1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
|
// SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
using namespace clang;
using namespace ento;
namespace {
class SimpleSValBuilder : public SValBuilder {
// Query the constraint manager whether the SVal has only one possible
// (integer) value. If that is the case, the value is returned. Otherwise,
// returns NULL.
// This is an implementation detail. Checkers should use `getKnownValue()`
// instead.
const llvm::APSInt *getConstValue(ProgramStateRef state, SVal V);
// With one `simplifySValOnce` call, a compound symbols might collapse to
// simpler symbol tree that is still possible to further simplify. Thus, we
// do the simplification on a new symbol tree until we reach the simplest
// form, i.e. the fixpoint.
// Consider the following symbol `(b * b) * b * b` which has this tree:
// *
// / \
// * b
// / \
// / b
// (b * b)
// Now, if the `b * b == 1` new constraint is added then during the first
// iteration we have the following transformations:
// * *
// / \ / \
// * b --> b b
// / \
// / b
// 1
// We need another iteration to reach the final result `1`.
SVal simplifyUntilFixpoint(ProgramStateRef State, SVal Val);
// Recursively descends into symbolic expressions and replaces symbols
// with their known values (in the sense of the getConstValue() method).
// We traverse the symbol tree and query the constraint values for the
// sub-trees and if a value is a constant we do the constant folding.
SVal simplifySValOnce(ProgramStateRef State, SVal V);
public:
SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
ProgramStateManager &stateMgr)
: SValBuilder(alloc, context, stateMgr) {}
~SimpleSValBuilder() override {}
SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
NonLoc lhs, NonLoc rhs, QualType resultTy) override;
SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
Loc lhs, Loc rhs, QualType resultTy) override;
SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
Loc lhs, NonLoc rhs, QualType resultTy) override;
/// Evaluates a given SVal by recursively evaluating and
/// simplifying the children SVals. If the SVal has only one possible
/// (integer) value, that value is returned. Otherwise, returns NULL.
const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override;
SVal simplifySVal(ProgramStateRef State, SVal V) override;
SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
const llvm::APSInt &RHS, QualType resultTy);
};
} // end anonymous namespace
SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
ASTContext &context,
ProgramStateManager &stateMgr) {
return new SimpleSValBuilder(alloc, context, stateMgr);
}
// Checks if the negation the value and flipping sign preserve
// the semantics on the operation in the resultType
static bool isNegationValuePreserving(const llvm::APSInt &Value,
APSIntType ResultType) {
const unsigned ValueBits = Value.getSignificantBits();
if (ValueBits == ResultType.getBitWidth()) {
// The value is the lowest negative value that is representable
// in signed integer with bitWith of result type. The
// negation is representable if resultType is unsigned.
return ResultType.isUnsigned();
}
// If resultType bitWith is higher that number of bits required
// to represent RHS, the sign flip produce same value.
return ValueBits < ResultType.getBitWidth();
}
//===----------------------------------------------------------------------===//
// Transfer function for binary operators.
//===----------------------------------------------------------------------===//
SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
BinaryOperator::Opcode op,
const llvm::APSInt &RHS,
QualType resultTy) {
bool isIdempotent = false;
// Check for a few special cases with known reductions first.
switch (op) {
default:
// We can't reduce this case; just treat it normally.
break;
case BO_Mul:
// a*0 and a*1
if (RHS == 0)
return makeIntVal(0, resultTy);
else if (RHS == 1)
isIdempotent = true;
break;
case BO_Div:
// a/0 and a/1
if (RHS == 0)
// This is also handled elsewhere.
return UndefinedVal();
else if (RHS == 1)
isIdempotent = true;
break;
case BO_Rem:
// a%0 and a%1
if (RHS == 0)
// This is also handled elsewhere.
return UndefinedVal();
else if (RHS == 1)
return makeIntVal(0, resultTy);
break;
case BO_Add:
case BO_Sub:
case BO_Shl:
case BO_Shr:
case BO_Xor:
// a+0, a-0, a<<0, a>>0, a^0
if (RHS == 0)
isIdempotent = true;
break;
case BO_And:
// a&0 and a&(~0)
if (RHS == 0)
return makeIntVal(0, resultTy);
else if (RHS.isAllOnes())
isIdempotent = true;
break;
case BO_Or:
// a|0 and a|(~0)
if (RHS == 0)
isIdempotent = true;
else if (RHS.isAllOnes()) {
const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
return nonloc::ConcreteInt(Result);
}
break;
}
// Idempotent ops (like a*1) can still change the type of an expression.
// Wrap the LHS up in a NonLoc again and let evalCast do the
// dirty work.
if (isIdempotent)
return evalCast(nonloc::SymbolVal(LHS), resultTy, QualType{});
// If we reach this point, the expression cannot be simplified.
// Make a SymbolVal for the entire expression, after converting the RHS.
const llvm::APSInt *ConvertedRHS = &RHS;
if (BinaryOperator::isComparisonOp(op)) {
// We're looking for a type big enough to compare the symbolic value
// with the given constant.
// FIXME: This is an approximation of Sema::UsualArithmeticConversions.
ASTContext &Ctx = getContext();
QualType SymbolType = LHS->getType();
uint64_t ValWidth = RHS.getBitWidth();
uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
if (ValWidth < TypeWidth) {
// If the value is too small, extend it.
ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
} else if (ValWidth == TypeWidth) {
// If the value is signed but the symbol is unsigned, do the comparison
// in unsigned space. [C99 6.3.1.8]
// (For the opposite case, the value is already unsigned.)
if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
}
} else if (BinaryOperator::isAdditiveOp(op) && RHS.isNegative()) {
// Change a+(-N) into a-N, and a-(-N) into a+N
// Adjust addition/subtraction of negative value, to
// subtraction/addition of the negated value.
APSIntType resultIntTy = BasicVals.getAPSIntType(resultTy);
if (isNegationValuePreserving(RHS, resultIntTy)) {
ConvertedRHS = &BasicVals.getValue(-resultIntTy.convert(RHS));
op = (op == BO_Add) ? BO_Sub : BO_Add;
} else {
ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
}
} else
ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
}
// See if Sym is known to be a relation Rel with Bound.
static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym,
llvm::APSInt Bound, ProgramStateRef State) {
SValBuilder &SVB = State->getStateManager().getSValBuilder();
SVal Result =
SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym),
nonloc::ConcreteInt(Bound), SVB.getConditionType());
if (auto DV = Result.getAs<DefinedSVal>()) {
return !State->assume(*DV, false);
}
return false;
}
// See if Sym is known to be within [min/4, max/4], where min and max
// are the bounds of the symbol's integral type. With such symbols,
// some manipulations can be performed without the risk of overflow.
// assume() doesn't cause infinite recursion because we should be dealing
// with simpler symbols on every recursive call.
static bool isWithinConstantOverflowBounds(SymbolRef Sym,
ProgramStateRef State) {
SValBuilder &SVB = State->getStateManager().getSValBuilder();
BasicValueFactory &BV = SVB.getBasicValueFactory();
QualType T = Sym->getType();
assert(T->isSignedIntegerOrEnumerationType() &&
"This only works with signed integers!");
APSIntType AT = BV.getAPSIntType(T);
llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
return isInRelation(BO_LE, Sym, Max, State) &&
isInRelation(BO_GE, Sym, Min, State);
}
// Same for the concrete integers: see if I is within [min/4, max/4].
static bool isWithinConstantOverflowBounds(llvm::APSInt I) {
APSIntType AT(I);
assert(!AT.isUnsigned() &&
"This only works with signed integers!");
llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
return (I <= Max) && (I >= -Max);
}
static std::pair<SymbolRef, llvm::APSInt>
decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) {
if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym))
if (BinaryOperator::isAdditiveOp(SymInt->getOpcode()))
return std::make_pair(SymInt->getLHS(),
(SymInt->getOpcode() == BO_Add) ?
(SymInt->getRHS()) :
(-SymInt->getRHS()));
// Fail to decompose: "reduce" the problem to the "$x + 0" case.
return std::make_pair(Sym, BV.getValue(0, Sym->getType()));
}
// Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the
// same signed integral type and no overflows occur (which should be checked
// by the caller).
static NonLoc doRearrangeUnchecked(ProgramStateRef State,
BinaryOperator::Opcode Op,
SymbolRef LSym, llvm::APSInt LInt,
SymbolRef RSym, llvm::APSInt RInt) {
SValBuilder &SVB = State->getStateManager().getSValBuilder();
BasicValueFactory &BV = SVB.getBasicValueFactory();
SymbolManager &SymMgr = SVB.getSymbolManager();
QualType SymTy = LSym->getType();
assert(SymTy == RSym->getType() &&
"Symbols are not of the same type!");
assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) &&
"Integers are not of the same type as symbols!");
assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) &&
"Integers are not of the same type as symbols!");
QualType ResultTy;
if (BinaryOperator::isComparisonOp(Op))
ResultTy = SVB.getConditionType();
else if (BinaryOperator::isAdditiveOp(Op))
ResultTy = SymTy;
else
llvm_unreachable("Operation not suitable for unchecked rearrangement!");
if (LSym == RSym)
return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt),
nonloc::ConcreteInt(RInt), ResultTy)
.castAs<NonLoc>();
SymbolRef ResultSym = nullptr;
BinaryOperator::Opcode ResultOp;
llvm::APSInt ResultInt;
if (BinaryOperator::isComparisonOp(Op)) {
// Prefer comparing to a non-negative number.
// FIXME: Maybe it'd be better to have consistency in
// "$x - $y" vs. "$y - $x" because those are solver's keys.
if (LInt > RInt) {
ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy);
ResultOp = BinaryOperator::reverseComparisonOp(Op);
ResultInt = LInt - RInt; // Opposite order!
} else {
ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy);
ResultOp = Op;
ResultInt = RInt - LInt; // Opposite order!
}
} else {
ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy);
ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt);
ResultOp = BO_Add;
// Bring back the cosmetic difference.
if (ResultInt < 0) {
ResultInt = -ResultInt;
ResultOp = BO_Sub;
} else if (ResultInt == 0) {
// Shortcut: Simplify "$x + 0" to "$x".
return nonloc::SymbolVal(ResultSym);
}
}
const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt);
return nonloc::SymbolVal(
SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy));
}
// Rearrange if symbol type matches the result type and if the operator is a
// comparison operator, both symbol and constant must be within constant
// overflow bounds.
static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op,
SymbolRef Sym, llvm::APSInt Int, QualType Ty) {
return Sym->getType() == Ty &&
(!BinaryOperator::isComparisonOp(Op) ||
(isWithinConstantOverflowBounds(Sym, State) &&
isWithinConstantOverflowBounds(Int)));
}
static Optional<NonLoc> tryRearrange(ProgramStateRef State,
BinaryOperator::Opcode Op, NonLoc Lhs,
NonLoc Rhs, QualType ResultTy) {
ProgramStateManager &StateMgr = State->getStateManager();
SValBuilder &SVB = StateMgr.getSValBuilder();
// We expect everything to be of the same type - this type.
