1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
//===-- comparesf2.S - Implement single-precision soft-float comparisons --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the following soft-fp_t comparison routines:
//
// __eqsf2 __gesf2 __unordsf2
// __lesf2 __gtsf2
// __ltsf2
// __nesf2
//
// The semantics of the routines grouped in each column are identical, so there
// is a single implementation for each, with multiple names.
//
// The routines behave as follows:
//
// __lesf2(a,b) returns -1 if a < b
// 0 if a == b
// 1 if a > b
// 1 if either a or b is NaN
//
// __gesf2(a,b) returns -1 if a < b
// 0 if a == b
// 1 if a > b
// -1 if either a or b is NaN
//
// __unordsf2(a,b) returns 0 if both a and b are numbers
// 1 if either a or b is NaN
//
// Note that __lesf2( ) and __gesf2( ) are identical except in their handling of
// NaN values.
//
//===----------------------------------------------------------------------===//
#include "../assembly.h"
.syntax unified
.text
DEFINE_CODE_STATE
.macro COMPARESF2_FUNCTION_BODY handle_nan:req
#if defined(COMPILER_RT_ARMHF_TARGET)
vmov r0, s0
vmov r1, s1
#endif
// Make copies of a and b with the sign bit shifted off the top. These will
// be used to detect zeros and NaNs.
#if defined(USE_THUMB_1)
push {r6, lr}
lsls r2, r0, #1
lsls r3, r1, #1
#else
mov r2, r0, lsl #1
mov r3, r1, lsl #1
#endif
// We do the comparison in three stages (ignoring NaN values for the time
// being). First, we orr the absolute values of a and b; this sets the Z
// flag if both a and b are zero (of either sign). The shift of r3 doesn't
// effect this at all, but it *does* make sure that the C flag is clear for
// the subsequent operations.
#if defined(USE_THUMB_1)
lsrs r6, r3, #1
orrs r6, r2
#else
orrs r12, r2, r3, lsr #1
#endif
// Next, we check if a and b have the same or different signs. If they have
// opposite signs, this eor will set the N flag.
#if defined(USE_THUMB_1)
beq 1f
movs r6, r0
eors r6, r1
1:
#else
it ne
eorsne r12, r0, r1
#endif
// If a and b are equal (either both zeros or bit identical; again, we're
// ignoring NaNs for now), this subtract will zero out r0. If they have the
// same sign, the flags are updated as they would be for a comparison of the
// absolute values of a and b.
#if defined(USE_THUMB_1)
bmi 1f
subs r0, r2, r3
1:
#else
it pl
subspl r0, r2, r3
#endif
// If a is smaller in magnitude than b and both have the same sign, place
// the negation of the sign of b in r0. Thus, if both are negative and
// a > b, this sets r0 to 0; if both are positive and a < b, this sets
// r0 to -1.
//
// This is also done if a and b have opposite signs and are not both zero,
// because in that case the subtract was not performed and the C flag is
// still clear from the shift argument in orrs; if a is positive and b
// negative, this places 0 in r0; if a is negative and b positive, -1 is
// placed in r0.
#if defined(USE_THUMB_1)
bhs 1f
// Here if a and b have the same sign and absA < absB, the result is thus
// b < 0 ? 1 : -1. Same if a and b have the opposite sign (ignoring Nan).
movs r0, #1
lsrs r1, #31
bne LOCAL_LABEL(CHECK_NAN\@)
negs r0, r0
b LOCAL_LABEL(CHECK_NAN\@)
1:
#else
it lo
mvnlo r0, r1, asr #31
#endif
// If a is greater in magnitude than b and both have the same sign, place
// the sign of b in r0. Thus, if both are negative and a < b, -1 is placed
// in r0, which is the desired result. Conversely, if both are positive
// and a > b, zero is placed in r0.
