1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
|
//===-- lib/fp_lib.h - Floating-point utilities -------------------*- C -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a configuration header for soft-float routines in compiler-rt.
// This file does not provide any part of the compiler-rt interface, but defines
// many useful constants and utility routines that are used in the
// implementation of the soft-float routines in compiler-rt.
//
// Assumes that float, double and long double correspond to the IEEE-754
// binary32, binary64 and binary 128 types, respectively, and that integer
// endianness matches floating point endianness on the target platform.
//
//===----------------------------------------------------------------------===//
#ifndef FP_LIB_HEADER
#define FP_LIB_HEADER
#include "int_lib.h"
#include "int_math.h"
#include <limits.h>
#include <stdbool.h>
#include <stdint.h>
// x86_64 FreeBSD prior v9.3 define fixed-width types incorrectly in
// 32-bit mode.
#if defined(__FreeBSD__) && defined(__i386__)
#include <sys/param.h>
#if __FreeBSD_version < 903000 // v9.3
#define uint64_t unsigned long long
#define int64_t long long
#undef UINT64_C
#define UINT64_C(c) (c##ULL)
#endif
#endif
#if defined SINGLE_PRECISION
typedef uint16_t half_rep_t;
typedef uint32_t rep_t;
typedef uint64_t twice_rep_t;
typedef int32_t srep_t;
typedef float fp_t;
#define HALF_REP_C UINT16_C
#define REP_C UINT32_C
#define significandBits 23
static __inline int rep_clz(rep_t a) { return clzsi(a); }
// 32x32 --> 64 bit multiply
static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
const uint64_t product = (uint64_t)a * b;
*hi = product >> 32;
*lo = product;
}
COMPILER_RT_ABI fp_t __addsf3(fp_t a, fp_t b);
#elif defined DOUBLE_PRECISION
typedef uint32_t half_rep_t;
typedef uint64_t rep_t;
typedef int64_t srep_t;
typedef double fp_t;
#define HALF_REP_C UINT32_C
#define REP_C UINT64_C
#define significandBits 52
static __inline int rep_clz(rep_t a) {
#if defined __LP64__
return __builtin_clzl(a);
#else
if (a & REP_C(0xffffffff00000000))
return clzsi(a >> 32);
else
return 32 + clzsi(a & REP_C(0xffffffff));
#endif
}
#define loWord(a) (a & 0xffffffffU)
#define hiWord(a) (a >> 32)
// 64x64 -> 128 wide multiply for platforms that don't have such an operation;
// many 64-bit platforms have this operation, but they tend to have hardware
// floating-point, so we don't bother with a special case for them here.
static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
// Each of the component 32x32 -> 64 products
const uint64_t plolo = loWord(a) * loWord(b);
const uint64_t plohi = loWord(a) * hiWord(b);
const uint64_t philo = hiWord(a) * loWord(b);
const uint64_t phihi = hiWord(a) * hiWord(b);
// Sum terms that contribute to lo in a way that allows us to get the carry
const uint64_t r0 = loWord(plolo);
const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo);
*lo = r0 + (r1 << 32);
// Sum terms contributing to hi with the carry from lo
*hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi;
}
#undef loWord
#undef hiWord
COMPILER_RT_ABI fp_t __adddf3(fp_t a, fp_t b);
#elif defined QUAD_PRECISION
#if __LDBL_MANT_DIG__ == 113 && defined(__SIZEOF_INT128__)
#define CRT_LDBL_128BIT
typedef uint64_t half_rep_t;
typedef __uint128_t rep_t;
typedef __int128_t srep_t;
typedef long double fp_t;
#define HALF_REP_C UINT64_C
#define REP_C (__uint128_t)
// Note: Since there is no explicit way to tell compiler the constant is a
// 128-bit integer, we let the constant be casted to 128-bit integer
#define significandBits 112
static __inline int rep_clz(rep_t a) {
const union {
__uint128_t ll;
#if _YUGA_BIG_ENDIAN
struct {
uint64_t high, low;
} s;
#else
struct {
uint64_t low, high;
} s;
#endif
} uu = {.ll = a};
uint64_t word;
uint64_t add;
if (uu.s.high) {
word = uu.s.high;
add = 0;
} else {
word = uu.s.low;
add = 64;
}
return __builtin_clzll(word) + add;
}
#define Word_LoMask UINT64_C(0x00000000ffffffff)
#define Word_HiMask UINT64_C(0xffffffff00000000)
#define Word_FullMask UINT64_C(0xffffffffffffffff)
#define Word_1(a) (uint64_t)((a >> 96) & Word_LoMask)
#define Word_2(a) (uint64_t)((a >> 64) & Word_LoMask)
#define Word_3(a) (uint64_t)((a >> 32) & Word_LoMask)
#define Word_4(a) (uint64_t)(a & Word_LoMask)
// 128x128 -> 256 wide multiply for platforms that don't have such an operation;
// many 64-bit platforms have this operation, but they tend to have hardware
// floating-point, so we don't bother with a special case for them here.
