1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
|
//== GenericTaintChecker.cpp ----------------------------------- -*- C++ -*--=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This checker defines the attack surface for generic taint propagation.
//
// The taint information produced by it might be useful to other checkers. For
// example, checkers should report errors which involve tainted data more
// aggressively, even if the involved symbols are under constrained.
//
//===----------------------------------------------------------------------===//
#include "Yaml.h"
#include "clang/AST/Attr.h"
#include "clang/Basic/Builtins.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Checkers/Taint.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "llvm/Support/YAMLTraits.h"
#include <limits>
#include <memory>
#include <utility>
#define DEBUG_TYPE "taint-checker"
using namespace clang;
using namespace ento;
using namespace taint;
using llvm::ImmutableSet;
namespace {
class GenericTaintChecker;
/// Check for CWE-134: Uncontrolled Format String.
constexpr llvm::StringLiteral MsgUncontrolledFormatString =
"Untrusted data is used as a format string "
"(CWE-134: Uncontrolled Format String)";
/// Check for:
/// CERT/STR02-C. "Sanitize data passed to complex subsystems"
/// CWE-78, "Failure to Sanitize Data into an OS Command"
constexpr llvm::StringLiteral MsgSanitizeSystemArgs =
"Untrusted data is passed to a system call "
"(CERT/STR02-C. Sanitize data passed to complex subsystems)";
/// Check if tainted data is used as a buffer size in strn.. functions,
/// and allocators.
constexpr llvm::StringLiteral MsgTaintedBufferSize =
"Untrusted data is used to specify the buffer size "
"(CERT/STR31-C. Guarantee that storage for strings has sufficient space "
"for character data and the null terminator)";
/// Check if tainted data is used as a custom sink's parameter.
constexpr llvm::StringLiteral MsgCustomSink =
"Untrusted data is passed to a user-defined sink";
using ArgIdxTy = int;
using ArgVecTy = llvm::SmallVector<ArgIdxTy, 2>;
/// Denotes the return value.
constexpr ArgIdxTy ReturnValueIndex{-1};
static ArgIdxTy fromArgumentCount(unsigned Count) {
assert(Count <=
static_cast<std::size_t>(std::numeric_limits<ArgIdxTy>::max()) &&
"ArgIdxTy is not large enough to represent the number of arguments.");
return Count;
}
/// Check if the region the expression evaluates to is the standard input,
/// and thus, is tainted.
/// FIXME: Move this to Taint.cpp.
bool isStdin(SVal Val, const ASTContext &ACtx) {
// FIXME: What if Val is NonParamVarRegion?
// The region should be symbolic, we do not know it's value.
const auto *SymReg = dyn_cast_or_null<SymbolicRegion>(Val.getAsRegion());
if (!SymReg)
return false;
// Get it's symbol and find the declaration region it's pointing to.
const auto *DeclReg =
dyn_cast_or_null<DeclRegion>(SymReg->getSymbol()->getOriginRegion());
if (!DeclReg)
return false;
// This region corresponds to a declaration, find out if it's a global/extern
// variable named stdin with the proper type.
if (const auto *D = dyn_cast_or_null<VarDecl>(DeclReg->getDecl())) {
D = D->getCanonicalDecl();
// FIXME: This should look for an exact match.
if (D->getName().contains("stdin") && D->isExternC()) {
const QualType FILETy = ACtx.getFILEType().getCanonicalType();
const QualType Ty = D->getType().getCanonicalType();
if (Ty->isPointerType())
return Ty->getPointeeType() == FILETy;
}
}
return false;
}
SVal getPointeeOf(const CheckerContext &C, Loc LValue) {
const QualType ArgTy = LValue.getType(C.getASTContext());
if (!ArgTy->isPointerType() || !ArgTy->getPointeeType()->isVoidType())
return C.getState()->getSVal(LValue);
// Do not dereference void pointers. Treat them as byte pointers instead.
// FIXME: we might want to consider more than just the first byte.
return C.getState()->getSVal(LValue, C.getASTContext().CharTy);
}
/// Given a pointer/reference argument, return the value it refers to.
Optional<SVal> getPointeeOf(const CheckerContext &C, SVal Arg) {
if (auto LValue = Arg.getAs<Loc>())
return getPointeeOf(C, *LValue);
return None;
}
/// Given a pointer, return the SVal of its pointee or if it is tainted,
/// otherwise return the pointer's SVal if tainted.
/// Also considers stdin as a taint source.
