1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
//===-- quarantine.h --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef SCUDO_QUARANTINE_H_
#define SCUDO_QUARANTINE_H_
#include "list.h"
#include "mutex.h"
#include "string_utils.h"
namespace scudo {
struct QuarantineBatch {
// With the following count, a batch (and the header that protects it) occupy
// 4096 bytes on 32-bit platforms, and 8192 bytes on 64-bit.
static const u32 MaxCount = 1019;
QuarantineBatch *Next;
uptr Size;
u32 Count;
void *Batch[MaxCount];
void init(void *Ptr, uptr Size) {
Count = 1;
Batch[0] = Ptr;
this->Size = Size + sizeof(QuarantineBatch); // Account for the Batch Size.
}
// The total size of quarantined nodes recorded in this batch.
uptr getQuarantinedSize() const { return Size - sizeof(QuarantineBatch); }
void push_back(void *Ptr, uptr Size) {
DCHECK_LT(Count, MaxCount);
Batch[Count++] = Ptr;
this->Size += Size;
}
bool canMerge(const QuarantineBatch *const From) const {
return Count + From->Count <= MaxCount;
}
void merge(QuarantineBatch *const From) {
DCHECK_LE(Count + From->Count, MaxCount);
DCHECK_GE(Size, sizeof(QuarantineBatch));
for (uptr I = 0; I < From->Count; ++I)
Batch[Count + I] = From->Batch[I];
Count += From->Count;
Size += From->getQuarantinedSize();
From->Count = 0;
From->Size = sizeof(QuarantineBatch);
}
void shuffle(u32 State) { ::scudo::shuffle(Batch, Count, &State); }
};
static_assert(sizeof(QuarantineBatch) <= (1U << 13), ""); // 8Kb.
// Per-thread cache of memory blocks.
template <typename Callback> class QuarantineCache {
public:
void init() { DCHECK_EQ(atomic_load_relaxed(&Size), 0U); }
// Total memory used, including internal accounting.
uptr getSize() const { return atomic_load_relaxed(&Size); }
// Memory used for internal accounting.
uptr getOverheadSize() const { return List.size() * sizeof(QuarantineBatch); }
void enqueue(Callback Cb, void *Ptr, uptr Size) {
if (List.empty() || List.back()->Count == QuarantineBatch::MaxCount) {
QuarantineBatch *B =
reinterpret_cast<QuarantineBatch *>(Cb.allocate(sizeof(*B)));
DCHECK(B);
B->init(Ptr, Size);
enqueueBatch(B);
} else {
List.back()->push_back(Ptr, Size);
addToSize(Size);
}
}
void transfer(QuarantineCache *From) {
List.append_back(&From->List);
addToSize(From->getSize());
atomic_store_relaxed(&From->Size, 0);
}
void enqueueBatch(QuarantineBatch *B) {
List.push_back(B);
addToSize(B->Size);
}
QuarantineBatch *dequeueBatch() {
if (List.empty())
return nullptr;
QuarantineBatch *B = List.front();
List.pop_front();
subFromSize(B->Size);
return B;
}
void mergeBatches(QuarantineCache *ToDeallocate) {
uptr ExtractedSize = 0;
QuarantineBatch *Current = List.front();
while (Current && Current->Next) {
if (Current->canMerge(Current->Next)) {
QuarantineBatch *Extracted = Current->Next;
// Move all the chunks into the current batch.
Current->merge(Extracted);
DCHECK_EQ(Extracted->Count, 0);
DCHECK_EQ(Extracted->Size, sizeof(QuarantineBatch));
// Remove the next batch From the list and account for its Size.
List.extract(Current, Extracted);
ExtractedSize += Extracted->Size;
// Add it to deallocation list.
ToDeallocate->enqueueBatch(Extracted);
} else {
Current = Current->Next;
}
}
subFromSize(ExtractedSize);
}
void getStats(ScopedString *Str) const {
uptr BatchCount = 0;
uptr TotalOverheadBytes = 0;
uptr TotalBytes = 0;
uptr TotalQuarantineChunks = 0;
for (const QuarantineBatch &Batch : List) {
BatchCount++;
TotalBytes += Batch.Size;
TotalOverheadBytes += Batch.Size - Batch.getQuarantinedSize();
TotalQuarantineChunks += Batch.Count;
}
const uptr QuarantineChunksCapacity =
BatchCount * QuarantineBatch::MaxCount;
const uptr ChunksUsagePercent =
(QuarantineChunksCapacity == 0)
? 0
: TotalQuarantineChunks * 100 / QuarantineChunksCapacity;
const uptr TotalQuarantinedBytes = TotalBytes - TotalOverheadBytes;
const uptr MemoryOverheadPercent =
(TotalQuarantinedBytes == 0)
? 0
: TotalOverheadBytes * 100 / TotalQuarantinedBytes;
Str->append(
"Stats: Quarantine: batches: %zu; bytes: %zu (user: %zu); chunks: %zu "
"(capacity: %zu); %zu%% chunks used; %zu%% memory overhead\n",
BatchCount, TotalBytes, TotalQuarantinedBytes, TotalQuarantineChunks,
QuarantineChunksCapacity, ChunksUsagePercent, MemoryOverheadPercent);
}
private:
SinglyLinkedList<QuarantineBatch> List;
atomic_uptr Size = {};
void addToSize(uptr add) { atomic_store_relaxed(&Size, getSize() + add); }
void subFromSize(uptr sub) { atomic_store_relaxed(&Size, getSize() - sub); }
};
// The callback interface is:
// void Callback::recycle(Node *Ptr);
// void *Callback::allocate(uptr Size);
// void Callback::deallocate(void *Ptr);
template <typename Callback, typename Node> class GlobalQuarantine {
public:
typedef QuarantineCache<Callback> CacheT;
using ThisT = GlobalQuarantine<Callback, Node>;
void init(uptr Size, uptr CacheSize) {
DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT)));
DCHECK_EQ(atomic_load_relaxed(&MaxSize), 0U);
DCHECK_EQ(atomic_load_relaxed(&MinSize), 0U);
DCHECK_EQ(atomic_load_relaxed(&MaxCacheSize), 0U);
// Thread local quarantine size can be zero only when global quarantine size
// is zero (it allows us to perform just one atomic read per put() call).
