1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
//===-- primary_test.cpp ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "tests/scudo_unit_test.h"
#include "primary32.h"
#include "primary64.h"
#include "size_class_map.h"
#include <condition_variable>
#include <mutex>
#include <stdlib.h>
#include <thread>
#include <vector>
// Note that with small enough regions, the SizeClassAllocator64 also works on
// 32-bit architectures. It's not something we want to encourage, but we still
// should ensure the tests pass.
struct TestConfig1 {
static const scudo::uptr PrimaryRegionSizeLog = 18U;
static const scudo::s32 PrimaryMinReleaseToOsIntervalMs = INT32_MIN;
static const scudo::s32 PrimaryMaxReleaseToOsIntervalMs = INT32_MAX;
static const bool MaySupportMemoryTagging = false;
typedef scudo::uptr PrimaryCompactPtrT;
static const scudo::uptr PrimaryCompactPtrScale = 0;
static const bool PrimaryEnableRandomOffset = true;
static const scudo::uptr PrimaryMapSizeIncrement = 1UL << 18;
};
struct TestConfig2 {
#if defined(__mips__)
// Unable to allocate greater size on QEMU-user.
static const scudo::uptr PrimaryRegionSizeLog = 23U;
#else
static const scudo::uptr PrimaryRegionSizeLog = 24U;
#endif
static const scudo::s32 PrimaryMinReleaseToOsIntervalMs = INT32_MIN;
static const scudo::s32 PrimaryMaxReleaseToOsIntervalMs = INT32_MAX;
static const bool MaySupportMemoryTagging = false;
typedef scudo::uptr PrimaryCompactPtrT;
static const scudo::uptr PrimaryCompactPtrScale = 0;
static const bool PrimaryEnableRandomOffset = true;
static const scudo::uptr PrimaryMapSizeIncrement = 1UL << 18;
};
struct TestConfig3 {
#if defined(__mips__)
// Unable to allocate greater size on QEMU-user.
static const scudo::uptr PrimaryRegionSizeLog = 23U;
#else
static const scudo::uptr PrimaryRegionSizeLog = 24U;
#endif
static const scudo::s32 PrimaryMinReleaseToOsIntervalMs = INT32_MIN;
static const scudo::s32 PrimaryMaxReleaseToOsIntervalMs = INT32_MAX;
static const bool MaySupportMemoryTagging = true;
typedef scudo::uptr PrimaryCompactPtrT;
static const scudo::uptr PrimaryCompactPtrScale = 0;
static const bool PrimaryEnableRandomOffset = true;
static const scudo::uptr PrimaryMapSizeIncrement = 1UL << 18;
};
template <typename BaseConfig, typename SizeClassMapT>
struct Config : public BaseConfig {
using SizeClassMap = SizeClassMapT;
};
template <typename BaseConfig, typename SizeClassMapT>
struct SizeClassAllocator
: public scudo::SizeClassAllocator64<Config<BaseConfig, SizeClassMapT>> {};
template <typename SizeClassMapT>
struct SizeClassAllocator<TestConfig1, SizeClassMapT>
: public scudo::SizeClassAllocator32<Config<TestConfig1, SizeClassMapT>> {};
template <typename BaseConfig, typename SizeClassMapT>
struct TestAllocator : public SizeClassAllocator<BaseConfig, SizeClassMapT> {
~TestAllocator() { this->unmapTestOnly(); }
void *operator new(size_t size) {
void *p = nullptr;
EXPECT_EQ(0, posix_memalign(&p, alignof(TestAllocator), size));
return p;
}
void operator delete(void *ptr) { free(ptr); }
};
template <class BaseConfig> struct ScudoPrimaryTest : public Test {};
#if SCUDO_FUCHSIA
#define SCUDO_TYPED_TEST_ALL_TYPES(FIXTURE, NAME) \
SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, TestConfig2) \
SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, TestConfig3)
