1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
//===- WorkList.cpp - Analyzer work-list implementation--------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Defines different worklist implementations for the static analyzer.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/WorkList.h"
#include "llvm/ADT/PriorityQueue.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include <deque>
#include <vector>
using namespace clang;
using namespace ento;
#define DEBUG_TYPE "WorkList"
STATISTIC(MaxQueueSize, "Maximum size of the worklist");
STATISTIC(MaxReachableSize, "Maximum size of auxiliary worklist set");
//===----------------------------------------------------------------------===//
// Worklist classes for exploration of reachable states.
//===----------------------------------------------------------------------===//
namespace {
class DFS : public WorkList {
SmallVector<WorkListUnit, 20> Stack;
public:
bool hasWork() const override {
return !Stack.empty();
}
void enqueue(const WorkListUnit& U) override {
Stack.push_back(U);
}
WorkListUnit dequeue() override {
assert(!Stack.empty());
const WorkListUnit& U = Stack.back();
Stack.pop_back(); // This technically "invalidates" U, but we are fine.
return U;
}
};
class BFS : public WorkList {
std::deque<WorkListUnit> Queue;
public:
bool hasWork() const override {
return !Queue.empty();
}
void enqueue(const WorkListUnit& U) override {
Queue.push_back(U);
}
WorkListUnit dequeue() override {
WorkListUnit U = Queue.front();
Queue.pop_front();
return U;
}
};
} // namespace
// Place the dstor for WorkList here because it contains virtual member
// functions, and we the code for the dstor generated in one compilation unit.
WorkList::~WorkList() = default;
std::unique_ptr<WorkList> WorkList::makeDFS() {
return std::make_unique<DFS>();
}
std::unique_ptr<WorkList> WorkList::makeBFS() {
return std::make_unique<BFS>();
}
namespace {
class BFSBlockDFSContents : public WorkList {
std::deque<WorkListUnit> Queue;
SmallVector<WorkListUnit, 20> Stack;
public:
bool hasWork() const override {
return !Queue.empty() || !Stack.empty();
}
void enqueue(const WorkListUnit& U) override {
if (U.getNode()->getLocation().getAs<BlockEntrance>())
Queue.push_front(U);
else
Stack.push_back(U);
}
WorkListUnit dequeue() override {
// Process all basic blocks to completion.
if (!Stack.empty()) {
const WorkListUnit& U = Stack.back();
Stack.pop_back(); // This technically "invalidates" U, but we are fine.
return U;
}
assert(!Queue.empty());
// Don't use const reference. The subsequent pop_back() might make it
// unsafe.
WorkListUnit U = Queue.front();
Queue.pop_front();
return U;
}
};
} // namespace
std::unique_ptr<WorkList> WorkList::makeBFSBlockDFSContents() {
return std::make_unique<BFSBlockDFSContents>();
}
namespace {
class UnexploredFirstStack : public WorkList {
/// Stack of nodes known to have statements we have not traversed yet.
SmallVector<WorkListUnit, 20> StackUnexplored;
/// Stack of all other nodes.
SmallVector<WorkListUnit, 20> StackOthers;
using BlockID = unsigned;
using LocIdentifier = std::pair<BlockID, const StackFrameContext *>;
llvm::DenseSet<LocIdentifier> Reachable;
public:
bool hasWork() const override {
return !(StackUnexplored.empty() && StackOthers.empty());
}
void enqueue(const WorkListUnit &U) override {
const ExplodedNode *N = U.getNode();
auto BE = N->getLocation().getAs<BlockEntrance>();
if (!BE) {
// Assume the choice of the order of the preceding block entrance was
// correct.