Optional<SVal> getTaintedPointeeOrPointer(const CheckerContext &C, SVal Arg) {
const ProgramStateRef State = C.getState();
if (auto Pointee = getPointeeOf(C, Arg))
if (isTainted(State, *Pointee)) // FIXME: isTainted(...) ? Pointee : None;
return Pointee;
if (isTainted(State, Arg))
return Arg;
// FIXME: This should be done by the isTainted() API.
if (isStdin(Arg, C.getASTContext()))
return Arg;
return None;
}
bool isTaintedOrPointsToTainted(const Expr *E, const ProgramStateRef &State,
CheckerContext &C) {
return getTaintedPointeeOrPointer(C, C.getSVal(E)).has_value();
}
/// ArgSet is used to describe arguments relevant for taint detection or
/// taint application. A discrete set of argument indexes and a variadic
/// argument list signified by a starting index are supported.
class ArgSet {
public:
ArgSet() = default;
ArgSet(ArgVecTy &&DiscreteArgs, Optional<ArgIdxTy> VariadicIndex = None)
: DiscreteArgs(std::move(DiscreteArgs)),
VariadicIndex(std::move(VariadicIndex)) {}
bool contains(ArgIdxTy ArgIdx) const {
if (llvm::is_contained(DiscreteArgs, ArgIdx))
return true;
return VariadicIndex && ArgIdx >= *VariadicIndex;
}
bool isEmpty() const { return DiscreteArgs.empty() && !VariadicIndex; }
private:
ArgVecTy DiscreteArgs;
Optional<ArgIdxTy> VariadicIndex;
};
/// A struct used to specify taint propagation rules for a function.
///
/// If any of the possible taint source arguments is tainted, all of the
/// destination arguments should also be tainted. If ReturnValueIndex is added
/// to the dst list, the return value will be tainted.
class GenericTaintRule {
/// Arguments which are taints sinks and should be checked, and a report
/// should be emitted if taint reaches these.
ArgSet SinkArgs;
/// Arguments which should be sanitized on function return.
ArgSet FilterArgs;
/// Arguments which can participate in taint propagationa. If any of the
/// arguments in PropSrcArgs is tainted, all arguments in PropDstArgs should
/// be tainted.
ArgSet PropSrcArgs;
ArgSet PropDstArgs;
/// A message that explains why the call is sensitive to taint.
Optional<StringRef> SinkMsg;
GenericTaintRule() = default;
GenericTaintRule(ArgSet &&Sink, ArgSet &&Filter, ArgSet &&Src, ArgSet &&Dst,
Optional<StringRef> SinkMsg = None)
: SinkArgs(std::move(Sink)), FilterArgs(std::move(Filter)),
PropSrcArgs(std::move(Src)), PropDstArgs(std::move(Dst)),
SinkMsg(SinkMsg) {}
public:
/// Make a rule that reports a warning if taint reaches any of \p FilterArgs
/// arguments.
static GenericTaintRule Sink(ArgSet &&SinkArgs,
Optional<StringRef> Msg = None) {
return {std::move(SinkArgs), {}, {}, {}, Msg};
}
/// Make a rule that sanitizes all FilterArgs arguments.
static GenericTaintRule Filter(ArgSet &&FilterArgs) {
return {{}, std::move(FilterArgs), {}, {}};
}
/// Make a rule that unconditionally taints all Args.
/// If Func is provided, it must also return true for taint to propagate.
static GenericTaintRule Source(ArgSet &&SourceArgs) {
return {{}, {}, {}, std::move(SourceArgs)};
}
/// Make a rule that taints all PropDstArgs if any of PropSrcArgs is tainted.
static GenericTaintRule Prop(ArgSet &&SrcArgs, ArgSet &&DstArgs) {
return {{}, {}, std::move(SrcArgs), std::move(DstArgs)};
}
/// Make a rule that taints all PropDstArgs if any of PropSrcArgs is tainted.
static GenericTaintRule SinkProp(ArgSet &&SinkArgs, ArgSet &&SrcArgs,
ArgSet &&DstArgs,
Optional<StringRef> Msg = None) {
return {
std::move(SinkArgs), {}, std::move(SrcArgs), std::move(DstArgs), Msg};
}
/// Process a function which could either be a taint source, a taint sink, a
/// taint filter or a taint propagator.
void process(const GenericTaintChecker &Checker, const CallEvent &Call,
CheckerContext &C) const;
/// Handles the resolution of indexes of type ArgIdxTy to Expr*-s.
static const Expr *GetArgExpr(ArgIdxTy ArgIdx, const CallEvent &Call) {
return ArgIdx == ReturnValueIndex ? Call.getOriginExpr()
: Call.getArgExpr(ArgIdx);
};
/// Functions for custom taintedness propagation.
static bool UntrustedEnv(CheckerContext &C);
};
using RuleLookupTy = CallDescriptionMap<GenericTaintRule>;
/// Used to parse the configuration file.