#else
#define SCUDO_TYPED_TEST_ALL_TYPES(FIXTURE, NAME) \
SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, TestConfig1) \
SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, TestConfig2) \
SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, TestConfig3)
#endif
#define SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, TYPE) \
using FIXTURE##NAME##_##TYPE = FIXTURE##NAME<TYPE>; \
TEST_F(FIXTURE##NAME##_##TYPE, NAME) { FIXTURE##NAME<TYPE>::Run(); }
#define SCUDO_TYPED_TEST(FIXTURE, NAME) \
template <class TypeParam> \
struct FIXTURE##NAME : public FIXTURE<TypeParam> { \
void Run(); \
}; \
SCUDO_TYPED_TEST_ALL_TYPES(FIXTURE, NAME) \
template <class TypeParam> void FIXTURE##NAME<TypeParam>::Run()
SCUDO_TYPED_TEST(ScudoPrimaryTest, BasicPrimary) {
using Primary = TestAllocator<TypeParam, scudo::DefaultSizeClassMap>;
std::unique_ptr<Primary> Allocator(new Primary);
Allocator->init(/*ReleaseToOsInterval=*/-1);
typename Primary::CacheT Cache;
Cache.init(nullptr, Allocator.get());
const scudo::uptr NumberOfAllocations = 32U;
for (scudo::uptr I = 0; I <= 16U; I++) {
const scudo::uptr Size = 1UL << I;
if (!Primary::canAllocate(Size))
continue;
const scudo::uptr ClassId = Primary::SizeClassMap::getClassIdBySize(Size);
void *Pointers[NumberOfAllocations];
for (scudo::uptr J = 0; J < NumberOfAllocations; J++) {
void *P = Cache.allocate(ClassId);
memset(P, 'B', Size);
Pointers[J] = P;
}
for (scudo::uptr J = 0; J < NumberOfAllocations; J++)
Cache.deallocate(ClassId, Pointers[J]);
}
Cache.destroy(nullptr);
Allocator->releaseToOS();
scudo::ScopedString Str;
Allocator->getStats(&Str);
Str.output();
}
struct SmallRegionsConfig {
using SizeClassMap = scudo::DefaultSizeClassMap;
static const scudo::uptr PrimaryRegionSizeLog = 20U;
static const scudo::s32 PrimaryMinReleaseToOsIntervalMs = INT32_MIN;
static const scudo::s32 PrimaryMaxReleaseToOsIntervalMs = INT32_MAX;
static const bool MaySupportMemoryTagging = false;
typedef scudo::uptr PrimaryCompactPtrT;
static const scudo::uptr PrimaryCompactPtrScale = 0;
static const bool PrimaryEnableRandomOffset = true;
static const scudo::uptr PrimaryMapSizeIncrement = 1UL << 18;
};
// The 64-bit SizeClassAllocator can be easily OOM'd with small region sizes.
// For the 32-bit one, it requires actually exhausting memory, so we skip it.
TEST(ScudoPrimaryTest, Primary64OOM) {
using Primary = scudo::SizeClassAllocator64<SmallRegionsConfig>;
using TransferBatch = Primary::CacheT::TransferBatch;
Primary Allocator;
Allocator.init(/*ReleaseToOsInterval=*/-1);
typename Primary::CacheT Cache;
scudo::GlobalStats Stats;
Stats.init();
Cache.init(&Stats, &Allocator);
bool AllocationFailed = false;
std::vector<TransferBatch *> Batches;
const scudo::uptr ClassId = Primary::SizeClassMap::LargestClassId;
const scudo::uptr Size = Primary::getSizeByClassId(ClassId);
for (scudo::uptr I = 0; I < 10000U; I++) {
TransferBatch *B = Allocator.popBatch(&Cache, ClassId);
if (!B) {
AllocationFailed = true;
break;
}
for (scudo::u32 J = 0; J < B->getCount(); J++)
memset(Allocator.decompactPtr(ClassId, B->get(J)), 'B', Size);
Batches.push_back(B);
}
while (!Batches.empty()) {
Allocator.pushBatch(ClassId, Batches.back());
Batches.pop_back();
}
Cache.destroy(nullptr);
Allocator.releaseToOS();