QualType SingleTy;
// FIXME: After putting complexity threshold to the symbols we can always
// rearrange additive operations but rearrange comparisons only if
// option is set.
if (!SVB.getAnalyzerOptions().ShouldAggressivelySimplifyBinaryOperation)
return None;
SymbolRef LSym = Lhs.getAsSymbol();
if (!LSym)
return None;
if (BinaryOperator::isComparisonOp(Op)) {
SingleTy = LSym->getType();
if (ResultTy != SVB.getConditionType())
return None;
// Initialize SingleTy later with a symbol's type.
} else if (BinaryOperator::isAdditiveOp(Op)) {
SingleTy = ResultTy;
if (LSym->getType() != SingleTy)
return None;
} else {
// Don't rearrange other operations.
return None;
}
assert(!SingleTy.isNull() && "We should have figured out the type by now!");
// Rearrange signed symbolic expressions only
if (!SingleTy->isSignedIntegerOrEnumerationType())
return None;
SymbolRef RSym = Rhs.getAsSymbol();
if (!RSym || RSym->getType() != SingleTy)
return None;
BasicValueFactory &BV = State->getBasicVals();
llvm::APSInt LInt, RInt;
std::tie(LSym, LInt) = decomposeSymbol(LSym, BV);
std::tie(RSym, RInt) = decomposeSymbol(RSym, BV);
if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) ||
!shouldRearrange(State, Op, RSym, RInt, SingleTy))
return None;
// We know that no overflows can occur anymore.
return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt);
}
SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
BinaryOperator::Opcode op,
NonLoc lhs, NonLoc rhs,
QualType resultTy) {
NonLoc InputLHS = lhs;
NonLoc InputRHS = rhs;
// Constraints may have changed since the creation of a bound SVal. Check if
// the values can be simplified based on those new constraints.
SVal simplifiedLhs = simplifySVal(state, lhs);
SVal simplifiedRhs = simplifySVal(state, rhs);
if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>())
lhs = *simplifiedLhsAsNonLoc;
if (auto simplifiedRhsAsNonLoc = simplifiedRhs.getAs<NonLoc>())
rhs = *simplifiedRhsAsNonLoc;
// Handle trivial case where left-side and right-side are the same.
if (lhs == rhs)
switch (op) {
default:
break;
case BO_EQ:
case BO_LE:
case BO_GE:
return makeTruthVal(true, resultTy);
case BO_LT:
case BO_GT:
case BO_NE:
return makeTruthVal(false, resultTy);
case BO_Xor:
case BO_Sub:
if (resultTy->isIntegralOrEnumerationType())
return makeIntVal(0, resultTy);
return evalCast(makeIntVal(0, /*isUnsigned=*/false), resultTy,
QualType{});
case BO_Or:
case BO_And:
return evalCast(lhs, resultTy, QualType{});
}
while (true) {
switch (lhs.getSubKind()) {
default:
return makeSymExprValNN(op, lhs, rhs, resultTy);
case nonloc::PointerToMemberKind: {
assert(rhs.getSubKind() == nonloc::PointerToMemberKind &&
"Both SVals should have pointer-to-member-type");
auto LPTM = lhs.castAs<nonloc::PointerToMember>(),
RPTM = rhs.castAs<nonloc::PointerToMember>();
auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData();
switch (op) {
case BO_EQ:
return makeTruthVal(LPTMD == RPTMD, resultTy);
case BO_NE:
return makeTruthVal(LPTMD != RPTMD, resultTy);
default:
return UnknownVal();
}
}
case nonloc::LocAsIntegerKind: {
Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
switch (rhs.getSubKind()) {
case nonloc::LocAsIntegerKind:
// FIXME: at the moment the implementation
// of modeling "pointers as integers" is not complete.
if (!BinaryOperator::isComparisonOp(op))
return UnknownVal();
return evalBinOpLL(state, op, lhsL,
rhs.castAs<nonloc::LocAsInteger>().getLoc(),
resultTy);
case nonloc::ConcreteIntKind: {
// FIXME: at the moment the implementation
// of modeling "pointers as integers" is not complete.
if (!BinaryOperator::isComparisonOp(op))
return UnknownVal();
// Transform the integer into a location and compare.
// FIXME: This only makes sense for comparisons. If we want to, say,
// add 1 to a LocAsInteger, we'd better unpack the Loc and add to it,
// then pack it back into a LocAsInteger.
llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
// If the region has a symbolic base, pay attention to the type; it
// might be coming from a non-default address space. For non-symbolic
// regions it doesn't matter that much because such comparisons would
// most likely evaluate to concrete false anyway. FIXME: We might
// still need to handle the non-comparison case.
if (SymbolRef lSym = lhs.getAsLocSymbol(true))
BasicVals.getAPSIntType(lSym->getType()).apply(i);
else
BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
}
default:
switch (op) {
case BO_EQ:
return makeTruthVal(false, resultTy);
case BO_NE:
return makeTruthVal(true, resultTy);
default:
// This case also handles pointer arithmetic.
return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
}
}
}
case nonloc::ConcreteIntKind: {
llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
// If we're dealing with two known constants, just perform the operation.
if (const llvm::APSInt *KnownRHSValue = getConstValue(state, rhs)) {
llvm::APSInt RHSValue = *KnownRHSValue;
if (BinaryOperator::isComparisonOp(op)) {
// We're looking for a type big enough to compare the two values.
