1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
//===-- quarantine_test.cpp -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "tests/scudo_unit_test.h"
#include "quarantine.h"
#include <pthread.h>
#include <stdlib.h>
static void *FakePtr = reinterpret_cast<void *>(0xFA83FA83);
static const scudo::uptr BlockSize = 8UL;
static const scudo::uptr LargeBlockSize = 16384UL;
struct QuarantineCallback {
void recycle(void *P) { EXPECT_EQ(P, FakePtr); }
void *allocate(scudo::uptr Size) { return malloc(Size); }
void deallocate(void *P) { free(P); }
};
typedef scudo::GlobalQuarantine<QuarantineCallback, void> QuarantineT;
typedef typename QuarantineT::CacheT CacheT;
static QuarantineCallback Cb;
static void deallocateCache(CacheT *Cache) {
while (scudo::QuarantineBatch *Batch = Cache->dequeueBatch())
Cb.deallocate(Batch);
}
TEST(ScudoQuarantineTest, QuarantineBatchMerge) {
// Verify the trivial case.
scudo::QuarantineBatch Into;
Into.init(FakePtr, 4UL);
scudo::QuarantineBatch From;
From.init(FakePtr, 8UL);
Into.merge(&From);
EXPECT_EQ(Into.Count, 2UL);
EXPECT_EQ(Into.Batch[0], FakePtr);
EXPECT_EQ(Into.Batch[1], FakePtr);
EXPECT_EQ(Into.Size, 12UL + sizeof(scudo::QuarantineBatch));
EXPECT_EQ(Into.getQuarantinedSize(), 12UL);
EXPECT_EQ(From.Count, 0UL);
EXPECT_EQ(From.Size, sizeof(scudo::QuarantineBatch));
EXPECT_EQ(From.getQuarantinedSize(), 0UL);
// Merge the batch to the limit.
for (scudo::uptr I = 2; I < scudo::QuarantineBatch::MaxCount; ++I)
From.push_back(FakePtr, 8UL);
EXPECT_TRUE(Into.Count + From.Count == scudo::QuarantineBatch::MaxCount);
EXPECT_TRUE(Into.canMerge(&From));
Into.merge(&From);
EXPECT_TRUE(Into.Count == scudo::QuarantineBatch::MaxCount);
// No more space, not even for one element.
From.init(FakePtr, 8UL);
EXPECT_FALSE(Into.canMerge(&From));
}
TEST(ScudoQuarantineTest, QuarantineCacheMergeBatchesEmpty) {
CacheT Cache;
CacheT ToDeallocate;
Cache.init();
ToDeallocate.init();
Cache.mergeBatches(&ToDeallocate);
EXPECT_EQ(ToDeallocate.getSize(), 0UL);
EXPECT_EQ(ToDeallocate.dequeueBatch(), nullptr);
}
TEST(SanitizerCommon, QuarantineCacheMergeBatchesOneBatch) {
CacheT Cache;
Cache.init();
Cache.enqueue(Cb, FakePtr, BlockSize);
EXPECT_EQ(BlockSize + sizeof(scudo::QuarantineBatch), Cache.getSize());
CacheT ToDeallocate;
ToDeallocate.init();
Cache.mergeBatches(&ToDeallocate);
// Nothing to merge, nothing to deallocate.
EXPECT_EQ(BlockSize + sizeof(scudo::QuarantineBatch), Cache.getSize());
EXPECT_EQ(ToDeallocate.getSize(), 0UL);
EXPECT_EQ(ToDeallocate.dequeueBatch(), nullptr);
deallocateCache(&Cache);
}
TEST(ScudoQuarantineTest, QuarantineCacheMergeBatchesSmallBatches) {
// Make a Cache with two batches small enough to merge.
CacheT From;
From.init();
From.enqueue(Cb, FakePtr, BlockSize);
CacheT Cache;
Cache.init();
Cache.enqueue(Cb, FakePtr, BlockSize);
Cache.transfer(&From);
EXPECT_EQ(BlockSize * 2 + sizeof(scudo::QuarantineBatch) * 2,
Cache.getSize());
CacheT ToDeallocate;
ToDeallocate.init();
Cache.mergeBatches(&ToDeallocate);
// Batches merged, one batch to deallocate.
EXPECT_EQ(BlockSize * 2 + sizeof(scudo::QuarantineBatch), Cache.getSize());
EXPECT_EQ(ToDeallocate.getSize(), sizeof(scudo::QuarantineBatch));
deallocateCache(&Cache);
deallocateCache(&ToDeallocate);
}
TEST(ScudoQuarantineTest, QuarantineCacheMergeBatchesTooBigToMerge) {
const scudo::uptr NumBlocks = scudo::QuarantineBatch::MaxCount - 1;
// Make a Cache with two batches small enough to merge.
