1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
//===-- list.h --------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef SCUDO_LIST_H_
#define SCUDO_LIST_H_
#include "internal_defs.h"
namespace scudo {
// Intrusive POD singly and doubly linked list.
// An object with all zero fields should represent a valid empty list. clear()
// should be called on all non-zero-initialized objects before using.
template <class T> class IteratorBase {
public:
explicit IteratorBase(T *CurrentT) : Current(CurrentT) {}
IteratorBase &operator++() {
Current = Current->Next;
return *this;
}
bool operator!=(IteratorBase Other) const { return Current != Other.Current; }
T &operator*() { return *Current; }
private:
T *Current;
};
template <class T> struct IntrusiveList {
bool empty() const { return Size == 0; }
uptr size() const { return Size; }
T *front() { return First; }
const T *front() const { return First; }
T *back() { return Last; }
const T *back() const { return Last; }
void clear() {
First = Last = nullptr;
Size = 0;
}
typedef IteratorBase<T> Iterator;
typedef IteratorBase<const T> ConstIterator;
Iterator begin() { return Iterator(First); }
Iterator end() { return Iterator(nullptr); }
ConstIterator begin() const { return ConstIterator(First); }
ConstIterator end() const { return ConstIterator(nullptr); }
void checkConsistency() const;
protected:
uptr Size = 0;
T *First = nullptr;
T *Last = nullptr;
};
template <class T> void IntrusiveList<T>::checkConsistency() const {
if (Size == 0) {
CHECK_EQ(First, nullptr);
CHECK_EQ(Last, nullptr);
} else {
uptr Count = 0;
for (T *I = First;; I = I->Next) {
Count++;
if (I == Last)
break;
}
CHECK_EQ(this->size(), Count);
CHECK_EQ(Last->Next, nullptr);
}
}
template <class T> struct SinglyLinkedList : public IntrusiveList<T> {
using IntrusiveList<T>::First;
using IntrusiveList<T>::Last;
using IntrusiveList<T>::Size;
using IntrusiveList<T>::empty;
void push_back(T *X) {
X->Next = nullptr;
if (empty())
First = X;
else
Last->Next = X;
Last = X;
Size++;
}
void push_front(T *X) {
if (empty())
Last = X;
X->Next = First;
First = X;
Size++;
}
void pop_front() {
DCHECK(!empty());
First = First->Next;
if (!First)
Last = nullptr;
Size--;
}
void extract(T *Prev, T *X) {
DCHECK(!empty());
DCHECK_NE(Prev, nullptr);
DCHECK_NE(X, nullptr);
DCHECK_EQ(Prev->Next, X);
Prev->Next = X->Next;
if (Last == X)
Last = Prev;
Size--;
}
void append_back(SinglyLinkedList<T> *L) {
DCHECK_NE(this, L);
if (L->empty())
return;
if (empty()) {
*this = *L;
} else {
Last->Next = L->First;
Last = L->Last;
Size += L->size();
}
L->clear();
}
};
template <class T> struct DoublyLinkedList : IntrusiveList<T> {
using IntrusiveList<T>::First;
using IntrusiveList<T>::Last;
using IntrusiveList<T>::Size;
using IntrusiveList<T>::empty;
void push_front(T *X) {
X->Prev = nullptr;
if (empty()) {
Last = X;
} else {
DCHECK_EQ(First->Prev, nullptr);
First->Prev = X;
}
X->Next = First;
First = X;
Size++;
}
// Inserts X before Y.
void insert(T *X, T *Y) {
if (Y == First)
return push_front(X);
T *Prev = Y->Prev;
// This is a hard CHECK to ensure consistency in the event of an intentional
// corruption of Y->Prev, to prevent a potential write-{4,8}.
CHECK_EQ(Prev->Next, Y);
Prev->Next = X;
X->Prev = Prev;
X->Next = Y;
Y->Prev = X;
Size++;
}
void push_back(T *X) {
X->Next = nullptr;
if (empty()) {
First = X;
} else {
DCHECK_EQ(Last->Next, nullptr);
Last->Next = X;
}
X->Prev = Last;
Last = X;
Size++;
}
void pop_front() {
DCHECK(!empty());
First = First->Next;
if (!First)
Last = nullptr;
else
First->Prev = nullptr;
Size--;
}
// The consistency of the adjacent links is aggressively checked in order to
// catch potential corruption attempts, that could yield a mirrored
// write-{4,8} primitive. nullptr checks are deemed less vital.
void remove(T *X) {
T *Prev = X->Prev;
T *Next = X->Next;
if (Prev) {
CHECK_EQ(Prev->Next, X);
Prev->Next = Next;
}
if (Next) {
CHECK_EQ(Next->Prev, X);
Next->Prev = Prev;
}
if (First == X) {
DCHECK_EQ(Prev, nullptr);
First = Next;
} else {
DCHECK_NE(Prev, nullptr);
}
if (Last == X) {
DCHECK_EQ(Next, nullptr);
Last = Prev;
} else {
DCHECK_NE(Next, nullptr);
}
Size--;
}
};
} // namespace scudo
#endif // SCUDO_LIST_H_
|