// FIXME: This is not correct. char + short will result in a promotion
// to int. Unfortunately we have lost types by this point.
APSIntType CompareType = std::max(APSIntType(LHSValue),
APSIntType(RHSValue));
CompareType.apply(LHSValue);
CompareType.apply(RHSValue);
} else if (!BinaryOperator::isShiftOp(op)) {
APSIntType IntType = BasicVals.getAPSIntType(resultTy);
IntType.apply(LHSValue);
IntType.apply(RHSValue);
}
const llvm::APSInt *Result =
BasicVals.evalAPSInt(op, LHSValue, RHSValue);
if (!Result)
return UndefinedVal();
return nonloc::ConcreteInt(*Result);
}
// Swap the left and right sides and flip the operator if doing so
// allows us to better reason about the expression (this is a form
// of expression canonicalization).
// While we're at it, catch some special cases for non-commutative ops.
switch (op) {
case BO_LT:
case BO_GT:
case BO_LE:
case BO_GE:
op = BinaryOperator::reverseComparisonOp(op);
LLVM_FALLTHROUGH;
case BO_EQ:
case BO_NE:
case BO_Add:
case BO_Mul:
case BO_And:
case BO_Xor:
case BO_Or:
std::swap(lhs, rhs);
continue;
case BO_Shr:
// (~0)>>a
if (LHSValue.isAllOnes() && LHSValue.isSigned())
return evalCast(lhs, resultTy, QualType{});
LLVM_FALLTHROUGH;
case BO_Shl:
// 0<<a and 0>>a
if (LHSValue == 0)
return evalCast(lhs, resultTy, QualType{});
return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
case BO_Div:
// 0 / x == 0
case BO_Rem:
// 0 % x == 0
if (LHSValue == 0)
return makeZeroVal(resultTy);
LLVM_FALLTHROUGH;
default:
return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
}
}
case nonloc::SymbolValKind: {
// We only handle LHS as simple symbols or SymIntExprs.
SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
// LHS is a symbolic expression.
if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
// Is this a logical not? (!x is represented as x == 0.)
if (op == BO_EQ && rhs.isZeroConstant()) {
// We know how to negate certain expressions. Simplify them here.
BinaryOperator::Opcode opc = symIntExpr->getOpcode();
switch (opc) {
default:
// We don't know how to negate this operation.
// Just handle it as if it were a normal comparison to 0.
break;
case BO_LAnd:
case BO_LOr:
llvm_unreachable("Logical operators handled by branching logic.");
case BO_Assign:
case BO_MulAssign:
case BO_DivAssign:
case BO_RemAssign:
case BO_AddAssign:
case BO_SubAssign:
case BO_ShlAssign:
case BO_ShrAssign:
case BO_AndAssign:
case BO_XorAssign:
case BO_OrAssign:
case BO_Comma:
llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
case BO_PtrMemD:
case BO_PtrMemI:
llvm_unreachable("Pointer arithmetic not handled here.");
case BO_LT:
case BO_GT:
case BO_LE:
case BO_GE:
case BO_EQ:
case BO_NE:
assert(resultTy->isBooleanType() ||
resultTy == getConditionType());
assert(symIntExpr->getType()->isBooleanType() ||
getContext().hasSameUnqualifiedType(symIntExpr->getType(),
getConditionType()));
// Negate the comparison and make a value.
opc = BinaryOperator::negateComparisonOp(opc);
return makeNonLoc(symIntExpr->getLHS(), opc,
symIntExpr->getRHS(), resultTy);
}
}
// For now, only handle expressions whose RHS is a constant.
if (const llvm::APSInt *RHSValue = getConstValue(state, rhs)) {
// If both the LHS and the current expression are additive,
// fold their constants and try again.
if (BinaryOperator::isAdditiveOp(op)) {
BinaryOperator::Opcode lop = symIntExpr->getOpcode();
if (BinaryOperator::isAdditiveOp(lop)) {
// Convert the two constants to a common type, then combine them.
// resultTy may not be the best type to convert to, but it's
// probably the best choice in expressions with mixed type
// (such as x+1U+2LL). The rules for implicit conversions should
// choose a reasonable type to preserve the expression, and will
// at least match how the value is going to be used.
APSIntType IntType = BasicVals.getAPSIntType(resultTy);
const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
const llvm::APSInt &second = IntType.convert(*RHSValue);
// If the op and lop agrees, then we just need to
// sum the constants. Otherwise, we change to operation
// type if substraction would produce negative value
// (and cause overflow for unsigned integers),
// as consequence x+1U-10 produces x-9U, instead
// of x+4294967287U, that would be produced without this
// additional check.
const llvm::APSInt *newRHS;
if (lop == op) {
newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
} else if (first >= second) {
newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
op = lop;
} else {
newRHS = BasicVals.evalAPSInt(BO_Sub, second, first);
}
assert(newRHS && "Invalid operation despite common type!");
rhs = nonloc::ConcreteInt(*newRHS);
lhs = nonloc::SymbolVal(symIntExpr->getLHS());
continue;
}
}
// Otherwise, make a SymIntExpr out of the expression.
return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
}
}
// Is the RHS a constant?
if (const llvm::APSInt *RHSValue = getConstValue(state, rhs))
return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
if (Optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy))
return *V;
// Give up -- this is not a symbolic expression we can handle.
return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
}
}
}
}
static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
const FieldRegion *RightFR,
BinaryOperator::Opcode op,
QualType resultTy,
SimpleSValBuilder &SVB) {
// Only comparisons are meaningful here!
if (!BinaryOperator::isComparisonOp(op))
return UnknownVal();
// Next, see if the two FRs have the same super-region.