StackUnexplored.push_back(U);
} else {
LocIdentifier LocId = std::make_pair(
BE->getBlock()->getBlockID(),
N->getLocationContext()->getStackFrame());
auto InsertInfo = Reachable.insert(LocId);
if (InsertInfo.second) {
StackUnexplored.push_back(U);
} else {
StackOthers.push_back(U);
}
}
MaxReachableSize.updateMax(Reachable.size());
MaxQueueSize.updateMax(StackUnexplored.size() + StackOthers.size());
}
WorkListUnit dequeue() override {
if (!StackUnexplored.empty()) {
WorkListUnit &U = StackUnexplored.back();
StackUnexplored.pop_back();
return U;
} else {
WorkListUnit &U = StackOthers.back();
StackOthers.pop_back();
return U;
}
}
};
} // namespace
std::unique_ptr<WorkList> WorkList::makeUnexploredFirst() {
return std::make_unique<UnexploredFirstStack>();
}
namespace {
class UnexploredFirstPriorityQueue : public WorkList {
using BlockID = unsigned;
using LocIdentifier = std::pair<BlockID, const StackFrameContext *>;
// How many times each location was visited.
// Is signed because we negate it later in order to have a reversed
// comparison.
using VisitedTimesMap = llvm::DenseMap<LocIdentifier, int>;
// Compare by number of times the location was visited first (negated
// to prefer less often visited locations), then by insertion time (prefer
// expanding nodes inserted sooner first).
using QueuePriority = std::pair<int, unsigned long>;
using QueueItem = std::pair<WorkListUnit, QueuePriority>;
// Number of inserted nodes, used to emulate DFS ordering in the priority
// queue when insertions are equal.
unsigned long Counter = 0;
// Number of times a current location was reached.
VisitedTimesMap NumReached;
// The top item is the largest one.
llvm::PriorityQueue<QueueItem, std::vector<QueueItem>, llvm::less_second>
queue;
public:
bool hasWork() const override {
return !queue.empty();
}
void enqueue(const WorkListUnit &U) override {
const ExplodedNode *N = U.getNode();
unsigned NumVisited = 0;
if (auto BE = N->getLocation().getAs<BlockEntrance>()) {
LocIdentifier LocId = std::make_pair(
BE->getBlock()->getBlockID(),
N->getLocationContext()->getStackFrame());
NumVisited = NumReached[LocId]++;
}
queue.push(std::make_pair(U, std::make_pair(-NumVisited, ++Counter)));
}
WorkListUnit dequeue() override {
QueueItem U = queue.top();
queue.pop();
return U.first;
}
};
} // namespace
std::unique_ptr<WorkList> WorkList::makeUnexploredFirstPriorityQueue() {
return std::make_unique<UnexploredFirstPriorityQueue>();
}
namespace {
class UnexploredFirstPriorityLocationQueue : public WorkList {
using LocIdentifier = const CFGBlock *;
// How many times each location was visited.
// Is signed because we negate it later in order to have a reversed
// comparison.
using VisitedTimesMap = llvm::DenseMap<LocIdentifier, int>;
// Compare by number of times the location was visited first (negated
// to prefer less often visited locations), then by insertion time (prefer
// expanding nodes inserted sooner first).
using QueuePriority = std::pair<int, unsigned long>;
using QueueItem = std::pair<WorkListUnit, QueuePriority>;
// Number of inserted nodes, used to emulate DFS ordering in the priority
// queue when insertions are equal.
unsigned long Counter = 0;
// Number of times a current location was reached.
VisitedTimesMap NumReached;
// The top item is the largest one.
llvm::PriorityQueue<QueueItem, std::vector<QueueItem>, llvm::less_second>
queue;
public:
bool hasWork() const override {
return !queue.empty();
}
void enqueue(const WorkListUnit &U) override {
const ExplodedNode *N = U.getNode();
unsigned NumVisited = 0;
if (auto BE = N->getLocation().getAs<BlockEntrance>())
NumVisited = NumReached[BE->getBlock()]++;
queue.push(std::make_pair(U, std::make_pair(-NumVisited, ++Counter)));
}
WorkListUnit dequeue() override {
QueueItem U = queue.top();
queue.pop();
return U.first;
}
};
}
std::unique_ptr<WorkList> WorkList::makeUnexploredFirstPriorityLocationQueue() {
return std::make_unique<UnexploredFirstPriorityLocationQueue>();
}
|