1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
// RUN: %clang_cc1 -no-opaque-pointers -triple riscv32 -target-feature +f -target-abi ilp32f -emit-llvm %s -o - \
// RUN: | FileCheck %s
// RUN: %clang_cc1 -no-opaque-pointers -triple riscv32 -target-feature +d -target-feature +f -target-abi ilp32d -emit-llvm %s -o - \
// RUN: | FileCheck %s
#include <stdint.h>
// Verify that the tracking of used GPRs and FPRs works correctly by checking
// that small integers are sign/zero extended when passed in registers.
// Floats are passed in FPRs, so argument 'i' will be passed zero-extended
// because it will be passed in a GPR.
// CHECK: define{{.*}} void @f_fpr_tracking(float noundef %a, float noundef %b, float noundef %c, float noundef %d, float noundef %e, float noundef %f, float noundef %g, float noundef %h, i8 noundef zeroext %i)
void f_fpr_tracking(float a, float b, float c, float d, float e, float f,
float g, float h, uint8_t i) {}
// Check that fp, fp+fp, and int+fp structs are lowered correctly. These will
// be passed in FPR, FPR+FPR, or GPR+FPR regs if sufficient registers are
// available the widths are <= XLEN and FLEN, and should be expanded to
// separate arguments in IR. They are passed by the same rules for returns,
// but will be lowered to simple two-element structs if necessary (as LLVM IR
// functions cannot return multiple values).
// A struct containing just one floating-point real is passed as though it
// were a standalone floating-point real.
struct float_s { float f; };
// CHECK: define{{.*}} void @f_float_s_arg(float %0)
void f_float_s_arg(struct float_s a) {}
// CHECK: define{{.*}} float @f_ret_float_s()
struct float_s f_ret_float_s(void) {
return (struct float_s){1.0};
}
// A struct containing a float and any number of zero-width bitfields is
// passed as though it were a standalone floating-point real.
struct zbf_float_s { int : 0; float f; };
struct zbf_float_zbf_s { int : 0; float f; int : 0; };
// CHECK: define{{.*}} void @f_zbf_float_s_arg(float %0)
void f_zbf_float_s_arg(struct zbf_float_s a) {}
// CHECK: define{{.*}} float @f_ret_zbf_float_s()
struct zbf_float_s f_ret_zbf_float_s(void) {
return (struct zbf_float_s){1.0};
}
// CHECK: define{{.*}} void @f_zbf_float_zbf_s_arg(float %0)
void f_zbf_float_zbf_s_arg(struct zbf_float_zbf_s a) {}
// CHECK: define{{.*}} float @f_ret_zbf_float_zbf_s()
struct zbf_float_zbf_s f_ret_zbf_float_zbf_s(void) {
return (struct zbf_float_zbf_s){1.0};
}
// Check that structs containing two float values (FLEN <= width) are expanded
// provided sufficient FPRs are available.
struct float_float_s { float f; float g; };
// CHECK: define{{.*}} void @f_float_float_s_arg(float %0, float %1)
void f_float_float_s_arg(struct float_float_s a) {}
// CHECK: define{{.*}} { float, float } @f_ret_float_float_s()
struct float_float_s f_ret_float_float_s(void) {
return (struct float_float_s){1.0, 2.0};
}
// CHECK: define{{.*}} void @f_float_float_s_arg_insufficient_fprs(float noundef %a, float noundef %b, float noundef %c, float noundef %d, float noundef %e, float noundef %f, float noundef %g, [2 x i32] %h.coerce)
void f_float_float_s_arg_insufficient_fprs(float a, float b, float c, float d,
float e, float f, float g, struct float_float_s h) {}
// Check that structs containing int+float values are expanded, provided
// sufficient FPRs and GPRs are available. The integer components are neither
// sign or zero-extended.