// FIXME: This doesn't handle casts yet, and simply stripping the casts
// doesn't help.
if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
return UnknownVal();
const FieldDecl *LeftFD = LeftFR->getDecl();
const FieldDecl *RightFD = RightFR->getDecl();
const RecordDecl *RD = LeftFD->getParent();
// Make sure the two FRs are from the same kind of record. Just in case!
// FIXME: This is probably where inheritance would be a problem.
if (RD != RightFD->getParent())
return UnknownVal();
// We know for sure that the two fields are not the same, since that
// would have given us the same SVal.
if (op == BO_EQ)
return SVB.makeTruthVal(false, resultTy);
if (op == BO_NE)
return SVB.makeTruthVal(true, resultTy);
// Iterate through the fields and see which one comes first.
// [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
// members and the units in which bit-fields reside have addresses that
// increase in the order in which they are declared."
bool leftFirst = (op == BO_LT || op == BO_LE);
for (const auto *I : RD->fields()) {
if (I == LeftFD)
return SVB.makeTruthVal(leftFirst, resultTy);
if (I == RightFD)
return SVB.makeTruthVal(!leftFirst, resultTy);
}
llvm_unreachable("Fields not found in parent record's definition");
}
// This is used in debug builds only for now because some downstream users
// may hit this assert in their subsequent merges.
// There are still places in the analyzer where equal bitwidth Locs
// are compared, and need to be found and corrected. Recent previous fixes have
// addressed the known problems of making NULLs with specific bitwidths
// for Loc comparisons along with deprecation of APIs for the same purpose.
//
static void assertEqualBitWidths(ProgramStateRef State, Loc RhsLoc,
Loc LhsLoc) {
// Implements a "best effort" check for RhsLoc and LhsLoc bit widths
ASTContext &Ctx = State->getStateManager().getContext();
uint64_t RhsBitwidth =
RhsLoc.getType(Ctx).isNull() ? 0 : Ctx.getTypeSize(RhsLoc.getType(Ctx));
uint64_t LhsBitwidth =
LhsLoc.getType(Ctx).isNull() ? 0 : Ctx.getTypeSize(LhsLoc.getType(Ctx));
if (RhsBitwidth && LhsBitwidth &&
(LhsLoc.getSubKind() == RhsLoc.getSubKind())) {
assert(RhsBitwidth == LhsBitwidth &&
"RhsLoc and LhsLoc bitwidth must be same!");
}
}
// FIXME: all this logic will change if/when we have MemRegion::getLocation().
SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
BinaryOperator::Opcode op,
Loc lhs, Loc rhs,
QualType resultTy) {
// Assert that bitwidth of lhs and rhs are the same.
// This can happen if two different address spaces are used,
// and the bitwidths of the address spaces are different.
// See LIT case clang/test/Analysis/cstring-checker-addressspace.c
// FIXME: See comment above in the function assertEqualBitWidths
assertEqualBitWidths(state, rhs, lhs);
// Only comparisons and subtractions are valid operations on two pointers.
// See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
// However, if a pointer is casted to an integer, evalBinOpNN may end up
// calling this function with another operation (PR7527). We don't attempt to
// model this for now, but it could be useful, particularly when the
// "location" is actually an integer value that's been passed through a void*.
if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
return UnknownVal();
// Special cases for when both sides are identical.
if (lhs == rhs) {
switch (op) {
default:
llvm_unreachable("Unimplemented operation for two identical values");
case BO_Sub:
return makeZeroVal(resultTy);
case BO_EQ:
case BO_LE:
case BO_GE:
return makeTruthVal(true, resultTy);
case BO_NE:
case BO_LT:
case BO_GT:
return makeTruthVal(false, resultTy);
}
}
switch (lhs.getSubKind()) {
default:
llvm_unreachable("Ordering not implemented for this Loc.");
case loc::GotoLabelKind:
// The only thing we know about labels is that they're non-null.
if (rhs.isZeroConstant()) {
switch (op) {
default:
break;
case BO_Sub:
return evalCast(lhs, resultTy, QualType{});
case BO_EQ:
case BO_LE:
case BO_LT:
return makeTruthVal(false, resultTy);
case BO_NE:
case BO_GT:
case BO_GE:
return makeTruthVal(true, resultTy);
}
}
// There may be two labels for the same location, and a function region may
// have the same address as a label at the start of the function (depending
// on the ABI).
// FIXME: we can probably do a comparison against other MemRegions, though.