struct TaintConfiguration {
using NameScopeArgs = std::tuple<std::string, std::string, ArgVecTy>;
enum class VariadicType { None, Src, Dst };
struct Common {
std::string Name;
std::string Scope;
};
struct Sink : Common {
ArgVecTy SinkArgs;
};
struct Filter : Common {
ArgVecTy FilterArgs;
};
struct Propagation : Common {
ArgVecTy SrcArgs;
ArgVecTy DstArgs;
VariadicType VarType;
ArgIdxTy VarIndex;
};
std::vector<Propagation> Propagations;
std::vector<Filter> Filters;
std::vector<Sink> Sinks;
TaintConfiguration() = default;
TaintConfiguration(const TaintConfiguration &) = default;
TaintConfiguration(TaintConfiguration &&) = default;
TaintConfiguration &operator=(const TaintConfiguration &) = default;
TaintConfiguration &operator=(TaintConfiguration &&) = default;
};
struct GenericTaintRuleParser {
GenericTaintRuleParser(CheckerManager &Mgr) : Mgr(Mgr) {}
/// Container type used to gather call identification objects grouped into
/// pairs with their corresponding taint rules. It is temporary as it is used
/// to finally initialize RuleLookupTy, which is considered to be immutable.
using RulesContTy = std::vector<std::pair<CallDescription, GenericTaintRule>>;
RulesContTy parseConfiguration(const std::string &Option,
TaintConfiguration &&Config) const;
private:
using NamePartsTy = llvm::SmallVector<SmallString<32>, 2>;
/// Validate part of the configuration, which contains a list of argument
/// indexes.
void validateArgVector(const std::string &Option, const ArgVecTy &Args) const;
template <typename Config> static NamePartsTy parseNameParts(const Config &C);
// Takes the config and creates a CallDescription for it and associates a Rule
// with that.
template <typename Config>
static void consumeRulesFromConfig(const Config &C, GenericTaintRule &&Rule,
RulesContTy &Rules);
void parseConfig(const std::string &Option, TaintConfiguration::Sink &&P,
RulesContTy &Rules) const;
void parseConfig(const std::string &Option, TaintConfiguration::Filter &&P,
RulesContTy &Rules) const;
void parseConfig(const std::string &Option,
TaintConfiguration::Propagation &&P,
RulesContTy &Rules) const;
CheckerManager &Mgr;
};
class GenericTaintChecker : public Checker<check::PreCall, check::PostCall> {
public:
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
const char *Sep) const override;
/// Generate a report if the expression is tainted or points to tainted data.
bool generateReportIfTainted(const Expr *E, StringRef Msg,
CheckerContext &C) const;
private:
const BugType BT{this, "Use of Untrusted Data", "Untrusted Data"};
bool checkUncontrolledFormatString(const CallEvent &Call,
CheckerContext &C) const;
void taintUnsafeSocketProtocol(const CallEvent &Call,
CheckerContext &C) const;
/// Default taint rules are initilized with the help of a CheckerContext to
/// access the names of built-in functions like memcpy.
void initTaintRules(CheckerContext &C) const;
/// CallDescription currently cannot restrict matches to the global namespace
/// only, which is why multiple CallDescriptionMaps are used, as we want to
/// disambiguate global C functions from functions inside user-defined
/// namespaces.
// TODO: Remove separation to simplify matching logic once CallDescriptions
// are more expressive.
mutable Optional<RuleLookupTy> StaticTaintRules;
mutable Optional<RuleLookupTy> DynamicTaintRules;
};
} // end of anonymous namespace
/// YAML serialization mapping.
LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Sink)
LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Filter)
LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Propagation)
namespace llvm {
namespace yaml {
template <> struct MappingTraits<TaintConfiguration> {
static void mapping(IO &IO, TaintConfiguration &Config) {
IO.mapOptional("Propagations", Config.Propagations);
IO.mapOptional("Filters", Config.Filters);
IO.mapOptional("Sinks", Config.Sinks);
}
};
template <> struct MappingTraits<TaintConfiguration::Sink> {
static void mapping(IO &IO, TaintConfiguration::Sink &Sink) {
IO.mapRequired("Name", Sink.Name);
IO.mapOptional("Scope", Sink.Scope);
IO.mapRequired("Args", Sink.SinkArgs);
}
};
template <> struct MappingTraits<TaintConfiguration::Filter> {
static void mapping(IO &IO, TaintConfiguration::Filter &Filter) {
IO.mapRequired("Name", Filter.Name);
IO.mapOptional("Scope", Filter.Scope);
IO.mapRequired("Args", Filter.FilterArgs);
}
};
template <> struct MappingTraits<TaintConfiguration::Propagation> {
static void mapping(IO &IO, TaintConfiguration::Propagation &Propagation) {
IO.mapRequired("Name", Propagation.Name);
IO.mapOptional("Scope", Propagation.Scope);
IO.mapOptional("SrcArgs", Propagation.SrcArgs);
IO.mapOptional("DstArgs", Propagation.DstArgs);
IO.mapOptional("VariadicType", Propagation.VarType);
IO.mapOptional("VariadicIndex", Propagation.VarIndex);
}
};
template <> struct ScalarEnumerationTraits<TaintConfiguration::VariadicType> {
static void enumeration(IO &IO, TaintConfiguration::VariadicType &Value) {
IO.enumCase(Value, "None", TaintConfiguration::VariadicType::None);
IO.enumCase(Value, "Src", TaintConfiguration::VariadicType::Src);
IO.enumCase(Value, "Dst", TaintConfiguration::VariadicType::Dst);
}
};
} // namespace yaml
} // namespace llvm
/// A set which is used to pass information from call pre-visit instruction
/// to the call post-visit. The values are signed integers, which are either
/// ReturnValueIndex, or indexes of the pointer/reference argument, which
/// points to data, which should be tainted on return.
