
// instance of a super class).
// \code
// [super instanceMethod];
// \encode
if (MessageExpr->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
if (const auto *ObjTy =
MessageExpr->getSuperType()->getAs<ObjCObjectPointerType>())
return {ObjTy->getObjectType(), /*Precise=*/true};
}
const Expr *RecE = MessageExpr->getInstanceReceiver();
if (!RecE)
return {};
// Otherwise, let's try to get type information from our estimations of
// runtime types.
QualType InferredType;
SVal ReceiverSVal = C.getSVal(RecE);
ProgramStateRef State = C.getState();
if (const MemRegion *ReceiverRegion = ReceiverSVal.getAsRegion()) {
if (DynamicTypeInfo DTI = getDynamicTypeInfo(State, ReceiverRegion)) {
InferredType = DTI.getType().getCanonicalType();
}
}
if (SymbolRef ReceiverSymbol = ReceiverSVal.getAsSymbol()) {
if (InferredType.isNull()) {
InferredType = ReceiverSymbol->getType();
}
// If receiver is a Class object, we want to figure out the type it
// represents.
if (isObjCClassType(InferredType)) {
// We actually might have some info on what type is contained in there.
if (DynamicTypeInfo DTI =
getClassObjectDynamicTypeInfo(State, ReceiverSymbol)) {
// Types in Class objects can be ONLY Objective-C types
return {cast<ObjCObjectType>(DTI.getType()), !DTI.canBeASubClass()};
}
SVal SelfSVal = State->getSelfSVal(C.getLocationContext());
// Another way we can guess what is in Class object, is when it is a
// 'self' variable of the current class method.
if (ReceiverSVal == SelfSVal) {
// In this case, we should return the type of the enclosing class
// declaration.
if (const ObjCMethodDecl *MD =
dyn_cast<ObjCMethodDecl>(C.getStackFrame()->getDecl()))
if (const ObjCObjectType *ObjTy = dyn_cast<ObjCObjectType>(
MD->getClassInterface()->getTypeForDecl()))
return {ObjTy};
}
}
}
// Unfortunately, it seems like we have no idea what that type is.
if (InferredType.isNull()) {
return {};
}
// We can end up here if we got some dynamic type info and the
// receiver is not one of the known Class objects.
if (const auto *ReceiverInferredType =
dyn_cast<ObjCObjectPointerType>(InferredType)) {
return {ReceiverInferredType->getObjectType()};
}
// Any other type (like 'Class') is not really useful at this point.
return {};
}
} // end anonymous namespace
void DynamicTypePropagation::checkDeadSymbols(SymbolReaper &SR,
CheckerContext &C) const {
ProgramStateRef State = removeDeadTypes(C.getState(), SR);
State = removeDeadClassObjectTypes(State, SR);
MostSpecializedTypeArgsMapTy TyArgMap =
State->get<MostSpecializedTypeArgsMap>();
for (MostSpecializedTypeArgsMapTy::iterator I = TyArgMap.begin(),
E = TyArgMap.end();
I != E; ++I) {
if (SR.isDead(I->first)) {
State = State->remove<MostSpecializedTypeArgsMap>(I->first);
}
}
C.addTransition(State);
}
static void recordFixedType(const MemRegion *Region, const CXXMethodDecl *MD,
CheckerContext &C) {
assert(Region);
assert(MD);
ASTContext &Ctx = C.getASTContext();
QualType Ty = Ctx.getPointerType(Ctx.getRecordType(MD->getParent()));
ProgramStateRef State = C.getState();
State = setDynamicTypeInfo(State, Region, Ty, /*CanBeSubClassed=*/false);
C.addTransition(State);
}
void DynamicTypePropagation::checkPreCall(const CallEvent &Call,
CheckerContext &C) const {
if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
// C++11 [class.cdtor]p4: When a virtual function is called directly or
// indirectly from a constructor or from a destructor, including during
// the construction or destruction of the class's non-static data members,
// and the object to which the call applies is the object under
// construction or destruction, the function called is the final overrider
// in the constructor's or destructor's class and not one overriding it in
// a more-derived class.
switch (Ctor->getOriginExpr()->getConstructionKind()) {
case CXXConstructExpr::CK_Complete:
case CXXConstructExpr::CK_Delegating:
// No additional type info necessary.