// FIXME: is there a way to tell if two labels refer to the same location?
return UnknownVal();
case loc::ConcreteIntKind: {
auto L = lhs.castAs<loc::ConcreteInt>();
// If one of the operands is a symbol and the other is a constant,
// build an expression for use by the constraint manager.
if (SymbolRef rSym = rhs.getAsLocSymbol()) {
// We can only build expressions with symbols on the left,
// so we need a reversible operator.
if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp)
return UnknownVal();
op = BinaryOperator::reverseComparisonOp(op);
return makeNonLoc(rSym, op, L.getValue(), resultTy);
}
// If both operands are constants, just perform the operation.
if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
assert(BinaryOperator::isComparisonOp(op) || op == BO_Sub);
if (const auto *ResultInt =
BasicVals.evalAPSInt(op, L.getValue(), rInt->getValue()))
return evalCast(nonloc::ConcreteInt(*ResultInt), resultTy, QualType{});
return UnknownVal();
}
// Special case comparisons against NULL.
// This must come after the test if the RHS is a symbol, which is used to
// build constraints. The address of any non-symbolic region is guaranteed
// to be non-NULL, as is any label.
assert((isa<loc::MemRegionVal, loc::GotoLabel>(rhs)));
if (lhs.isZeroConstant()) {
switch (op) {
default:
break;
case BO_EQ:
case BO_GT:
case BO_GE:
return makeTruthVal(false, resultTy);
case BO_NE:
case BO_LT:
case BO_LE:
return makeTruthVal(true, resultTy);
}
}
// Comparing an arbitrary integer to a region or label address is
// completely unknowable.
return UnknownVal();
}
case loc::MemRegionValKind: {
if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
// If one of the operands is a symbol and the other is a constant,
// build an expression for use by the constraint manager.
if (SymbolRef lSym = lhs.getAsLocSymbol(true)) {
if (BinaryOperator::isComparisonOp(op))
return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
return UnknownVal();
}
// Special case comparisons to NULL.
// This must come after the test if the LHS is a symbol, which is used to
// build constraints. The address of any non-symbolic region is guaranteed
// to be non-NULL.
if (rInt->isZeroConstant()) {
if (op == BO_Sub)
return evalCast(lhs, resultTy, QualType{});
if (BinaryOperator::isComparisonOp(op)) {
QualType boolType = getContext().BoolTy;
NonLoc l = evalCast(lhs, boolType, QualType{}).castAs<NonLoc>();
NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>();
return evalBinOpNN(state, op, l, r, resultTy);
}
}
// Comparing a region to an arbitrary integer is completely unknowable.
return UnknownVal();
}
// Get both values as regions, if possible.
const MemRegion *LeftMR = lhs.getAsRegion();
assert(LeftMR && "MemRegionValKind SVal doesn't have a region!");
const MemRegion *RightMR = rhs.getAsRegion();
if (!RightMR)
// The RHS is probably a label, which in theory could address a region.
// FIXME: we can probably make a more useful statement about non-code
// regions, though.
return UnknownVal();
const MemRegion *LeftBase = LeftMR->getBaseRegion();
const MemRegion *RightBase = RightMR->getBaseRegion();
const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
// If the two regions are from different known memory spaces they cannot be
// equal. Also, assume that no symbolic region (whose memory space is
// unknown) is on the stack.
if (LeftMS != RightMS &&
((LeftMS != UnknownMS && RightMS != UnknownMS) ||
(isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
switch (op) {
default:
return UnknownVal();
case BO_EQ:
return makeTruthVal(false, resultTy);
case BO_NE:
return makeTruthVal(true, resultTy);
}
}
// If both values wrap regions, see if they're from different base regions.
// Note, heap base symbolic regions are assumed to not alias with
// each other; for example, we assume that malloc returns different address
// on each invocation.
// FIXME: ObjC object pointers always reside on the heap, but currently
// we treat their memory space as unknown, because symbolic pointers
// to ObjC objects may alias. There should be a way to construct
// possibly-aliasing heap-based regions. For instance, MacOSXApiChecker
// guesses memory space for ObjC object pointers manually instead of
// relying on us.
if (LeftBase != RightBase &&
((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
(isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
switch (op) {
default:
return UnknownVal();
case BO_EQ:
return makeTruthVal(false, resultTy);
case BO_NE:
return makeTruthVal(true, resultTy);
}
}
// Handle special cases for when both regions are element regions.
const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
if (RightER && LeftER) {
// Next, see if the two ERs have the same super-region and matching types.
// FIXME: This should do something useful even if the types don't match,
// though if both indexes are constant the RegionRawOffset path will
// give the correct answer.
if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
LeftER->getElementType() == RightER->getElementType()) {
// Get the left index and cast it to the correct type.
// If the index is unknown or undefined, bail out here.
SVal LeftIndexVal = LeftER->getIndex();
Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
if (!LeftIndex)
return UnknownVal();
LeftIndexVal = evalCast(*LeftIndex, ArrayIndexTy, QualType{});
LeftIndex = LeftIndexVal.getAs<NonLoc>();
if (!LeftIndex)
return UnknownVal();
// Do the same for the right index.
SVal RightIndexVal = RightER->getIndex();
Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
if (!RightIndex)
return UnknownVal();
RightIndexVal = evalCast(*RightIndex, ArrayIndexTy, QualType{});
RightIndex = RightIndexVal.getAs<NonLoc>();
if (!RightIndex)
return UnknownVal();
// Actually perform the operation.
// evalBinOpNN expects the two indexes to already be the right type.
return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
}
}
// Special handling of the FieldRegions, even with symbolic offsets.
const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
if (RightFR && LeftFR) {
SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
*this);
if (!R.isUnknown())
return R;
}
// Compare the regions using the raw offsets.