REGISTER_MAP_WITH_PROGRAMSTATE(TaintArgsOnPostVisit, const LocationContext *,
ImmutableSet<ArgIdxTy>)
REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ArgIdxFactory, ArgIdxTy)
void GenericTaintRuleParser::validateArgVector(const std::string &Option,
const ArgVecTy &Args) const {
for (ArgIdxTy Arg : Args) {
if (Arg < ReturnValueIndex) {
Mgr.reportInvalidCheckerOptionValue(
Mgr.getChecker<GenericTaintChecker>(), Option,
"an argument number for propagation rules greater or equal to -1");
}
}
}
template <typename Config>
GenericTaintRuleParser::NamePartsTy
GenericTaintRuleParser::parseNameParts(const Config &C) {
NamePartsTy NameParts;
if (!C.Scope.empty()) {
// If the Scope argument contains multiple "::" parts, those are considered
// namespace identifiers.
llvm::SmallVector<StringRef, 2> NSParts;
StringRef{C.Scope}.split(NSParts, "::", /*MaxSplit*/ -1,
/*KeepEmpty*/ false);
NameParts.append(NSParts.begin(), NSParts.end());
}
NameParts.emplace_back(C.Name);
return NameParts;
}
template <typename Config>
void GenericTaintRuleParser::consumeRulesFromConfig(const Config &C,
GenericTaintRule &&Rule,
RulesContTy &Rules) {
NamePartsTy NameParts = parseNameParts(C);
llvm::SmallVector<const char *, 2> CallDescParts{NameParts.size()};
llvm::transform(NameParts, CallDescParts.begin(),
[](SmallString<32> &S) { return S.c_str(); });
Rules.emplace_back(CallDescription(CallDescParts), std::move(Rule));
}
void GenericTaintRuleParser::parseConfig(const std::string &Option,
TaintConfiguration::Sink &&S,
RulesContTy &Rules) const {
validateArgVector(Option, S.SinkArgs);
consumeRulesFromConfig(S, GenericTaintRule::Sink(std::move(S.SinkArgs)),
Rules);
}
void GenericTaintRuleParser::parseConfig(const std::string &Option,
TaintConfiguration::Filter &&S,
RulesContTy &Rules) const {
validateArgVector(Option, S.FilterArgs);
consumeRulesFromConfig(S, GenericTaintRule::Filter(std::move(S.FilterArgs)),
Rules);
}
void GenericTaintRuleParser::parseConfig(const std::string &Option,
TaintConfiguration::Propagation &&P,
RulesContTy &Rules) const {
validateArgVector(Option, P.SrcArgs);
validateArgVector(Option, P.DstArgs);
bool IsSrcVariadic = P.VarType == TaintConfiguration::VariadicType::Src;
bool IsDstVariadic = P.VarType == TaintConfiguration::VariadicType::Dst;
Optional<ArgIdxTy> JustVarIndex = P.VarIndex;
ArgSet SrcDesc(std::move(P.SrcArgs), IsSrcVariadic ? JustVarIndex : None);
ArgSet DstDesc(std::move(P.DstArgs), IsDstVariadic ? JustVarIndex : None);
consumeRulesFromConfig(
P, GenericTaintRule::Prop(std::move(SrcDesc), std::move(DstDesc)), Rules);
}
GenericTaintRuleParser::RulesContTy
GenericTaintRuleParser::parseConfiguration(const std::string &Option,
TaintConfiguration &&Config) const {
RulesContTy Rules;
for (auto &F : Config.Filters)
parseConfig(Option, std::move(F), Rules);
for (auto &S : Config.Sinks)
parseConfig(Option, std::move(S), Rules);
for (auto &P : Config.Propagations)
parseConfig(Option, std::move(P), Rules);
return Rules;
}
void GenericTaintChecker::initTaintRules(CheckerContext &C) const {
// Check for exact name match for functions without builtin substitutes.