return;
case CXXConstructExpr::CK_NonVirtualBase:
case CXXConstructExpr::CK_VirtualBase:
if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion())
recordFixedType(Target, Ctor->getDecl(), C);
return;
}
return;
}
if (const CXXDestructorCall *Dtor = dyn_cast<CXXDestructorCall>(&Call)) {
// C++11 [class.cdtor]p4 (see above)
if (!Dtor->isBaseDestructor())
return;
const MemRegion *Target = Dtor->getCXXThisVal().getAsRegion();
if (!Target)
return;
const Decl *D = Dtor->getDecl();
if (!D)
return;
recordFixedType(Target, cast<CXXDestructorDecl>(D), C);
return;
}
}
void DynamicTypePropagation::checkPostCall(const CallEvent &Call,
CheckerContext &C) const {
// We can obtain perfect type info for return values from some calls.
if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
// Get the returned value if it's a region.
const MemRegion *RetReg = Call.getReturnValue().getAsRegion();
if (!RetReg)
return;
ProgramStateRef State = C.getState();
const ObjCMethodDecl *D = Msg->getDecl();
if (D && D->hasRelatedResultType()) {
switch (Msg->getMethodFamily()) {
default:
break;
// We assume that the type of the object returned by alloc and new are the
// pointer to the object of the class specified in the receiver of the
// message.
case OMF_alloc:
case OMF_new: {
// Get the type of object that will get created.
RuntimeType ObjTy = inferReceiverType(*Msg, C);
if (!ObjTy)
return;
QualType DynResTy =
C.getASTContext().getObjCObjectPointerType(QualType(ObjTy.Type, 0));
// We used to assume that whatever type we got from inferring the
// type is actually precise (and it is not exactly correct).
// A big portion of the existing behavior depends on that assumption
// (e.g. certain inlining won't take place). For this reason, we don't
// use ObjTy.Precise flag here.
//
// TODO: We should mitigate this problem some time in the future
// and replace hardcoded 'false' with '!ObjTy.Precise'.
C.addTransition(setDynamicTypeInfo(State, RetReg, DynResTy, false));
break;
}
case OMF_init: {
// Assume, the result of the init method has the same dynamic type as
// the receiver and propagate the dynamic type info.
const MemRegion *RecReg = Msg->getReceiverSVal().getAsRegion();
if (!RecReg)
return;
DynamicTypeInfo RecDynType = getDynamicTypeInfo(State, RecReg);
C.addTransition(setDynamicTypeInfo(State, RetReg, RecDynType));
break;
}
}
}
return;
}
if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
// We may need to undo the effects of our pre-call check.
switch (Ctor->getOriginExpr()->getConstructionKind()) {
case CXXConstructExpr::CK_Complete:
case CXXConstructExpr::CK_Delegating:
// No additional work necessary.
// Note: This will leave behind the actual type of the object for
// complete constructors, but arguably that's a good thing, since it
// means the dynamic type info will be correct even for objects
// constructed with operator new.
return;
case CXXConstructExpr::CK_NonVirtualBase:
case CXXConstructExpr::CK_VirtualBase:
if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion()) {
// We just finished a base constructor. Now we can use the subclass's
// type when resolving virtual calls.
const LocationContext *LCtx = C.getLocationContext();
// FIXME: In C++17 classes with non-virtual bases may be treated as
// aggregates, and in such case no top-frame constructor will be called.
// Figure out if we need to do anything in this case.
// FIXME: Instead of relying on the ParentMap, we should have the
// trigger-statement (InitListExpr in this case) available in this
// callback, ideally as part of CallEvent.
if (isa_and_nonnull<InitListExpr>(
LCtx->getParentMap().getParent(Ctor->getOriginExpr())))
return;
recordFixedType(Target, cast<CXXConstructorDecl>(LCtx->getDecl()), C);
}
return;
}
}
}
/// TODO: Handle explicit casts.
/// Handle C++ casts.
///
/// Precondition: the cast is between ObjCObjectPointers.
ExplodedNode *DynamicTypePropagation::dynamicTypePropagationOnCasts(
const CastExpr *CE, ProgramStateRef &State, CheckerContext &C) const {
// We only track type info for regions.
const MemRegion *ToR = C.getSVal(CE).getAsRegion();
if (!ToR)
return C.getPredecessor();
if (isa<ExplicitCastExpr>(CE))
return C.getPredecessor();
if (const Type *NewTy = getBetterObjCType(CE, C)) {
State = setDynamicTypeInfo(State, ToR, QualType(NewTy, 0));
return C.addTransition(State);
}
return C.getPredecessor();
}
void DynamicTypePropagation::checkPostStmt(const CXXNewExpr *NewE,
CheckerContext &C) const {
if (NewE->isArray())
return;
// We only track dynamic type info for regions.
const MemRegion *MR = C.getSVal(NewE).getAsRegion();
if (!MR)
return;
C.addTransition(setDynamicTypeInfo(C.getState(), MR, NewE->getType(),
/*CanBeSubClassed=*/false));
}
// Return a better dynamic type if one can be derived from the cast.