RegionOffset LeftOffset = LeftMR->getAsOffset();
RegionOffset RightOffset = RightMR->getAsOffset();
if (LeftOffset.getRegion() != nullptr &&
LeftOffset.getRegion() == RightOffset.getRegion() &&
!LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
int64_t left = LeftOffset.getOffset();
int64_t right = RightOffset.getOffset();
switch (op) {
default:
return UnknownVal();
case BO_LT:
return makeTruthVal(left < right, resultTy);
case BO_GT:
return makeTruthVal(left > right, resultTy);
case BO_LE:
return makeTruthVal(left <= right, resultTy);
case BO_GE:
return makeTruthVal(left >= right, resultTy);
case BO_EQ:
return makeTruthVal(left == right, resultTy);
case BO_NE:
return makeTruthVal(left != right, resultTy);
}
}
// At this point we're not going to get a good answer, but we can try
// conjuring an expression instead.
SymbolRef LHSSym = lhs.getAsLocSymbol();
SymbolRef RHSSym = rhs.getAsLocSymbol();
if (LHSSym && RHSSym)
return makeNonLoc(LHSSym, op, RHSSym, resultTy);
// If we get here, we have no way of comparing the regions.
return UnknownVal();
}
}
}
SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
BinaryOperator::Opcode op, Loc lhs,
NonLoc rhs, QualType resultTy) {
if (op >= BO_PtrMemD && op <= BO_PtrMemI) {
if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) {
if (PTMSV->isNullMemberPointer())
return UndefinedVal();
auto getFieldLValue = [&](const auto *FD) -> SVal {
SVal Result = lhs;
for (const auto &I : *PTMSV)
Result = StateMgr.getStoreManager().evalDerivedToBase(
Result, I->getType(), I->isVirtual());
return state->getLValue(FD, Result);
};
if (const auto *FD = PTMSV->getDeclAs<FieldDecl>()) {
return getFieldLValue(FD);
}
if (const auto *FD = PTMSV->getDeclAs<IndirectFieldDecl>()) {
return getFieldLValue(FD);
}
}
return rhs;
}
assert(!BinaryOperator::isComparisonOp(op) &&
"arguments to comparison ops must be of the same type");
// Special case: rhs is a zero constant.
if (rhs.isZeroConstant())
return lhs;
// Perserve the null pointer so that it can be found by the DerefChecker.
if (lhs.isZeroConstant())
return lhs;
// We are dealing with pointer arithmetic.
// Handle pointer arithmetic on constant values.
if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) {
if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) {
const llvm::APSInt &leftI = lhsInt->getValue();
assert(leftI.isUnsigned());
llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
// Convert the bitwidth of rightI. This should deal with overflow
// since we are dealing with concrete values.
rightI = rightI.extOrTrunc(leftI.getBitWidth());
// Offset the increment by the pointer size.
llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
QualType pointeeType = resultTy->getPointeeType();
Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity();
rightI *= Multiplicand;
// Compute the adjusted pointer.
switch (op) {
case BO_Add:
rightI = leftI + rightI;
break;
case BO_Sub:
rightI = leftI - rightI;
break;
default:
llvm_unreachable("Invalid pointer arithmetic operation");
}
return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
}
}
// Handle cases where 'lhs' is a region.
if (const MemRegion *region = lhs.getAsRegion()) {
rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
SVal index = UnknownVal();
const SubRegion *superR = nullptr;
// We need to know the type of the pointer in order to add an integer to it.
// Depending on the type, different amount of bytes is added.
QualType elementType;
if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
assert(op == BO_Add || op == BO_Sub);
index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
getArrayIndexType());
superR = cast<SubRegion>(elemReg->getSuperRegion());
elementType = elemReg->getElementType();
}
else if (isa<SubRegion>(region)) {
assert(op == BO_Add || op == BO_Sub);
index = (op == BO_Add) ? rhs : evalMinus(rhs);
superR = cast<SubRegion>(region);
// TODO: Is this actually reliable? Maybe improving our MemRegion
// hierarchy to provide typed regions for all non-void pointers would be
// better. For instance, we cannot extend this towards LocAsInteger
// operations, where result type of the expression is integer.
if (resultTy->isAnyPointerType())
elementType = resultTy->getPointeeType();
}
// Represent arithmetic on void pointers as arithmetic on char pointers.
// It is fine when a TypedValueRegion of char value type represents
// a void pointer. Note that arithmetic on void pointers is a GCC extension.
if (elementType->isVoidType())
elementType = getContext().CharTy;
if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) {
return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
superR, getContext()));
}
}
return UnknownVal();
}
const llvm::APSInt *SimpleSValBuilder::getConstValue(ProgramStateRef state,
SVal V) {
if (V.isUnknownOrUndef())
return nullptr;
if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
return &X->getValue();
if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
return &X->getValue();
if (SymbolRef Sym = V.getAsSymbol())
return state->getConstraintManager().getSymVal(state, Sym);
return nullptr;
}
const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
SVal V) {
return getConstValue(state, simplifySVal(state, V));
}
SVal SimpleSValBuilder::simplifyUntilFixpoint(ProgramStateRef State, SVal Val) {
SVal SimplifiedVal = simplifySValOnce(State, Val);
while (SimplifiedVal != Val) {
Val = SimplifiedVal;
SimplifiedVal = simplifySValOnce(State, Val);
}
return SimplifiedVal;
}
SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) {
return simplifyUntilFixpoint(State, V);
}
SVal SimpleSValBuilder::simplifySValOnce(ProgramStateRef State, SVal V) {
// For now, this function tries to constant-fold symbols inside a
// nonloc::SymbolVal, and does nothing else. More simplifications should
// be possible, such as constant-folding an index in an ElementRegion.