CacheT From;
CacheT Cache;
From.init();
Cache.init();
for (scudo::uptr I = 0; I < NumBlocks; ++I) {
From.enqueue(Cb, FakePtr, BlockSize);
Cache.enqueue(Cb, FakePtr, BlockSize);
}
Cache.transfer(&From);
EXPECT_EQ(BlockSize * NumBlocks * 2 + sizeof(scudo::QuarantineBatch) * 2,
Cache.getSize());
CacheT ToDeallocate;
ToDeallocate.init();
Cache.mergeBatches(&ToDeallocate);
// Batches cannot be merged.
EXPECT_EQ(BlockSize * NumBlocks * 2 + sizeof(scudo::QuarantineBatch) * 2,
Cache.getSize());
EXPECT_EQ(ToDeallocate.getSize(), 0UL);
deallocateCache(&Cache);
}
TEST(ScudoQuarantineTest, QuarantineCacheMergeBatchesALotOfBatches) {
const scudo::uptr NumBatchesAfterMerge = 3;
const scudo::uptr NumBlocks =
scudo::QuarantineBatch::MaxCount * NumBatchesAfterMerge;
const scudo::uptr NumBatchesBeforeMerge = NumBlocks;
// Make a Cache with many small batches.
CacheT Cache;
Cache.init();
for (scudo::uptr I = 0; I < NumBlocks; ++I) {
CacheT From;
From.init();
From.enqueue(Cb, FakePtr, BlockSize);
Cache.transfer(&From);
}
EXPECT_EQ(BlockSize * NumBlocks +
sizeof(scudo::QuarantineBatch) * NumBatchesBeforeMerge,
Cache.getSize());
CacheT ToDeallocate;
ToDeallocate.init();
Cache.mergeBatches(&ToDeallocate);
// All blocks should fit Into 3 batches.
EXPECT_EQ(BlockSize * NumBlocks +
sizeof(scudo::QuarantineBatch) * NumBatchesAfterMerge,
Cache.getSize());
EXPECT_EQ(ToDeallocate.getSize(),
sizeof(scudo::QuarantineBatch) *
(NumBatchesBeforeMerge - NumBatchesAfterMerge));
deallocateCache(&Cache);
deallocateCache(&ToDeallocate);
}
static const scudo::uptr MaxQuarantineSize = 1024UL << 10; // 1MB
static const scudo::uptr MaxCacheSize = 256UL << 10; // 256KB
TEST(ScudoQuarantineTest, GlobalQuarantine) {
QuarantineT Quarantine;
CacheT Cache;
Cache.init();
Quarantine.init(MaxQuarantineSize, MaxCacheSize);
EXPECT_EQ(Quarantine.getMaxSize(), MaxQuarantineSize);
EXPECT_EQ(Quarantine.getCacheSize(), MaxCacheSize);
bool DrainOccurred = false;
scudo::uptr CacheSize = Cache.getSize();
EXPECT_EQ(Cache.getSize(), 0UL);
// We quarantine enough blocks that a drain has to occur. Verify this by
// looking for a decrease of the size of the cache.
for (scudo::uptr I = 0; I < 128UL; I++) {
Quarantine.put(&Cache, Cb, FakePtr, LargeBlockSize);
if (!DrainOccurred && Cache.getSize() < CacheSize)
DrainOccurred = true;
CacheSize = Cache.getSize();
}
EXPECT_TRUE(DrainOccurred);
Quarantine.drainAndRecycle(&Cache, Cb);
EXPECT_EQ(Cache.getSize(), 0UL);
scudo::ScopedString Str;
Quarantine.getStats(&Str);
Str.output();
}
struct PopulateQuarantineThread {
pthread_t Thread;
QuarantineT *Quarantine;
CacheT Cache;
};
void *populateQuarantine(void *Param) {
PopulateQuarantineThread *P = static_cast<PopulateQuarantineThread *>(Param);
P->Cache.init();
for (scudo::uptr I = 0; I < 128UL; I++)
P->Quarantine->put(&P->Cache, Cb, FakePtr, LargeBlockSize);
return 0;
}
TEST(ScudoQuarantineTest, ThreadedGlobalQuarantine) {
QuarantineT Quarantine;
Quarantine.init(MaxQuarantineSize, MaxCacheSize);
const scudo::uptr NumberOfThreads = 32U;
PopulateQuarantineThread T[NumberOfThreads];
for (scudo::uptr I = 0; I < NumberOfThreads; I++) {
T[I].Quarantine = &Quarantine;
pthread_create(&T[I].Thread, 0, populateQuarantine, &T[I]);
}
for (scudo::uptr I = 0; I < NumberOfThreads; I++)
pthread_join(T[I].Thread, 0);
scudo::ScopedString Str;
Quarantine.getStats(&Str);
Str.output();
for (scudo::uptr I = 0; I < NumberOfThreads; I++)
Quarantine.drainAndRecycle(&T[I].Cache, Cb);
}
|