// Compare the current dynamic type of the region and the new type to which we
// are casting. If the new type is lower in the inheritance hierarchy, pick it.
const ObjCObjectPointerType *
DynamicTypePropagation::getBetterObjCType(const Expr *CastE,
CheckerContext &C) const {
const MemRegion *ToR = C.getSVal(CastE).getAsRegion();
assert(ToR);
// Get the old and new types.
const ObjCObjectPointerType *NewTy =
CastE->getType()->getAs<ObjCObjectPointerType>();
if (!NewTy)
return nullptr;
QualType OldDTy = getDynamicTypeInfo(C.getState(), ToR).getType();
if (OldDTy.isNull()) {
return NewTy;
}
const ObjCObjectPointerType *OldTy =
OldDTy->getAs<ObjCObjectPointerType>();
if (!OldTy)
return nullptr;
// Id the old type is 'id', the new one is more precise.
if (OldTy->isObjCIdType() && !NewTy->isObjCIdType())
return NewTy;
// Return new if it's a subclass of old.
const ObjCInterfaceDecl *ToI = NewTy->getInterfaceDecl();
const ObjCInterfaceDecl *FromI = OldTy->getInterfaceDecl();
if (ToI && FromI && FromI->isSuperClassOf(ToI))
return NewTy;
return nullptr;
}
static const ObjCObjectPointerType *getMostInformativeDerivedClassImpl(
const ObjCObjectPointerType *From, const ObjCObjectPointerType *To,
const ObjCObjectPointerType *MostInformativeCandidate, ASTContext &C) {
// Checking if from and to are the same classes modulo specialization.
if (From->getInterfaceDecl()->getCanonicalDecl() ==
To->getInterfaceDecl()->getCanonicalDecl()) {
if (To->isSpecialized()) {
assert(MostInformativeCandidate->isSpecialized());
return MostInformativeCandidate;
}
return From;
}
if (To->getObjectType()->getSuperClassType().isNull()) {
// If To has no super class and From and To aren't the same then
// To was not actually a descendent of From. In this case the best we can
// do is 'From'.
return From;
}
const auto *SuperOfTo =
To->getObjectType()->getSuperClassType()->castAs<ObjCObjectType>();
assert(SuperOfTo);
QualType SuperPtrOfToQual =
C.getObjCObjectPointerType(QualType(SuperOfTo, 0));
const auto *SuperPtrOfTo = SuperPtrOfToQual->castAs<ObjCObjectPointerType>();
if (To->isUnspecialized())
return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo, SuperPtrOfTo,
C);
else
return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo,
MostInformativeCandidate, C);
}
/// A downcast may loose specialization information. E. g.:
/// MutableMap<T, U> : Map
/// The downcast to MutableMap looses the information about the types of the
/// Map (due to the type parameters are not being forwarded to Map), and in
/// general there is no way to recover that information from the
/// declaration. In order to have to most information, lets find the most
/// derived type that has all the type parameters forwarded.
///
/// Get the a subclass of \p From (which has a lower bound \p To) that do not
/// loose information about type parameters. \p To has to be a subclass of
/// \p From. From has to be specialized.
static const ObjCObjectPointerType *
getMostInformativeDerivedClass(const ObjCObjectPointerType *From,
const ObjCObjectPointerType *To, ASTContext &C) {
return getMostInformativeDerivedClassImpl(From, To, To, C);
}
/// Inputs:
/// \param StaticLowerBound Static lower bound for a symbol. The dynamic lower
/// bound might be the subclass of this type.
/// \param StaticUpperBound A static upper bound for a symbol.
/// \p StaticLowerBound expected to be the subclass of \p StaticUpperBound.
/// \param Current The type that was inferred for a symbol in a previous
/// context. Might be null when this is the first time that inference happens.
/// Precondition:
/// \p StaticLowerBound or \p StaticUpperBound is specialized. If \p Current
/// is not null, it is specialized.