struct float_int8_s { float f; int8_t i; };
struct float_uint8_s { float f; uint8_t i; };
struct float_int32_s { float f; int32_t i; };
struct float_int64_s { float f; int64_t i; };
struct float_int64bf_s { float f; int64_t i : 32; };
struct float_int8_zbf_s { float f; int8_t i; int : 0; };
// CHECK: define{{.*}} void @f_float_int8_s_arg(float %0, i8 %1)
void f_float_int8_s_arg(struct float_int8_s a) {}
// CHECK: define{{.*}} { float, i8 } @f_ret_float_int8_s()
struct float_int8_s f_ret_float_int8_s(void) {
return (struct float_int8_s){1.0, 2};
}
// CHECK: define{{.*}} void @f_float_uint8_s_arg(float %0, i8 %1)
void f_float_uint8_s_arg(struct float_uint8_s a) {}
// CHECK: define{{.*}} { float, i8 } @f_ret_float_uint8_s()
struct float_uint8_s f_ret_float_uint8_s(void) {
return (struct float_uint8_s){1.0, 2};
}
// CHECK: define{{.*}} void @f_float_int32_s_arg(float %0, i32 %1)
void f_float_int32_s_arg(struct float_int32_s a) {}
// CHECK: define{{.*}} { float, i32 } @f_ret_float_int32_s()
struct float_int32_s f_ret_float_int32_s(void) {
return (struct float_int32_s){1.0, 2};
}
// CHECK: define{{.*}} void @f_float_int64_s_arg(%struct.float_int64_s* noundef %a)
void f_float_int64_s_arg(struct float_int64_s a) {}
// CHECK: define{{.*}} void @f_ret_float_int64_s(%struct.float_int64_s* noalias sret(%struct.float_int64_s) align 8 %agg.result)
struct float_int64_s f_ret_float_int64_s(void) {
return (struct float_int64_s){1.0, 2};
}
// CHECK: define{{.*}} void @f_float_int64bf_s_arg(float %0, i32 %1)
void f_float_int64bf_s_arg(struct float_int64bf_s a) {}
// CHECK: define{{.*}} { float, i32 } @f_ret_float_int64bf_s()
struct float_int64bf_s f_ret_float_int64bf_s(void) {
return (struct float_int64bf_s){1.0, 2};
}
// The zero-width bitfield means the struct can't be passed according to the
// floating point calling convention.
// CHECK: define{{.*}} void @f_float_int8_zbf_s(float %0, i8 %1)
void f_float_int8_zbf_s(struct float_int8_zbf_s a) {}
// CHECK: define{{.*}} { float, i8 } @f_ret_float_int8_zbf_s()
struct float_int8_zbf_s f_ret_float_int8_zbf_s(void) {
return (struct float_int8_zbf_s){1.0, 2};
}
// CHECK: define{{.*}} void @f_float_int8_s_arg_insufficient_gprs(i32 noundef %a, i32 noundef %b, i32 noundef %c, i32 noundef %d, i32 noundef %e, i32 noundef %f, i32 noundef %g, i32 noundef %h, [2 x i32] %i.coerce)
void f_float_int8_s_arg_insufficient_gprs(int a, int b, int c, int d, int e,
int f, int g, int h, struct float_int8_s i) {}
// CHECK: define{{.*}} void @f_struct_float_int8_insufficient_fprs(float noundef %a, float noundef %b, float noundef %c, float noundef %d, float noundef %e, float noundef %f, float noundef %g, float noundef %h, [2 x i32] %i.coerce)
void f_struct_float_int8_insufficient_fprs(float a, float b, float c, float d,
float e, float f, float g, float h, struct float_int8_s i) {}
// Complex floating-point values or structs containing a single complex
// floating-point value should be passed as if it were an fp+fp struct.
// CHECK: define{{.*}} void @f_floatcomplex(float noundef %a.coerce0, float noundef %a.coerce1)
void f_floatcomplex(float __complex__ a) {}
// CHECK: define{{.*}} { float, float } @f_ret_floatcomplex()
float __complex__ f_ret_floatcomplex(void) {
return 1.0;
}
struct floatcomplex_s { float __complex__ c; };
// CHECK: define{{.*}} void @f_floatcomplex_s_arg(float %0, float %1)
void f_floatcomplex_s_arg(struct floatcomplex_s a) {}
// CHECK: define{{.*}} { float, float } @f_ret_floatcomplex_s()
struct floatcomplex_s f_ret_floatcomplex_s(void) {
return (struct floatcomplex_s){1.0};
}
// Test single or two-element structs that need flattening. e.g. those
// containing nested structs, floats in small arrays, zero-length structs etc.