class Simplifier : public FullSValVisitor<Simplifier, SVal> {
ProgramStateRef State;
SValBuilder &SVB;
// Cache results for the lifetime of the Simplifier. Results change every
// time new constraints are added to the program state, which is the whole
// point of simplifying, and for that very reason it's pointless to maintain
// the same cache for the duration of the whole analysis.
llvm::DenseMap<SymbolRef, SVal> Cached;
static bool isUnchanged(SymbolRef Sym, SVal Val) {
return Sym == Val.getAsSymbol();
}
SVal cache(SymbolRef Sym, SVal V) {
Cached[Sym] = V;
return V;
}
SVal skip(SymbolRef Sym) {
return cache(Sym, SVB.makeSymbolVal(Sym));
}
// Return the known const value for the Sym if available, or return Undef
// otherwise.
SVal getConst(SymbolRef Sym) {
const llvm::APSInt *Const =
State->getConstraintManager().getSymVal(State, Sym);
if (Const)
return Loc::isLocType(Sym->getType()) ? (SVal)SVB.makeIntLocVal(*Const)
: (SVal)SVB.makeIntVal(*Const);
return UndefinedVal();
}
SVal getConstOrVisit(SymbolRef Sym) {
const SVal Ret = getConst(Sym);
if (Ret.isUndef())
return Visit(Sym);
return Ret;
}
public:
Simplifier(ProgramStateRef State)
: State(State), SVB(State->getStateManager().getSValBuilder()) {}
SVal VisitSymbolData(const SymbolData *S) {
// No cache here.
if (const llvm::APSInt *I =
State->getConstraintManager().getSymVal(State, S))
return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I)
: (SVal)SVB.makeIntVal(*I);
return SVB.makeSymbolVal(S);
}
SVal VisitSymIntExpr(const SymIntExpr *S) {
auto I = Cached.find(S);
if (I != Cached.end())
return I->second;
SVal LHS = getConstOrVisit(S->getLHS());
if (isUnchanged(S->getLHS(), LHS))
return skip(S);
SVal RHS;
// By looking at the APSInt in the right-hand side of S, we cannot
// figure out if it should be treated as a Loc or as a NonLoc.
// So make our guess by recalling that we cannot multiply pointers
// or compare a pointer to an integer.
if (Loc::isLocType(S->getLHS()->getType()) &&
BinaryOperator::isComparisonOp(S->getOpcode())) {
// The usual conversion of $sym to &SymRegion{$sym}, as they have
// the same meaning for Loc-type symbols, but the latter form
// is preferred in SVal computations for being Loc itself.
if (SymbolRef Sym = LHS.getAsSymbol()) {
assert(Loc::isLocType(Sym->getType()));
LHS = SVB.makeLoc(Sym);
}
RHS = SVB.makeIntLocVal(S->getRHS());
} else {
RHS = SVB.makeIntVal(S->getRHS());
}
return cache(
S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
}
SVal VisitIntSymExpr(const IntSymExpr *S) {
auto I = Cached.find(S);
if (I != Cached.end())
return I->second;
SVal RHS = getConstOrVisit(S->getRHS());
if (isUnchanged(S->getRHS(), RHS))
return skip(S);
SVal LHS = SVB.makeIntVal(S->getLHS());
return cache(
S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
}
SVal VisitSymSymExpr(const SymSymExpr *S) {
auto I = Cached.find(S);
if (I != Cached.end())
return I->second;
// For now don't try to simplify mixed Loc/NonLoc expressions
// because they often appear from LocAsInteger operations
// and we don't know how to combine a LocAsInteger
// with a concrete value.
if (Loc::isLocType(S->getLHS()->getType()) !=
Loc::isLocType(S->getRHS()->getType()))
return skip(S);
SVal LHS = getConstOrVisit(S->getLHS());
SVal RHS = getConstOrVisit(S->getRHS());
if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS))
return skip(S);
return cache(
S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
}
SVal VisitSymbolCast(const SymbolCast *S) {
auto I = Cached.find(S);
if (I != Cached.end())
return I->second;
const SymExpr *OpSym = S->getOperand();
SVal OpVal = getConstOrVisit(OpSym);
if (isUnchanged(OpSym, OpVal))
return skip(S);
return cache(S, SVB.evalCast(OpVal, S->getType(), OpSym->getType()));
}
SVal VisitUnarySymExpr(const UnarySymExpr *S) {
auto I = Cached.find(S);
if (I != Cached.end())
return I->second;
SVal Op = getConstOrVisit(S->getOperand());
if (isUnchanged(S->getOperand(), Op))
return skip(S);
return cache(
S, SVB.evalUnaryOp(State, S->getOpcode(), Op, S->getType()));
}
SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); }
SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); }
SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) {
// Simplification is much more costly than computing complexity.
// For high complexity, it may be not worth it.
return Visit(V.getSymbol());
}
SVal VisitSVal(SVal V) { return V; }
};
SVal SimplifiedV = Simplifier(State).Visit(V);
return SimplifiedV;
}
|