/// Possible cases:
/// (1) The \p Current is null and \p StaticLowerBound <: \p StaticUpperBound
/// (2) \p StaticLowerBound <: \p Current <: \p StaticUpperBound
/// (3) \p Current <: \p StaticLowerBound <: \p StaticUpperBound
/// (4) \p StaticLowerBound <: \p StaticUpperBound <: \p Current
/// Effect:
/// Use getMostInformativeDerivedClass with the upper and lower bound of the
/// set {\p StaticLowerBound, \p Current, \p StaticUpperBound}. The computed
/// lower bound must be specialized. If the result differs from \p Current or
/// \p Current is null, store the result.
static bool
storeWhenMoreInformative(ProgramStateRef &State, SymbolRef Sym,
const ObjCObjectPointerType *const *Current,
const ObjCObjectPointerType *StaticLowerBound,
const ObjCObjectPointerType *StaticUpperBound,
ASTContext &C) {
// TODO: The above 4 cases are not exhaustive. In particular, it is possible
// for Current to be incomparable with StaticLowerBound, StaticUpperBound,
// or both.
//
// For example, suppose Foo<T> and Bar<T> are unrelated types.
//
// Foo<T> *f = ...
// Bar<T> *b = ...
//
// id t1 = b;
// f = t1;
// id t2 = f; // StaticLowerBound is Foo<T>, Current is Bar<T>
//
// We should either constrain the callers of this function so that the stated
// preconditions hold (and assert it) or rewrite the function to expicitly
// handle the additional cases.
// Precondition
assert(StaticUpperBound->isSpecialized() ||
StaticLowerBound->isSpecialized());
assert(!Current || (*Current)->isSpecialized());
// Case (1)
if (!Current) {
if (StaticUpperBound->isUnspecialized()) {
State = State->set<MostSpecializedTypeArgsMap>(Sym, StaticLowerBound);
return true;
}
// Upper bound is specialized.
const ObjCObjectPointerType *WithMostInfo =
getMostInformativeDerivedClass(StaticUpperBound, StaticLowerBound, C);
State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
return true;
}
// Case (3)
if (C.canAssignObjCInterfaces(StaticLowerBound, *Current)) {
return false;
}
// Case (4)
if (C.canAssignObjCInterfaces(*Current, StaticUpperBound)) {
// The type arguments might not be forwarded at any point of inheritance.
const ObjCObjectPointerType *WithMostInfo =
getMostInformativeDerivedClass(*Current, StaticUpperBound, C);
WithMostInfo =
getMostInformativeDerivedClass(WithMostInfo, StaticLowerBound, C);
if (WithMostInfo == *Current)
return false;
State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
return true;
}
// Case (2)
const ObjCObjectPointerType *WithMostInfo =
getMostInformativeDerivedClass(*Current, StaticLowerBound, C);
if (WithMostInfo != *Current) {
State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
return true;
}
return false;
}
/// Type inference based on static type information that is available for the
/// cast and the tracked type information for the given symbol. When the tracked
/// symbol and the destination type of the cast are unrelated, report an error.
void DynamicTypePropagation::checkPostStmt(const CastExpr *CE,
CheckerContext &C) const {
if (CE->getCastKind() != CK_BitCast)
return;
QualType OriginType = CE->getSubExpr()->getType();
QualType DestType = CE->getType();
const auto *OrigObjectPtrType = OriginType->getAs<ObjCObjectPointerType>();
const auto *DestObjectPtrType = DestType->getAs<ObjCObjectPointerType>();
if (!OrigObjectPtrType || !DestObjectPtrType)
return;
ProgramStateRef State = C.getState();
ExplodedNode *AfterTypeProp = dynamicTypePropagationOnCasts(CE, State, C);
ASTContext &ASTCtxt = C.getASTContext();
// This checker detects the subtyping relationships using the assignment
// rules. In order to be able to do this the kindofness must be stripped
// first. The checker treats every type as kindof type anyways: when the
// tracked type is the subtype of the static type it tries to look up the
// methods in the tracked type first.
OrigObjectPtrType = OrigObjectPtrType->stripObjCKindOfTypeAndQuals(ASTCtxt);
DestObjectPtrType = DestObjectPtrType->stripObjCKindOfTypeAndQuals(ASTCtxt);
if (OrigObjectPtrType->isUnspecialized() &&
DestObjectPtrType->isUnspecialized())
return;
SymbolRef Sym = C.getSVal(CE).getAsSymbol();
if (!Sym)
return;
const ObjCObjectPointerType *const *TrackedType =
State->get<MostSpecializedTypeArgsMap>(Sym);
if (isa<ExplicitCastExpr>(CE)) {
// Treat explicit casts as an indication from the programmer that the
// Objective-C type system is not rich enough to express the needed
// invariant. In such cases, forget any existing information inferred
// about the type arguments. We don't assume the casted-to specialized
// type here because the invariant the programmer specifies in the cast
// may only hold at this particular program point and not later ones.