static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
const uint64_t product11 = Word_1(a) * Word_1(b);
const uint64_t product12 = Word_1(a) * Word_2(b);
const uint64_t product13 = Word_1(a) * Word_3(b);
const uint64_t product14 = Word_1(a) * Word_4(b);
const uint64_t product21 = Word_2(a) * Word_1(b);
const uint64_t product22 = Word_2(a) * Word_2(b);
const uint64_t product23 = Word_2(a) * Word_3(b);
const uint64_t product24 = Word_2(a) * Word_4(b);
const uint64_t product31 = Word_3(a) * Word_1(b);
const uint64_t product32 = Word_3(a) * Word_2(b);
const uint64_t product33 = Word_3(a) * Word_3(b);
const uint64_t product34 = Word_3(a) * Word_4(b);
const uint64_t product41 = Word_4(a) * Word_1(b);
const uint64_t product42 = Word_4(a) * Word_2(b);
const uint64_t product43 = Word_4(a) * Word_3(b);
const uint64_t product44 = Word_4(a) * Word_4(b);
const __uint128_t sum0 = (__uint128_t)product44;
const __uint128_t sum1 = (__uint128_t)product34 + (__uint128_t)product43;
const __uint128_t sum2 =
(__uint128_t)product24 + (__uint128_t)product33 + (__uint128_t)product42;
const __uint128_t sum3 = (__uint128_t)product14 + (__uint128_t)product23 +
(__uint128_t)product32 + (__uint128_t)product41;
const __uint128_t sum4 =
(__uint128_t)product13 + (__uint128_t)product22 + (__uint128_t)product31;
const __uint128_t sum5 = (__uint128_t)product12 + (__uint128_t)product21;
const __uint128_t sum6 = (__uint128_t)product11;
const __uint128_t r0 = (sum0 & Word_FullMask) + ((sum1 & Word_LoMask) << 32);
const __uint128_t r1 = (sum0 >> 64) + ((sum1 >> 32) & Word_FullMask) +
(sum2 & Word_FullMask) + ((sum3 << 32) & Word_HiMask);
*lo = r0 + (r1 << 64);
*hi = (r1 >> 64) + (sum1 >> 96) + (sum2 >> 64) + (sum3 >> 32) + sum4 +
(sum5 << 32) + (sum6 << 64);
}
#undef Word_1
#undef Word_2
#undef Word_3
#undef Word_4
#undef Word_HiMask
#undef Word_LoMask
#undef Word_FullMask
#endif // __LDBL_MANT_DIG__ == 113 && __SIZEOF_INT128__
#else
#error SINGLE_PRECISION, DOUBLE_PRECISION or QUAD_PRECISION must be defined.
#endif
#if defined(SINGLE_PRECISION) || defined(DOUBLE_PRECISION) || \
defined(CRT_LDBL_128BIT)
#define typeWidth (sizeof(rep_t) * CHAR_BIT)
#define exponentBits (typeWidth - significandBits - 1)
#define maxExponent ((1 << exponentBits) - 1)
#define exponentBias (maxExponent >> 1)
#define implicitBit (REP_C(1) << significandBits)
#define significandMask (implicitBit - 1U)
#define signBit (REP_C(1) << (significandBits + exponentBits))
#define absMask (signBit - 1U)
#define exponentMask (absMask ^ significandMask)
#define oneRep ((rep_t)exponentBias << significandBits)
#define infRep exponentMask
#define quietBit (implicitBit >> 1)
#define qnanRep (exponentMask | quietBit)
static __inline rep_t toRep(fp_t x) {
const union {
fp_t f;
rep_t i;
} rep = {.f = x};
return rep.i;
}
static __inline fp_t fromRep(rep_t x) {
const union {
fp_t f;
rep_t i;
} rep = {.i = x};
return rep.f;
}
static __inline int normalize(rep_t *significand) {
const int shift = rep_clz(*significand) - rep_clz(implicitBit);
*significand <<= shift;
return 1 - shift;
}
static __inline void wideLeftShift(rep_t *hi, rep_t *lo, int count) {
*hi = *hi << count | *lo >> (typeWidth - count);
*lo = *lo << count;
}
static __inline void wideRightShiftWithSticky(rep_t *hi, rep_t *lo,
unsigned int count) {
if (count < typeWidth) {
const bool sticky = (*lo << (typeWidth - count)) != 0;
*lo = *hi << (typeWidth - count) | *lo >> count | sticky;
*hi = *hi >> count;
} else if (count < 2 * typeWidth) {
const bool sticky = *hi << (2 * typeWidth - count) | *lo;
*lo = *hi >> (count - typeWidth) | sticky;
*hi = 0;
} else {
const bool sticky = *hi | *lo;
*lo = sticky;
*hi = 0;
}
}
// Implements logb methods (logb, logbf, logbl) for IEEE-754. This avoids
// pulling in a libm dependency from compiler-rt, but is not meant to replace
// it (i.e. code calling logb() should get the one from libm, not this), hence
// the __compiler_rt prefix.