// Use qualified name, because these are C functions without namespace.
if (StaticTaintRules || DynamicTaintRules)
return;
using RulesConstructionTy =
std::vector<std::pair<CallDescription, GenericTaintRule>>;
using TR = GenericTaintRule;
const Builtin::Context &BI = C.getASTContext().BuiltinInfo;
RulesConstructionTy GlobalCRules{
// Sources
{{"fdopen"}, TR::Source({{ReturnValueIndex}})},
{{"fopen"}, TR::Source({{ReturnValueIndex}})},
{{"freopen"}, TR::Source({{ReturnValueIndex}})},
{{"getch"}, TR::Source({{ReturnValueIndex}})},
{{"getchar"}, TR::Source({{ReturnValueIndex}})},
{{"getchar_unlocked"}, TR::Source({{ReturnValueIndex}})},
{{"gets"}, TR::Source({{0}, ReturnValueIndex})},
{{"gets_s"}, TR::Source({{0}, ReturnValueIndex})},
{{"scanf"}, TR::Source({{}, 1})},
{{"scanf_s"}, TR::Source({{}, {1}})},
{{"wgetch"}, TR::Source({{}, ReturnValueIndex})},
// Sometimes the line between taint sources and propagators is blurry.
// _IO_getc is choosen to be a source, but could also be a propagator.
// This way it is simpler, as modeling it as a propagator would require
// to model the possible sources of _IO_FILE * values, which the _IO_getc
// function takes as parameters.
{{"_IO_getc"}, TR::Source({{ReturnValueIndex}})},
{{"getcwd"}, TR::Source({{0, ReturnValueIndex}})},
{{"getwd"}, TR::Source({{0, ReturnValueIndex}})},
{{"readlink"}, TR::Source({{1, ReturnValueIndex}})},
{{"readlinkat"}, TR::Source({{2, ReturnValueIndex}})},
{{"get_current_dir_name"}, TR::Source({{ReturnValueIndex}})},
{{"gethostname"}, TR::Source({{0}})},
{{"getnameinfo"}, TR::Source({{2, 4}})},
{{"getseuserbyname"}, TR::Source({{1, 2}})},
{{"getgroups"}, TR::Source({{1, ReturnValueIndex}})},
{{"getlogin"}, TR::Source({{ReturnValueIndex}})},
{{"getlogin_r"}, TR::Source({{0}})},
// Props
{{"atoi"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"atol"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"atoll"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"fgetc"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"fgetln"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"fgets"}, TR::Prop({{2}}, {{0, ReturnValueIndex}})},
{{"fscanf"}, TR::Prop({{0}}, {{}, 2})},
{{"fscanf_s"}, TR::Prop({{0}}, {{}, {2}})},
{{"sscanf"}, TR::Prop({{0}}, {{}, 2})},
{{"getc"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"getc_unlocked"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"getdelim"}, TR::Prop({{3}}, {{0}})},
{{"getline"}, TR::Prop({{2}}, {{0}})},
{{"getw"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"pread"}, TR::Prop({{0, 1, 2, 3}}, {{1, ReturnValueIndex}})},
{{"read"}, TR::Prop({{0, 2}}, {{1, ReturnValueIndex}})},
{{"strchr"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"strrchr"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"tolower"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"toupper"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"fread"}, TR::Prop({{3}}, {{0, ReturnValueIndex}})},
{{"recv"}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{"recvfrom"}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{"ttyname"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"ttyname_r"}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{"basename"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"dirname"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"fnmatch"}, TR::Prop({{1}}, {{ReturnValueIndex}})},
{{"memchr"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"memrchr"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"rawmemchr"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"mbtowc"}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
{{"wctomb"}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
{{"wcwidth"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"memcmp"}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
{{"memcpy"}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
{{"memmove"}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
// If memmem was called with a tainted needle and the search was
// successful, that would mean that the value pointed by the return value
// has the same content as the needle. If we choose to go by the policy of
// content equivalence implies taintedness equivalence, that would mean
// haystack should be considered a propagation source argument.
{{"memmem"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
// The comment for memmem above also applies to strstr.
{{"strstr"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"strcasestr"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"strchrnul"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"index"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"rindex"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
// FIXME: In case of arrays, only the first element of the array gets
// tainted.