struct floatarr1_s { float a[1]; };
// CHECK: define{{.*}} void @f_floatarr1_s_arg(float %0)
void f_floatarr1_s_arg(struct floatarr1_s a) {}
// CHECK: define{{.*}} float @f_ret_floatarr1_s()
struct floatarr1_s f_ret_floatarr1_s(void) {
return (struct floatarr1_s){{1.0}};
}
struct floatarr2_s { float a[2]; };
// CHECK: define{{.*}} void @f_floatarr2_s_arg(float %0, float %1)
void f_floatarr2_s_arg(struct floatarr2_s a) {}
// CHECK: define{{.*}} { float, float } @f_ret_floatarr2_s()
struct floatarr2_s f_ret_floatarr2_s(void) {
return (struct floatarr2_s){{1.0, 2.0}};
}
struct floatarr2_tricky1_s { struct { float f[1]; } g[2]; };
// CHECK: define{{.*}} void @f_floatarr2_tricky1_s_arg(float %0, float %1)
void f_floatarr2_tricky1_s_arg(struct floatarr2_tricky1_s a) {}
// CHECK: define{{.*}} { float, float } @f_ret_floatarr2_tricky1_s()
struct floatarr2_tricky1_s f_ret_floatarr2_tricky1_s(void) {
return (struct floatarr2_tricky1_s){{{{1.0}}, {{2.0}}}};
}
struct floatarr2_tricky2_s { struct {}; struct { float f[1]; } g[2]; };
// CHECK: define{{.*}} void @f_floatarr2_tricky2_s_arg(float %0, float %1)
void f_floatarr2_tricky2_s_arg(struct floatarr2_tricky2_s a) {}
// CHECK: define{{.*}} { float, float } @f_ret_floatarr2_tricky2_s()
struct floatarr2_tricky2_s f_ret_floatarr2_tricky2_s(void) {
return (struct floatarr2_tricky2_s){{}, {{{1.0}}, {{2.0}}}};
}
struct floatarr2_tricky3_s { union {}; struct { float f[1]; } g[2]; };
// CHECK: define{{.*}} void @f_floatarr2_tricky3_s_arg(float %0, float %1)
void f_floatarr2_tricky3_s_arg(struct floatarr2_tricky3_s a) {}
// CHECK: define{{.*}} { float, float } @f_ret_floatarr2_tricky3_s()
struct floatarr2_tricky3_s f_ret_floatarr2_tricky3_s(void) {
return (struct floatarr2_tricky3_s){{}, {{{1.0}}, {{2.0}}}};
}
struct floatarr2_tricky4_s { union {}; struct { struct {}; float f[1]; } g[2]; };
// CHECK: define{{.*}} void @f_floatarr2_tricky4_s_arg(float %0, float %1)
void f_floatarr2_tricky4_s_arg(struct floatarr2_tricky4_s a) {}
// CHECK: define{{.*}} { float, float } @f_ret_floatarr2_tricky4_s()
struct floatarr2_tricky4_s f_ret_floatarr2_tricky4_s(void) {
return (struct floatarr2_tricky4_s){{}, {{{}, {1.0}}, {{}, {2.0}}}};
}
// Test structs that should be passed according to the normal integer calling
// convention.
struct int_float_int_s { int a; float b; int c; };
// CHECK: define{{.*}} void @f_int_float_int_s_arg(%struct.int_float_int_s* noundef %a)
void f_int_float_int_s_arg(struct int_float_int_s a) {}
// CHECK: define{{.*}} void @f_ret_int_float_int_s(%struct.int_float_int_s* noalias sret(%struct.int_float_int_s) align 4 %agg.result)
struct int_float_int_s f_ret_int_float_int_s(void) {
return (struct int_float_int_s){1, 2.0, 3};
}
struct int64_float_s { int64_t a; float b; };
// CHECK: define{{.*}} void @f_int64_float_s_arg(%struct.int64_float_s* noundef %a)
void f_int64_float_s_arg(struct int64_float_s a) {}
// CHECK: define{{.*}} void @f_ret_int64_float_s(%struct.int64_float_s* noalias sret(%struct.int64_float_s) align 8 %agg.result)
struct int64_float_s f_ret_int64_float_s(void) {
return (struct int64_float_s){1, 2.0};
}
struct char_char_float_s { char a; char b; float c; };
// CHECK-LABEL: define{{.*}} void @f_char_char_float_s_arg([2 x i32] %a.coerce)
void f_char_char_float_s_arg(struct char_char_float_s a) {}
// CHECK: define{{.*}} [2 x i32] @f_ret_char_char_float_s()
struct char_char_float_s f_ret_char_char_float_s(void) {
return (struct char_char_float_s){1, 2, 3.0};
}
// Unions are always passed according to the integer calling convention, even
// if they can only contain a float.
union float_u { float a; };
// CHECK: define{{.*}} void @f_float_u_arg(i32 %a.coerce)
void f_float_u_arg(union float_u a) {}
// CHECK: define{{.*}} i32 @f_ret_float_u()
union float_u f_ret_float_u(void) {
return (union float_u){1.0};
}
|