// We don't want a suppressing cast to require a cascade of casts down the
// line.
if (TrackedType) {
State = State->remove<MostSpecializedTypeArgsMap>(Sym);
C.addTransition(State, AfterTypeProp);
}
return;
}
// Check which assignments are legal.
bool OrigToDest =
ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, OrigObjectPtrType);
bool DestToOrig =
ASTCtxt.canAssignObjCInterfaces(OrigObjectPtrType, DestObjectPtrType);
// The tracked type should be the sub or super class of the static destination
// type. When an (implicit) upcast or a downcast happens according to static
// types, and there is no subtyping relationship between the tracked and the
// static destination types, it indicates an error.
if (TrackedType &&
!ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, *TrackedType) &&
!ASTCtxt.canAssignObjCInterfaces(*TrackedType, DestObjectPtrType)) {
static CheckerProgramPointTag IllegalConv(this, "IllegalConversion");
ExplodedNode *N = C.addTransition(State, AfterTypeProp, &IllegalConv);
reportGenericsBug(*TrackedType, DestObjectPtrType, N, Sym, C);
return;
}
// Handle downcasts and upcasts.
const ObjCObjectPointerType *LowerBound = DestObjectPtrType;
const ObjCObjectPointerType *UpperBound = OrigObjectPtrType;
if (OrigToDest && !DestToOrig)
std::swap(LowerBound, UpperBound);
// The id type is not a real bound. Eliminate it.
LowerBound = LowerBound->isObjCIdType() ? UpperBound : LowerBound;
UpperBound = UpperBound->isObjCIdType() ? LowerBound : UpperBound;
if (storeWhenMoreInformative(State, Sym, TrackedType, LowerBound, UpperBound,
ASTCtxt)) {
C.addTransition(State, AfterTypeProp);
}
}
static const Expr *stripCastsAndSugar(const Expr *E) {
E = E->IgnoreParenImpCasts();
if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
E = POE->getSyntacticForm()->IgnoreParenImpCasts();
if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
E = OVE->getSourceExpr()->IgnoreParenImpCasts();
return E;
}
static bool isObjCTypeParamDependent(QualType Type) {
// It is illegal to typedef parameterized types inside an interface. Therefore
// an Objective-C type can only be dependent on a type parameter when the type
// parameter structurally present in the type itself.
class IsObjCTypeParamDependentTypeVisitor
: public RecursiveASTVisitor<IsObjCTypeParamDependentTypeVisitor> {
public:
IsObjCTypeParamDependentTypeVisitor() : Result(false) {}
bool VisitObjCTypeParamType(const ObjCTypeParamType *Type) {
if (isa<ObjCTypeParamDecl>(Type->getDecl())) {
Result = true;
return false;
}
return true;
}
bool Result;
};
IsObjCTypeParamDependentTypeVisitor Visitor;
Visitor.TraverseType(Type);
return Visitor.Result;
}
/// A method might not be available in the interface indicated by the static
/// type. However it might be available in the tracked type. In order to
/// properly substitute the type parameters we need the declaration context of
/// the method. The more specialized the enclosing class of the method is, the
/// more likely that the parameter substitution will be successful.
static const ObjCMethodDecl *
findMethodDecl(const ObjCMessageExpr *MessageExpr,
const ObjCObjectPointerType *TrackedType, ASTContext &ASTCtxt) {
const ObjCMethodDecl *Method = nullptr;
QualType ReceiverType = MessageExpr->getReceiverType();
const auto *ReceiverObjectPtrType =
ReceiverType->getAs<ObjCObjectPointerType>();
// Do this "devirtualization" on instance and class methods only. Trust the
// static type on super and super class calls.
if (MessageExpr->getReceiverKind() == ObjCMessageExpr::Instance ||
MessageExpr->getReceiverKind() == ObjCMessageExpr::Class) {
// When the receiver type is id, Class, or some super class of the tracked
// type, look up the method in the tracked type, not in the receiver type.
// This way we preserve more information.
if (ReceiverType->isObjCIdType() || ReceiverType->isObjCClassType() ||
ASTCtxt.canAssignObjCInterfaces(ReceiverObjectPtrType, TrackedType)) {
const ObjCInterfaceDecl *InterfaceDecl = TrackedType->getInterfaceDecl();
// The method might not be found.