{{"qsort"}, TR::Prop({{0}}, {{0}})},
{{"qsort_r"}, TR::Prop({{0}}, {{0}})},
{{"strcmp"}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
{{"strcasecmp"}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
{{"strncmp"}, TR::Prop({{0, 1, 2}}, {{ReturnValueIndex}})},
{{"strncasecmp"}, TR::Prop({{0, 1, 2}}, {{ReturnValueIndex}})},
{{"strspn"}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
{{"strcspn"}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
{{"strpbrk"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"strndup"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"strndupa"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"strlen"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"strnlen"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"strtol"}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{"strtoll"}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{"strtoul"}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{"strtoull"}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{"isalnum"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"isalpha"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"isascii"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"isblank"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"iscntrl"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"isdigit"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"isgraph"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"islower"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"isprint"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"ispunct"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"isspace"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"isupper"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{"isxdigit"}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrncat)}},
TR::Prop({{1, 2}}, {{0, ReturnValueIndex}})},
/* {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrlcpy)}},
TR::Prop({{1, 2}}, {{0}})},
{{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrlcat)}},
TR::Prop({{1, 2}}, {{0}})},*/
{{CDF_MaybeBuiltin, {"snprintf"}},
TR::Prop({{1}, 3}, {{0, ReturnValueIndex}})},
{{CDF_MaybeBuiltin, {"sprintf"}},
TR::Prop({{1}, 2}, {{0, ReturnValueIndex}})},
{{CDF_MaybeBuiltin, {"strcpy"}},
TR::Prop({{1}}, {{0, ReturnValueIndex}})},
{{CDF_MaybeBuiltin, {"stpcpy"}},
TR::Prop({{1}}, {{0, ReturnValueIndex}})},
{{CDF_MaybeBuiltin, {"strcat"}},
TR::Prop({{1}}, {{0, ReturnValueIndex}})},
{{CDF_MaybeBuiltin, {"strdup"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{CDF_MaybeBuiltin, {"strdupa"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{CDF_MaybeBuiltin, {"wcsdup"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
// Sinks
{{"system"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{"popen"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{"execl"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{"execle"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{"execlp"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{"execvp"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{"execvP"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{"execve"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{"dlopen"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{CDF_MaybeBuiltin, {"malloc"}}, TR::Sink({{0}}, MsgTaintedBufferSize)},
{{CDF_MaybeBuiltin, {"calloc"}}, TR::Sink({{0}}, MsgTaintedBufferSize)},
{{CDF_MaybeBuiltin, {"alloca"}}, TR::Sink({{0}}, MsgTaintedBufferSize)},
{{CDF_MaybeBuiltin, {"memccpy"}}, TR::Sink({{3}}, MsgTaintedBufferSize)},
{{CDF_MaybeBuiltin, {"realloc"}}, TR::Sink({{1}}, MsgTaintedBufferSize)},
{{{"setproctitle"}}, TR::Sink({{0}, 1}, MsgUncontrolledFormatString)},
{{{"setproctitle_fast"}},
TR::Sink({{0}, 1}, MsgUncontrolledFormatString)},
// SinkProps
{{CDF_MaybeBuiltin, BI.getName(Builtin::BImemcpy)},
TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}},
MsgTaintedBufferSize)},
{{CDF_MaybeBuiltin, {BI.getName(Builtin::BImemmove)}},
TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}},
MsgTaintedBufferSize)},
{{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrncpy)}},
TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}},
MsgTaintedBufferSize)},
{{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrndup)}},
TR::SinkProp({{1}}, {{0, 1}}, {{ReturnValueIndex}},
MsgTaintedBufferSize)},
{{CDF_MaybeBuiltin, {"bcopy"}},
TR::SinkProp({{2}}, {{0, 2}}, {{1}}, MsgTaintedBufferSize)}};
// `getenv` returns taint only in untrusted environments.
if (TR::UntrustedEnv(C)) {
// void setproctitle_init(int argc, char *argv[], char *envp[])
GlobalCRules.push_back(
{{{"setproctitle_init"}}, TR::Sink({{1, 2}}, MsgCustomSink)});
GlobalCRules.push_back({{"getenv"}, TR::Source({{ReturnValueIndex}})});
}
StaticTaintRules.emplace(std::make_move_iterator(GlobalCRules.begin()),
std::make_move_iterator(GlobalCRules.end()));
// User-provided taint configuration.
CheckerManager *Mgr = C.getAnalysisManager().getCheckerManager();
assert(Mgr);
GenericTaintRuleParser ConfigParser{*Mgr};
std::string Option{"Config"};
StringRef ConfigFile =
Mgr->getAnalyzerOptions().getCheckerStringOption(this, Option);
llvm::Optional<TaintConfiguration> Config =
getConfiguration<TaintConfiguration>(*Mgr, this, Option, ConfigFile);
if (!Config) {
// We don't have external taint config, no parsing required.
DynamicTaintRules = RuleLookupTy{};
return;
}
GenericTaintRuleParser::RulesContTy Rules{
ConfigParser.parseConfiguration(Option, std::move(*Config))};
DynamicTaintRules.emplace(std::make_move_iterator(Rules.begin()),
std::make_move_iterator(Rules.end()));
}
void GenericTaintChecker::checkPreCall(const CallEvent &Call,
CheckerContext &C) const {
initTaintRules(C);
// FIXME: this should be much simpler.
if (const auto *Rule =
Call.isGlobalCFunction() ? StaticTaintRules->lookup(Call) : nullptr)
Rule->process(*this, Call, C);
else if (const auto *Rule = DynamicTaintRules->lookup(Call))
Rule->process(*this, Call, C);
// FIXME: These edge cases are to be eliminated from here eventually.
