1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
//===----- lib/fp_add_impl.inc - floaing point addition -----------*- C -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements soft-float addition with the IEEE-754 default rounding
// (to nearest, ties to even).
//
//===----------------------------------------------------------------------===//
#include "fp_lib.h"
#include "fp_mode.h"
static __inline fp_t __addXf3__(fp_t a, fp_t b) {
rep_t aRep = toRep(a);
rep_t bRep = toRep(b);
const rep_t aAbs = aRep & absMask;
const rep_t bAbs = bRep & absMask;
// Detect if a or b is zero, infinity, or NaN.
if (aAbs - REP_C(1) >= infRep - REP_C(1) ||
bAbs - REP_C(1) >= infRep - REP_C(1)) {
// NaN + anything = qNaN
if (aAbs > infRep)
return fromRep(toRep(a) | quietBit);
// anything + NaN = qNaN
if (bAbs > infRep)
return fromRep(toRep(b) | quietBit);
if (aAbs == infRep) {
// +/-infinity + -/+infinity = qNaN
if ((toRep(a) ^ toRep(b)) == signBit)
return fromRep(qnanRep);
// +/-infinity + anything remaining = +/- infinity
else
return a;
}
// anything remaining + +/-infinity = +/-infinity
if (bAbs == infRep)
return b;
// zero + anything = anything
if (!aAbs) {
// We need to get the sign right for zero + zero.
if (!bAbs)
return fromRep(toRep(a) & toRep(b));
else
return b;
}
// anything + zero = anything
if (!bAbs)
return a;
}
// Swap a and b if necessary so that a has the larger absolute value.
if (bAbs > aAbs) {
const rep_t temp = aRep;
aRep = bRep;
bRep = temp;
}
// Extract the exponent and significand from the (possibly swapped) a and b.
int aExponent = aRep >> significandBits & maxExponent;
int bExponent = bRep >> significandBits & maxExponent;
rep_t aSignificand = aRep & significandMask;
rep_t bSignificand = bRep & significandMask;
// Normalize any denormals, and adjust the exponent accordingly.
if (aExponent == 0)
aExponent = normalize(&aSignificand);
if (bExponent == 0)
bExponent = normalize(&bSignificand);
// The sign of the result is the sign of the larger operand, a. If they
// have opposite signs, we are performing a subtraction. Otherwise, we
// perform addition.
const rep_t resultSign = aRep & signBit;
const bool subtraction = (aRep ^ bRep) & signBit;
// Shift the significands to give us round, guard and sticky, and set the
// implicit significand bit. If we fell through from the denormal path it
// was already set by normalize( ), but setting it twice won't hurt
// anything.
aSignificand = (aSignificand | implicitBit) << 3;
bSignificand = (bSignificand | implicitBit) << 3;
// Shift the significand of b by the difference in exponents, with a sticky
// bottom bit to get rounding correct.
const unsigned int align = aExponent - bExponent;
if (align) {
if (align < typeWidth) {
const bool sticky = (bSignificand << (typeWidth - align)) != 0;
bSignificand = bSignificand >> align | sticky;
} else {
bSignificand = 1; // Set the sticky bit. b is known to be non-zero.
}
}
if (subtraction) {
aSignificand -= bSignificand;
// If a == -b, return +zero.
if (aSignificand == 0)
return fromRep(0);
// If partial cancellation occured, we need to left-shift the result
// and adjust the exponent.
if (aSignificand < implicitBit << 3) {
const int shift = rep_clz(aSignificand) - rep_clz(implicitBit << 3);
aSignificand <<= shift;
aExponent -= shift;
}
} else /* addition */ {
aSignificand += bSignificand;
// If the addition carried up, we need to right-shift the result and
// adjust the exponent.
if (aSignificand & implicitBit << 4) {
const bool sticky = aSignificand & 1;
aSignificand = aSignificand >> 1 | sticky;
aExponent += 1;
}
}
// If we have overflowed the type, return +/- infinity.
if (aExponent >= maxExponent)
return fromRep(infRep | resultSign);
if (aExponent <= 0) {
// The result is denormal before rounding. The exponent is zero and we
// need to shift the significand.
const int shift = 1 - aExponent;
const bool sticky = (aSignificand << (typeWidth - shift)) != 0;
aSignificand = aSignificand >> shift | sticky;
aExponent = 0;
}
// Low three bits are round, guard, and sticky.
const int roundGuardSticky = aSignificand & 0x7;
// Shift the significand into place, and mask off the implicit bit.
rep_t result = aSignificand >> 3 & significandMask;
// Insert the exponent and sign.
result |= (rep_t)aExponent << significandBits;
result |= resultSign;
// Perform the final rounding. The result may overflow to infinity, but
// that is the correct result in that case.
switch (__fe_getround()) {
case CRT_FE_TONEAREST:
if (roundGuardSticky > 0x4)
result++;
if (roundGuardSticky == 0x4)
result += result & 1;
break;
case CRT_FE_DOWNWARD:
if (resultSign && roundGuardSticky) result++;
break;
case CRT_FE_UPWARD:
if (!resultSign && roundGuardSticky) result++;
break;
case CRT_FE_TOWARDZERO:
break;
}
if (roundGuardSticky)
__fe_raise_inexact();
return fromRep(result);
}
|