Selector Sel = MessageExpr->getSelector();
Method = InterfaceDecl->lookupInstanceMethod(Sel);
if (!Method)
Method = InterfaceDecl->lookupClassMethod(Sel);
}
}
// Fallback to statick method lookup when the one based on the tracked type
// failed.
return Method ? Method : MessageExpr->getMethodDecl();
}
/// Get the returned ObjCObjectPointerType by a method based on the tracked type
/// information, or null pointer when the returned type is not an
/// ObjCObjectPointerType.
static QualType getReturnTypeForMethod(
const ObjCMethodDecl *Method, ArrayRef<QualType> TypeArgs,
const ObjCObjectPointerType *SelfType, ASTContext &C) {
QualType StaticResultType = Method->getReturnType();
// Is the return type declared as instance type?
if (StaticResultType == C.getObjCInstanceType())
return QualType(SelfType, 0);
// Check whether the result type depends on a type parameter.
if (!isObjCTypeParamDependent(StaticResultType))
return QualType();
QualType ResultType = StaticResultType.substObjCTypeArgs(
C, TypeArgs, ObjCSubstitutionContext::Result);
return ResultType;
}
/// When the receiver has a tracked type, use that type to validate the
/// argumments of the message expression and the return value.
void DynamicTypePropagation::checkPreObjCMessage(const ObjCMethodCall &M,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
SymbolRef Sym = M.getReceiverSVal().getAsSymbol();
if (!Sym)
return;
const ObjCObjectPointerType *const *TrackedType =
State->get<MostSpecializedTypeArgsMap>(Sym);
if (!TrackedType)
return;
// Get the type arguments from tracked type and substitute type arguments
// before do the semantic check.
ASTContext &ASTCtxt = C.getASTContext();
const ObjCMessageExpr *MessageExpr = M.getOriginExpr();
const ObjCMethodDecl *Method =
findMethodDecl(MessageExpr, *TrackedType, ASTCtxt);
// It is possible to call non-existent methods in Obj-C.
if (!Method)
return;
// If the method is declared on a class that has a non-invariant
// type parameter, don't warn about parameter mismatches after performing
// substitution. This prevents warning when the programmer has purposely
// casted the receiver to a super type or unspecialized type but the analyzer
// has a more precise tracked type than the programmer intends at the call
// site.
//
// For example, consider NSArray (which has a covariant type parameter)
// and NSMutableArray (a subclass of NSArray where the type parameter is
// invariant):
// NSMutableArray *a = [[NSMutableArray<NSString *> alloc] init;
//
// [a containsObject:number]; // Safe: -containsObject is defined on NSArray.
// NSArray<NSObject *> *other = [a arrayByAddingObject:number] // Safe
//
// [a addObject:number] // Unsafe: -addObject: is defined on NSMutableArray
//
const ObjCInterfaceDecl *Interface = Method->getClassInterface();
if (!Interface)
return;
ObjCTypeParamList *TypeParams = Interface->getTypeParamList();
if (!TypeParams)
return;
for (ObjCTypeParamDecl *TypeParam : *TypeParams) {
if (TypeParam->getVariance() != ObjCTypeParamVariance::Invariant)
return;
}
Optional<ArrayRef<QualType>> TypeArgs =
(*TrackedType)->getObjCSubstitutions(Method->getDeclContext());
// This case might happen when there is an unspecialized override of a
// specialized method.
if (!TypeArgs)
return;
for (unsigned i = 0; i < Method->param_size(); i++) {
const Expr *Arg = MessageExpr->getArg(i);
const ParmVarDecl *Param = Method->parameters()[i];
QualType OrigParamType = Param->getType();
if (!isObjCTypeParamDependent(OrigParamType))
continue;
QualType ParamType = OrigParamType.substObjCTypeArgs(
ASTCtxt, *TypeArgs, ObjCSubstitutionContext::Parameter);
// Check if it can be assigned
const auto *ParamObjectPtrType = ParamType->getAs<ObjCObjectPointerType>();
const auto *ArgObjectPtrType =
stripCastsAndSugar(Arg)->getType()->getAs<ObjCObjectPointerType>();
if (!ParamObjectPtrType || !ArgObjectPtrType)
continue;
// Check if we have more concrete tracked type that is not a super type of
// the static argument type.