static __inline fp_t __compiler_rt_logbX(fp_t x) {
rep_t rep = toRep(x);
int exp = (rep & exponentMask) >> significandBits;
// Abnormal cases:
// 1) +/- inf returns +inf; NaN returns NaN
// 2) 0.0 returns -inf
if (exp == maxExponent) {
if (((rep & signBit) == 0) || (x != x)) {
return x; // NaN or +inf: return x
} else {
return -x; // -inf: return -x
}
} else if (x == 0.0) {
// 0.0: return -inf
return fromRep(infRep | signBit);
}
if (exp != 0) {
// Normal number
return exp - exponentBias; // Unbias exponent
} else {
// Subnormal number; normalize and repeat
rep &= absMask;
const int shift = 1 - normalize(&rep);
exp = (rep & exponentMask) >> significandBits;
return exp - exponentBias - shift; // Unbias exponent
}
}
// Avoid using scalbn from libm. Unlike libc/libm scalbn, this function never
// sets errno on underflow/overflow.
static __inline fp_t __compiler_rt_scalbnX(fp_t x, int y) {
const rep_t rep = toRep(x);
int exp = (rep & exponentMask) >> significandBits;
if (x == 0.0 || exp == maxExponent)
return x; // +/- 0.0, NaN, or inf: return x
// Normalize subnormal input.
rep_t sig = rep & significandMask;
if (exp == 0) {
exp += normalize(&sig);
sig &= ~implicitBit; // clear the implicit bit again
}
if (__builtin_sadd_overflow(exp, y, &exp)) {
// Saturate the exponent, which will guarantee an underflow/overflow below.
exp = (y >= 0) ? INT_MAX : INT_MIN;
}
// Return this value: [+/-] 1.sig * 2 ** (exp - exponentBias).
const rep_t sign = rep & signBit;
if (exp >= maxExponent) {
// Overflow, which could produce infinity or the largest-magnitude value,
// depending on the rounding mode.
return fromRep(sign | ((rep_t)(maxExponent - 1) << significandBits)) * 2.0f;
} else if (exp <= 0) {
// Subnormal or underflow. Use floating-point multiply to handle truncation
// correctly.
fp_t tmp = fromRep(sign | (REP_C(1) << significandBits) | sig);
exp += exponentBias - 1;
if (exp < 1)
exp = 1;
tmp *= fromRep((rep_t)exp << significandBits);
return tmp;
} else
return fromRep(sign | ((rep_t)exp << significandBits) | sig);
}
// Avoid using fmax from libm.
static __inline fp_t __compiler_rt_fmaxX(fp_t x, fp_t y) {
// If either argument is NaN, return the other argument. If both are NaN,
// arbitrarily return the second one. Otherwise, if both arguments are +/-0,
// arbitrarily return the first one.
return (crt_isnan(x) || x < y) ? y : x;
}
#endif
#if defined(SINGLE_PRECISION)
static __inline fp_t __compiler_rt_logbf(fp_t x) {
return __compiler_rt_logbX(x);
}
static __inline fp_t __compiler_rt_scalbnf(fp_t x, int y) {
return __compiler_rt_scalbnX(x, y);
}
static __inline fp_t __compiler_rt_fmaxf(fp_t x, fp_t y) {
#if defined(__aarch64__)
// Use __builtin_fmaxf which turns into an fmaxnm instruction on AArch64.
return __builtin_fmaxf(x, y);
#else
// __builtin_fmaxf frequently turns into a libm call, so inline the function.
return __compiler_rt_fmaxX(x, y);
#endif
}
#elif defined(DOUBLE_PRECISION)
static __inline fp_t __compiler_rt_logb(fp_t x) {
return __compiler_rt_logbX(x);
}
static __inline fp_t __compiler_rt_scalbn(fp_t x, int y) {
return __compiler_rt_scalbnX(x, y);
}
static __inline fp_t __compiler_rt_fmax(fp_t x, fp_t y) {
#if defined(__aarch64__)
// Use __builtin_fmax which turns into an fmaxnm instruction on AArch64.
return __builtin_fmax(x, y);
#else
// __builtin_fmax frequently turns into a libm call, so inline the function.
return __compiler_rt_fmaxX(x, y);
#endif
}
#elif defined(QUAD_PRECISION)
#if defined(CRT_LDBL_128BIT)
static __inline fp_t __compiler_rt_logbl(fp_t x) {
return __compiler_rt_logbX(x);
}
static __inline fp_t __compiler_rt_scalbnl(fp_t x, int y) {
return __compiler_rt_scalbnX(x, y);
}
static __inline fp_t __compiler_rt_fmaxl(fp_t x, fp_t y) {
return __compiler_rt_fmaxX(x, y);
}
#else
// The generic implementation only works for ieee754 floating point. For other
// floating point types, continue to rely on the libm implementation for now.
static __inline long double __compiler_rt_logbl(long double x) {
return crt_logbl(x);
}
static __inline long double __compiler_rt_scalbnl(long double x, int y) {
return crt_scalbnl(x, y);
}
static __inline long double __compiler_rt_fmaxl(long double x, long double y) {
return crt_fmaxl(x, y);
}
#endif // CRT_LDBL_128BIT
#endif // *_PRECISION
#endif // FP_LIB_HEADER
|