scudo::ScopedString Str;
Allocator.getStats(&Str);
Str.output();
EXPECT_EQ(AllocationFailed, true);
Allocator.unmapTestOnly();
}
SCUDO_TYPED_TEST(ScudoPrimaryTest, PrimaryIterate) {
using Primary = TestAllocator<TypeParam, scudo::DefaultSizeClassMap>;
std::unique_ptr<Primary> Allocator(new Primary);
Allocator->init(/*ReleaseToOsInterval=*/-1);
typename Primary::CacheT Cache;
Cache.init(nullptr, Allocator.get());
std::vector<std::pair<scudo::uptr, void *>> V;
for (scudo::uptr I = 0; I < 64U; I++) {
const scudo::uptr Size = std::rand() % Primary::SizeClassMap::MaxSize;
const scudo::uptr ClassId = Primary::SizeClassMap::getClassIdBySize(Size);
void *P = Cache.allocate(ClassId);
V.push_back(std::make_pair(ClassId, P));
}
scudo::uptr Found = 0;
auto Lambda = [&V, &Found](scudo::uptr Block) {
for (const auto &Pair : V) {
if (Pair.second == reinterpret_cast<void *>(Block))
Found++;
}
};
Allocator->disable();
Allocator->iterateOverBlocks(Lambda);
Allocator->enable();
EXPECT_EQ(Found, V.size());
while (!V.empty()) {
auto Pair = V.back();
Cache.deallocate(Pair.first, Pair.second);
V.pop_back();
}
Cache.destroy(nullptr);
Allocator->releaseToOS();
scudo::ScopedString Str;
Allocator->getStats(&Str);
Str.output();
}
SCUDO_TYPED_TEST(ScudoPrimaryTest, PrimaryThreaded) {
using Primary = TestAllocator<TypeParam, scudo::SvelteSizeClassMap>;
std::unique_ptr<Primary> Allocator(new Primary);
Allocator->init(/*ReleaseToOsInterval=*/-1);
std::mutex Mutex;
std::condition_variable Cv;
bool Ready = false;
std::thread Threads[32];
for (scudo::uptr I = 0; I < ARRAY_SIZE(Threads); I++)
Threads[I] = std::thread([&]() {
static thread_local typename Primary::CacheT Cache;
Cache.init(nullptr, Allocator.get());
std::vector<std::pair<scudo::uptr, void *>> V;
{
std::unique_lock<std::mutex> Lock(Mutex);
while (!Ready)
Cv.wait(Lock);
}
for (scudo::uptr I = 0; I < 256U; I++) {
const scudo::uptr Size =
std::rand() % Primary::SizeClassMap::MaxSize / 4;
const scudo::uptr ClassId =
Primary::SizeClassMap::getClassIdBySize(Size);
void *P = Cache.allocate(ClassId);
if (P)
V.push_back(std::make_pair(ClassId, P));
}
while (!V.empty()) {
auto Pair = V.back();
Cache.deallocate(Pair.first, Pair.second);
V.pop_back();
}
Cache.destroy(nullptr);
});
{
std::unique_lock<std::mutex> Lock(Mutex);
Ready = true;
Cv.notify_all();
}
for (auto &T : Threads)
T.join();
Allocator->releaseToOS();
scudo::ScopedString Str;
Allocator->getStats(&Str);
Str.output();
}
// Through a simple allocation that spans two pages, verify that releaseToOS
// actually releases some bytes (at least one page worth). This is a regression
// test for an error in how the release criteria were computed.
SCUDO_TYPED_TEST(ScudoPrimaryTest, ReleaseToOS) {
using Primary = TestAllocator<TypeParam, scudo::DefaultSizeClassMap>;
std::unique_ptr<Primary> Allocator(new Primary);
Allocator->init(/*ReleaseToOsInterval=*/-1);
typename Primary::CacheT Cache;
Cache.init(nullptr, Allocator.get());
const scudo::uptr Size = scudo::getPageSizeCached() * 2;
EXPECT_TRUE(Primary::canAllocate(Size));
const scudo::uptr ClassId = Primary::SizeClassMap::getClassIdBySize(Size);
void *P = Cache.allocate(ClassId);
EXPECT_NE(P, nullptr);
Cache.deallocate(ClassId, P);
Cache.destroy(nullptr);
EXPECT_GT(Allocator->releaseToOS(), 0U);
}
|