SVal ArgSVal = M.getArgSVal(i);
SymbolRef ArgSym = ArgSVal.getAsSymbol();
if (ArgSym) {
const ObjCObjectPointerType *const *TrackedArgType =
State->get<MostSpecializedTypeArgsMap>(ArgSym);
if (TrackedArgType &&
ASTCtxt.canAssignObjCInterfaces(ArgObjectPtrType, *TrackedArgType)) {
ArgObjectPtrType = *TrackedArgType;
}
}
// Warn when argument is incompatible with the parameter.
if (!ASTCtxt.canAssignObjCInterfaces(ParamObjectPtrType,
ArgObjectPtrType)) {
static CheckerProgramPointTag Tag(this, "ArgTypeMismatch");
ExplodedNode *N = C.addTransition(State, &Tag);
reportGenericsBug(ArgObjectPtrType, ParamObjectPtrType, N, Sym, C, Arg);
return;
}
}
}
/// This callback is used to infer the types for Class variables. This info is
/// used later to validate messages that sent to classes. Class variables are
/// initialized with by invoking the 'class' method on a class.
/// This method is also used to infer the type information for the return
/// types.
// TODO: right now it only tracks generic types. Extend this to track every
// type in the DynamicTypeMap and diagnose type errors!
void DynamicTypePropagation::checkPostObjCMessage(const ObjCMethodCall &M,
CheckerContext &C) const {
const ObjCMessageExpr *MessageExpr = M.getOriginExpr();
SymbolRef RetSym = M.getReturnValue().getAsSymbol();
if (!RetSym)
return;
Selector Sel = MessageExpr->getSelector();
ProgramStateRef State = C.getState();
// Here we try to propagate information on Class objects.
if (Sel.getAsString() == "class") {
// We try to figure out the type from the receiver of the 'class' message.
if (RuntimeType ReceiverRuntimeType = inferReceiverType(M, C)) {
ReceiverRuntimeType.Type->getSuperClassType();
QualType ReceiverClassType(ReceiverRuntimeType.Type, 0);
// We want to consider only precise information on generics.
if (ReceiverRuntimeType.Type->isSpecialized() &&
ReceiverRuntimeType.Precise) {
QualType ReceiverClassPointerType =
C.getASTContext().getObjCObjectPointerType(ReceiverClassType);
const auto *InferredType =
ReceiverClassPointerType->castAs<ObjCObjectPointerType>();
State = State->set<MostSpecializedTypeArgsMap>(RetSym, InferredType);
}
// Constrain the resulting class object to the inferred type.
State = setClassObjectDynamicTypeInfo(State, RetSym, ReceiverClassType,
!ReceiverRuntimeType.Precise);
C.addTransition(State);
return;
}
}
if (Sel.getAsString() == "superclass") {
// We try to figure out the type from the receiver of the 'superclass'
// message.
if (RuntimeType ReceiverRuntimeType = inferReceiverType(M, C)) {
// Result type would be a super class of the receiver's type.
QualType ReceiversSuperClass =
ReceiverRuntimeType.Type->getSuperClassType();
// Check if it really had super class.
//
// TODO: we can probably pay closer attention to cases when the class
// object can be 'nil' as the result of such message.
if (!ReceiversSuperClass.isNull()) {
// Constrain the resulting class object to the inferred type.
State = setClassObjectDynamicTypeInfo(
State, RetSym, ReceiversSuperClass, !ReceiverRuntimeType.Precise);
C.addTransition(State);
}
return;
}
}
// Tracking for return types.
SymbolRef RecSym = M.getReceiverSVal().getAsSymbol();
if (!RecSym)
return;
const ObjCObjectPointerType *const *TrackedType =
State->get<MostSpecializedTypeArgsMap>(RecSym);
if (!TrackedType)
return;
ASTContext &ASTCtxt = C.getASTContext();
const ObjCMethodDecl *Method =
findMethodDecl(MessageExpr, *TrackedType, ASTCtxt);
if (!Method)
return;
Optional<ArrayRef<QualType>> TypeArgs =
(*TrackedType)->getObjCSubstitutions(Method->getDeclContext());
if (!TypeArgs)
return;
QualType ResultType =
getReturnTypeForMethod(Method, *TypeArgs, *TrackedType, ASTCtxt);
// The static type is the same as the deduced type.
if (ResultType.isNull())
return;
const MemRegion *RetRegion = M.getReturnValue().getAsRegion();
ExplodedNode *Pred = C.getPredecessor();
// When there is an entry available for the return symbol in DynamicTypeMap,
// the call was inlined, and the information in the DynamicTypeMap is should
// be precise.
if (RetRegion && !getRawDynamicTypeInfo(State, RetRegion)) {
// TODO: we have duplicated information in DynamicTypeMap and
// MostSpecializedTypeArgsMap. We should only store anything in the later if
// the stored data differs from the one stored in the former.