//
// Additional check that is not supported by CallDescription.
// TODO: Make CallDescription be able to match attributes such as printf-like
// arguments.
checkUncontrolledFormatString(Call, C);
// TODO: Modeling sockets should be done in a specific checker.
// Socket is a source, which taints the return value.
taintUnsafeSocketProtocol(Call, C);
}
void GenericTaintChecker::checkPostCall(const CallEvent &Call,
CheckerContext &C) const {
// Set the marked values as tainted. The return value only accessible from
// checkPostStmt.
ProgramStateRef State = C.getState();
const StackFrameContext *CurrentFrame = C.getStackFrame();
// Depending on what was tainted at pre-visit, we determined a set of
// arguments which should be tainted after the function returns. These are
// stored in the state as TaintArgsOnPostVisit set.
TaintArgsOnPostVisitTy TaintArgsMap = State->get<TaintArgsOnPostVisit>();
const ImmutableSet<ArgIdxTy> *TaintArgs = TaintArgsMap.lookup(CurrentFrame);
if (!TaintArgs)
return;
assert(!TaintArgs->isEmpty());
LLVM_DEBUG(for (ArgIdxTy I
: *TaintArgs) {
llvm::dbgs() << "PostCall<";
Call.dump(llvm::dbgs());
llvm::dbgs() << "> actually wants to taint arg index: " << I << '\n';
});
for (ArgIdxTy ArgNum : *TaintArgs) {
// Special handling for the tainted return value.
if (ArgNum == ReturnValueIndex) {
State = addTaint(State, Call.getReturnValue());
continue;
}
// The arguments are pointer arguments. The data they are pointing at is
// tainted after the call.
if (auto V = getPointeeOf(C, Call.getArgSVal(ArgNum)))
State = addTaint(State, *V);
}
// Clear up the taint info from the state.
State = State->remove<TaintArgsOnPostVisit>(CurrentFrame);
C.addTransition(State);
}
void GenericTaintChecker::printState(raw_ostream &Out, ProgramStateRef State,
const char *NL, const char *Sep) const {
printTaint(State, Out, NL, Sep);
}
void GenericTaintRule::process(const GenericTaintChecker &Checker,
const CallEvent &Call, CheckerContext &C) const {
ProgramStateRef State = C.getState();
const ArgIdxTy CallNumArgs = fromArgumentCount(Call.getNumArgs());
/// Iterate every call argument, and get their corresponding Expr and SVal.
const auto ForEachCallArg = [&C, &Call, CallNumArgs](auto &&Fun) {
for (ArgIdxTy I = ReturnValueIndex; I < CallNumArgs; ++I) {
const Expr *E = GetArgExpr(I, Call);
Fun(I, E, C.getSVal(E));
}
};
/// Check for taint sinks.
ForEachCallArg([this, &Checker, &C, &State](ArgIdxTy I, const Expr *E, SVal) {
if (SinkArgs.contains(I) && isTaintedOrPointsToTainted(E, State, C))
Checker.generateReportIfTainted(E, SinkMsg.value_or(MsgCustomSink), C);
});
/// Check for taint filters.
ForEachCallArg([this, &C, &State](ArgIdxTy I, const Expr *E, SVal S) {
if (FilterArgs.contains(I)) {
State = removeTaint(State, S);
if (auto P = getPointeeOf(C, S))
State = removeTaint(State, *P);
}
});
/// Check for taint propagation sources.
/// A rule is relevant if PropSrcArgs is empty, or if any of its signified
/// args are tainted in context of the current CallEvent.
bool IsMatching = PropSrcArgs.isEmpty();
ForEachCallArg(
[this, &C, &IsMatching, &State](ArgIdxTy I, const Expr *E, SVal) {
IsMatching = IsMatching || (PropSrcArgs.contains(I) &&
isTaintedOrPointsToTainted(E, State, C));
});
if (!IsMatching)
return;
const auto WouldEscape = [](SVal V, QualType Ty) -> bool {
if (!isa<Loc>(V))
return false;
const bool IsNonConstRef = Ty->isReferenceType() && !Ty.isConstQualified();
const bool IsNonConstPtr =
Ty->isPointerType() && !Ty->getPointeeType().isConstQualified();
return IsNonConstRef || IsNonConstPtr;
};
/// Propagate taint where it is necessary.