#if defined(USE_THUMB_1)
bls 1f
// Here both have the same sign and absA > absB.
movs r0, #1
lsrs r1, #31
beq LOCAL_LABEL(CHECK_NAN\@)
negs r0, r0
1:
#else
it hi
movhi r0, r1, asr #31
#endif
// If you've been keeping track, at this point r0 contains -1 if a < b and
// 0 if a >= b. All that remains to be done is to set it to 1 if a > b.
// If a == b, then the Z flag is set, so we can get the correct final value
// into r0 by simply or'ing with 1 if Z is clear.
// For Thumb-1, r0 contains -1 if a < b, 0 if a > b and 0 if a == b.
#if !defined(USE_THUMB_1)
it ne
orrne r0, r0, #1
#endif
// Finally, we need to deal with NaNs. If either argument is NaN, replace
// the value in r0 with 1.
#if defined(USE_THUMB_1)
LOCAL_LABEL(CHECK_NAN\@):
movs r6, #0xff
lsls r6, #24
cmp r2, r6
bhi 1f
cmp r3, r6
1:
bls 2f
\handle_nan
2:
pop {r6, pc}
#else
cmp r2, #0xff000000
ite ls
cmpls r3, #0xff000000
\handle_nan
JMP(lr)
#endif
.endm
@ int __eqsf2(float a, float b)
.p2align 2
DEFINE_COMPILERRT_FUNCTION(__eqsf2)
.macro __eqsf2_handle_nan
#if defined(USE_THUMB_1)
movs r0, #1
#else
movhi r0, #1
#endif
.endm
COMPARESF2_FUNCTION_BODY __eqsf2_handle_nan
END_COMPILERRT_FUNCTION(__eqsf2)
DEFINE_COMPILERRT_FUNCTION_ALIAS(__lesf2, __eqsf2)
DEFINE_COMPILERRT_FUNCTION_ALIAS(__ltsf2, __eqsf2)
DEFINE_COMPILERRT_FUNCTION_ALIAS(__nesf2, __eqsf2)
#if defined(__ELF__)
// Alias for libgcc compatibility
DEFINE_COMPILERRT_FUNCTION_ALIAS(__cmpsf2, __lesf2)
#endif
@ int __gtsf2(float a, float b)
.p2align 2
DEFINE_COMPILERRT_FUNCTION(__gtsf2)
.macro __gtsf2_handle_nan
#if defined(USE_THUMB_1)
movs r0, #1
negs r0, r0
#else
movhi r0, #-1
#endif
.endm
COMPARESF2_FUNCTION_BODY __gtsf2_handle_nan
END_COMPILERRT_FUNCTION(__gtsf2)
DEFINE_COMPILERRT_FUNCTION_ALIAS(__gesf2, __gtsf2)
@ int __unordsf2(float a, float b)
.p2align 2
DEFINE_COMPILERRT_FUNCTION(__unordsf2)
#if defined(COMPILER_RT_ARMHF_TARGET)
vmov r0, s0
vmov r1, s1
#endif
// Return 1 for NaN values, 0 otherwise.
lsls r2, r0, #1
lsls r3, r1, #1
movs r0, #0
#if defined(USE_THUMB_1)
movs r1, #0xff
lsls r1, #24
cmp r2, r1
bhi 1f
cmp r3, r1
1:
bls 2f
movs r0, #1
2:
#else
cmp r2, #0xff000000
ite ls
cmpls r3, #0xff000000
movhi r0, #1
#endif
JMP(lr)
END_COMPILERRT_FUNCTION(__unordsf2)
#if defined(COMPILER_RT_ARMHF_TARGET)
DEFINE_COMPILERRT_FUNCTION(__aeabi_fcmpun)
vmov s0, r0
vmov s1, r1
b SYMBOL_NAME(__unordsf2)
END_COMPILERRT_FUNCTION(__aeabi_fcmpun)
#else
DEFINE_AEABI_FUNCTION_ALIAS(__aeabi_fcmpun, __unordsf2)
#endif
NO_EXEC_STACK_DIRECTIVE
|