CHECK((Size == 0 && CacheSize == 0) || CacheSize != 0);
atomic_store_relaxed(&MaxSize, Size);
atomic_store_relaxed(&MinSize, Size / 10 * 9); // 90% of max size.
atomic_store_relaxed(&MaxCacheSize, CacheSize);
Cache.init();
}
uptr getMaxSize() const { return atomic_load_relaxed(&MaxSize); }
uptr getCacheSize() const { return atomic_load_relaxed(&MaxCacheSize); }
void put(CacheT *C, Callback Cb, Node *Ptr, uptr Size) {
C->enqueue(Cb, Ptr, Size);
if (C->getSize() > getCacheSize())
drain(C, Cb);
}
void NOINLINE drain(CacheT *C, Callback Cb) {
{
ScopedLock L(CacheMutex);
Cache.transfer(C);
}
if (Cache.getSize() > getMaxSize() && RecycleMutex.tryLock())
recycle(atomic_load_relaxed(&MinSize), Cb);
}
void NOINLINE drainAndRecycle(CacheT *C, Callback Cb) {
{
ScopedLock L(CacheMutex);
Cache.transfer(C);
}
RecycleMutex.lock();
recycle(0, Cb);
}
void getStats(ScopedString *Str) const {
// It assumes that the world is stopped, just as the allocator's printStats.
Cache.getStats(Str);
Str->append("Quarantine limits: global: %zuK; thread local: %zuK\n",
getMaxSize() >> 10, getCacheSize() >> 10);
}
void disable() {
// RecycleMutex must be locked 1st since we grab CacheMutex within recycle.
RecycleMutex.lock();
CacheMutex.lock();
}
void enable() {
CacheMutex.unlock();
RecycleMutex.unlock();
}
private:
// Read-only data.
alignas(SCUDO_CACHE_LINE_SIZE) HybridMutex CacheMutex;
CacheT Cache;
alignas(SCUDO_CACHE_LINE_SIZE) HybridMutex RecycleMutex;
atomic_uptr MinSize = {};
atomic_uptr MaxSize = {};
alignas(SCUDO_CACHE_LINE_SIZE) atomic_uptr MaxCacheSize = {};
void NOINLINE recycle(uptr MinSize, Callback Cb) {
CacheT Tmp;
Tmp.init();
{
ScopedLock L(CacheMutex);
// Go over the batches and merge partially filled ones to
// save some memory, otherwise batches themselves (since the memory used
// by them is counted against quarantine limit) can overcome the actual
// user's quarantined chunks, which diminishes the purpose of the
// quarantine.
const uptr CacheSize = Cache.getSize();
const uptr OverheadSize = Cache.getOverheadSize();
DCHECK_GE(CacheSize, OverheadSize);
// Do the merge only when overhead exceeds this predefined limit (might
// require some tuning). It saves us merge attempt when the batch list
// quarantine is unlikely to contain batches suitable for merge.
constexpr uptr OverheadThresholdPercents = 100;
if (CacheSize > OverheadSize &&
OverheadSize * (100 + OverheadThresholdPercents) >
CacheSize * OverheadThresholdPercents) {
Cache.mergeBatches(&Tmp);
}
// Extract enough chunks from the quarantine to get below the max
// quarantine size and leave some leeway for the newly quarantined chunks.
while (Cache.getSize() > MinSize)
Tmp.enqueueBatch(Cache.dequeueBatch());
}
RecycleMutex.unlock();
doRecycle(&Tmp, Cb);
}
void NOINLINE doRecycle(CacheT *C, Callback Cb) {
while (QuarantineBatch *B = C->dequeueBatch()) {
const u32 Seed = static_cast<u32>(
(reinterpret_cast<uptr>(B) ^ reinterpret_cast<uptr>(C)) >> 4);
B->shuffle(Seed);
constexpr uptr NumberOfPrefetch = 8UL;
CHECK(NumberOfPrefetch <= ARRAY_SIZE(B->Batch));
for (uptr I = 0; I < NumberOfPrefetch; I++)
PREFETCH(B->Batch[I]);
for (uptr I = 0, Count = B->Count; I < Count; I++) {
if (I + NumberOfPrefetch < Count)
PREFETCH(B->Batch[I + NumberOfPrefetch]);
Cb.recycle(reinterpret_cast<Node *>(B->Batch[I]));
}
Cb.deallocate(B);
}
}
};
} // namespace scudo
#endif // SCUDO_QUARANTINE_H_
|