State = setDynamicTypeInfo(State, RetRegion, ResultType,
/*CanBeSubClassed=*/true);
Pred = C.addTransition(State);
}
const auto *ResultPtrType = ResultType->getAs<ObjCObjectPointerType>();
if (!ResultPtrType || ResultPtrType->isUnspecialized())
return;
// When the result is a specialized type and it is not tracked yet, track it
// for the result symbol.
if (!State->get<MostSpecializedTypeArgsMap>(RetSym)) {
State = State->set<MostSpecializedTypeArgsMap>(RetSym, ResultPtrType);
C.addTransition(State, Pred);
}
}
void DynamicTypePropagation::reportGenericsBug(
const ObjCObjectPointerType *From, const ObjCObjectPointerType *To,
ExplodedNode *N, SymbolRef Sym, CheckerContext &C,
const Stmt *ReportedNode) const {
if (!CheckGenerics)
return;
initBugType();
SmallString<192> Buf;
llvm::raw_svector_ostream OS(Buf);
OS << "Conversion from value of type '";
QualType::print(From, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
OS << "' to incompatible type '";
QualType::print(To, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
OS << "'";
auto R = std::make_unique<PathSensitiveBugReport>(*ObjCGenericsBugType,
OS.str(), N);
R->markInteresting(Sym);
R->addVisitor(std::make_unique<GenericsBugVisitor>(Sym));
if (ReportedNode)
R->addRange(ReportedNode->getSourceRange());
C.emitReport(std::move(R));
}
PathDiagnosticPieceRef DynamicTypePropagation::GenericsBugVisitor::VisitNode(
const ExplodedNode *N, BugReporterContext &BRC,
PathSensitiveBugReport &BR) {
ProgramStateRef state = N->getState();
ProgramStateRef statePrev = N->getFirstPred()->getState();
const ObjCObjectPointerType *const *TrackedType =
state->get<MostSpecializedTypeArgsMap>(Sym);
const ObjCObjectPointerType *const *TrackedTypePrev =
statePrev->get<MostSpecializedTypeArgsMap>(Sym);
if (!TrackedType)
return nullptr;
if (TrackedTypePrev && *TrackedTypePrev == *TrackedType)
return nullptr;
// Retrieve the associated statement.
const Stmt *S = N->getStmtForDiagnostics();
if (!S)
return nullptr;
const LangOptions &LangOpts = BRC.getASTContext().getLangOpts();
SmallString<256> Buf;
llvm::raw_svector_ostream OS(Buf);
OS << "Type '";
QualType::print(*TrackedType, Qualifiers(), OS, LangOpts, llvm::Twine());
OS << "' is inferred from ";
if (const auto *ExplicitCast = dyn_cast<ExplicitCastExpr>(S)) {
OS << "explicit cast (from '";
QualType::print(ExplicitCast->getSubExpr()->getType().getTypePtr(),
Qualifiers(), OS, LangOpts, llvm::Twine());
OS << "' to '";
QualType::print(ExplicitCast->getType().getTypePtr(), Qualifiers(), OS,
LangOpts, llvm::Twine());
OS << "')";
} else if (const auto *ImplicitCast = dyn_cast<ImplicitCastExpr>(S)) {
OS << "implicit cast (from '";
QualType::print(ImplicitCast->getSubExpr()->getType().getTypePtr(),
Qualifiers(), OS, LangOpts, llvm::Twine());
OS << "' to '";
QualType::print(ImplicitCast->getType().getTypePtr(), Qualifiers(), OS,
LangOpts, llvm::Twine());
OS << "')";
} else {
OS << "this context";
}
// Generate the extra diagnostic.
PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
N->getLocationContext());
return std::make_shared<PathDiagnosticEventPiece>(Pos, OS.str(), true);
}
/// Register checkers.
void ento::registerObjCGenericsChecker(CheckerManager &mgr) {
DynamicTypePropagation *checker = mgr.getChecker<DynamicTypePropagation>();
checker->CheckGenerics = true;
checker->GenericCheckName = mgr.getCurrentCheckerName();
}
bool ento::shouldRegisterObjCGenericsChecker(const CheckerManager &mgr) {
return true;
}
void ento::registerDynamicTypePropagation(CheckerManager &mgr) {
mgr.registerChecker<DynamicTypePropagation>();
}
bool ento::shouldRegisterDynamicTypePropagation(const CheckerManager &mgr) {
return true;
}
|