auto &F = State->getStateManager().get_context<ArgIdxFactory>();
ImmutableSet<ArgIdxTy> Result = F.getEmptySet();
ForEachCallArg(
[&](ArgIdxTy I, const Expr *E, SVal V) {
if (PropDstArgs.contains(I)) {
LLVM_DEBUG(llvm::dbgs() << "PreCall<"; Call.dump(llvm::dbgs());
llvm::dbgs()
<< "> prepares tainting arg index: " << I << '\n';);
Result = F.add(Result, I);
}
// TODO: We should traverse all reachable memory regions via the
// escaping parameter. Instead of doing that we simply mark only the
// referred memory region as tainted.
if (WouldEscape(V, E->getType())) {
LLVM_DEBUG(if (!Result.contains(I)) {
llvm::dbgs() << "PreCall<";
Call.dump(llvm::dbgs());
llvm::dbgs() << "> prepares tainting arg index: " << I << '\n';
});
Result = F.add(Result, I);
}
});
if (!Result.isEmpty())
State = State->set<TaintArgsOnPostVisit>(C.getStackFrame(), Result);
C.addTransition(State);
}
bool GenericTaintRule::UntrustedEnv(CheckerContext &C) {
return !C.getAnalysisManager()
.getAnalyzerOptions()
.ShouldAssumeControlledEnvironment;
}
bool GenericTaintChecker::generateReportIfTainted(const Expr *E, StringRef Msg,
CheckerContext &C) const {
assert(E);
Optional<SVal> TaintedSVal{getTaintedPointeeOrPointer(C, C.getSVal(E))};
if (!TaintedSVal)
return false;
// Generate diagnostic.
if (ExplodedNode *N = C.generateNonFatalErrorNode()) {
auto report = std::make_unique<PathSensitiveBugReport>(BT, Msg, N);
report->addRange(E->getSourceRange());
report->addVisitor(std::make_unique<TaintBugVisitor>(*TaintedSVal));
C.emitReport(std::move(report));
return true;
}
return false;
}
/// TODO: remove checking for printf format attributes and socket whitelisting
/// from GenericTaintChecker, and that means the following functions:
/// getPrintfFormatArgumentNum,
/// GenericTaintChecker::checkUncontrolledFormatString,
/// GenericTaintChecker::taintUnsafeSocketProtocol
static bool getPrintfFormatArgumentNum(const CallEvent &Call,
const CheckerContext &C,
ArgIdxTy &ArgNum) {
// Find if the function contains a format string argument.
// Handles: fprintf, printf, sprintf, snprintf, vfprintf, vprintf, vsprintf,
// vsnprintf, syslog, custom annotated functions.
const Decl *CallDecl = Call.getDecl();
if (!CallDecl)
return false;
const FunctionDecl *FDecl = CallDecl->getAsFunction();
if (!FDecl)
return false;
const ArgIdxTy CallNumArgs = fromArgumentCount(Call.getNumArgs());
for (const auto *Format : FDecl->specific_attrs<FormatAttr>()) {
ArgNum = Format->getFormatIdx() - 1;
if ((Format->getType()->getName() == "printf") && CallNumArgs > ArgNum)
return true;
}
return false;
}
bool GenericTaintChecker::checkUncontrolledFormatString(
const CallEvent &Call, CheckerContext &C) const {
// Check if the function contains a format string argument.
ArgIdxTy ArgNum = 0;
if (!getPrintfFormatArgumentNum(Call, C, ArgNum))
return false;
// If either the format string content or the pointer itself are tainted,
// warn.
return generateReportIfTainted(Call.getArgExpr(ArgNum),
MsgUncontrolledFormatString, C);
}
void GenericTaintChecker::taintUnsafeSocketProtocol(const CallEvent &Call,
CheckerContext &C) const {
if (Call.getNumArgs() < 1)
return;
const IdentifierInfo *ID = Call.getCalleeIdentifier();
if (!ID)
return;
if (!ID->getName().equals("socket"))
return;
SourceLocation DomLoc = Call.getArgExpr(0)->getExprLoc();
StringRef DomName = C.getMacroNameOrSpelling(DomLoc);
// Allow internal communication protocols.
bool SafeProtocol = DomName.equals("AF_SYSTEM") ||
DomName.equals("AF_LOCAL") || DomName.equals("AF_UNIX") ||
DomName.equals("AF_RESERVED_36");
if (SafeProtocol)
return;
ProgramStateRef State = C.getState();
auto &F = State->getStateManager().get_context<ArgIdxFactory>();
ImmutableSet<ArgIdxTy> Result = F.add(F.getEmptySet(), ReturnValueIndex);
State = State->set<TaintArgsOnPostVisit>(C.getStackFrame(), Result);
C.addTransition(State);
}
/// Checker registration
void ento::registerGenericTaintChecker(CheckerManager &Mgr) {
Mgr.registerChecker<GenericTaintChecker>();
}
bool ento::shouldRegisterGenericTaintChecker(const CheckerManager &mgr) {
return true;
}
|