1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
//===-- secondary_test.cpp --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "memtag.h"
#include "tests/scudo_unit_test.h"
#include "allocator_config.h"
#include "secondary.h"
#include <algorithm>
#include <condition_variable>
#include <memory>
#include <mutex>
#include <random>
#include <stdio.h>
#include <thread>
#include <vector>
template <typename Config> static scudo::Options getOptionsForConfig() {
if (!Config::MaySupportMemoryTagging || !scudo::archSupportsMemoryTagging() ||
!scudo::systemSupportsMemoryTagging())
return {};
scudo::AtomicOptions AO;
AO.set(scudo::OptionBit::UseMemoryTagging);
return AO.load();
}
template <typename Config> static void testSecondaryBasic(void) {
using SecondaryT = scudo::MapAllocator<Config>;
scudo::Options Options = getOptionsForConfig<Config>();
scudo::GlobalStats S;
S.init();
std::unique_ptr<SecondaryT> L(new SecondaryT);
L->init(&S);
const scudo::uptr Size = 1U << 16;
void *P = L->allocate(Options, Size);
EXPECT_NE(P, nullptr);
memset(P, 'A', Size);
EXPECT_GE(SecondaryT::getBlockSize(P), Size);
L->deallocate(Options, P);
// If the Secondary can't cache that pointer, it will be unmapped.
if (!L->canCache(Size)) {
EXPECT_DEATH(
{
// Repeat few time to avoid missing crash if it's mmaped by unrelated
// code.
for (int i = 0; i < 10; ++i) {
P = L->allocate(Options, Size);
L->deallocate(Options, P);
memset(P, 'A', Size);
}
},
"");
}
const scudo::uptr Align = 1U << 16;
P = L->allocate(Options, Size + Align, Align);
EXPECT_NE(P, nullptr);
void *AlignedP = reinterpret_cast<void *>(
scudo::roundUpTo(reinterpret_cast<scudo::uptr>(P), Align));
memset(AlignedP, 'A', Size);
L->deallocate(Options, P);
std::vector<void *> V;
for (scudo::uptr I = 0; I < 32U; I++)
V.push_back(L->allocate(Options, Size));
std::shuffle(V.begin(), V.end(), std::mt19937(std::random_device()()));
while (!V.empty()) {
L->deallocate(Options, V.back());
V.pop_back();
}
scudo::ScopedString Str;
L->getStats(&Str);
Str.output();
L->unmapTestOnly();
}
struct NoCacheConfig {
typedef scudo::MapAllocatorNoCache SecondaryCache;
static const bool MaySupportMemoryTagging = false;
};
struct TestConfig {
typedef scudo::MapAllocatorCache<TestConfig> SecondaryCache;
static const bool MaySupportMemoryTagging = false;
static const scudo::u32 SecondaryCacheEntriesArraySize = 128U;
static const scudo::u32 SecondaryCacheQuarantineSize = 0U;
static const scudo::u32 SecondaryCacheDefaultMaxEntriesCount = 64U;
static const scudo::uptr SecondaryCacheDefaultMaxEntrySize = 1UL << 20;
static const scudo::s32 SecondaryCacheMinReleaseToOsIntervalMs = INT32_MIN;
static const scudo::s32 SecondaryCacheMaxReleaseToOsIntervalMs = INT32_MAX;
};
TEST(ScudoSecondaryTest, SecondaryBasic) {
testSecondaryBasic<NoCacheConfig>();
testSecondaryBasic<scudo::DefaultConfig>();
testSecondaryBasic<TestConfig>();
}
struct MapAllocatorTest : public Test {
using Config = scudo::DefaultConfig;
using LargeAllocator = scudo::MapAllocator<Config>;
void SetUp() override { Allocator->init(nullptr); }
void TearDown() override { Allocator->unmapTestOnly(); }
std::unique_ptr<LargeAllocator> Allocator =
std::make_unique<LargeAllocator>();
scudo::Options Options = getOptionsForConfig<Config>();
};
// This exercises a variety of combinations of size and alignment for the
// MapAllocator. The size computation done here mimic the ones done by the
// combined allocator.
TEST_F(MapAllocatorTest, SecondaryCombinations) {
constexpr scudo::uptr MinAlign = FIRST_32_SECOND_64(8, 16);
constexpr scudo::uptr HeaderSize = scudo::roundUpTo(8, MinAlign);
for (scudo::uptr SizeLog = 0; SizeLog <= 20; SizeLog++) {
for (scudo::uptr AlignLog = FIRST_32_SECOND_64(3, 4); AlignLog <= 16;
AlignLog++) {
const scudo::uptr Align = 1U << AlignLog;
for (scudo::sptr Delta = -128; Delta <= 128; Delta += 8) {
if (static_cast<scudo::sptr>(1U << SizeLog) + Delta <= 0)
continue;
const scudo::uptr UserSize =
scudo::roundUpTo((1U << SizeLog) + Delta, MinAlign);
const scudo::uptr Size =
HeaderSize + UserSize + (Align > MinAlign ? Align - HeaderSize : 0);
void *P = Allocator->allocate(Options, Size, Align);
EXPECT_NE(P, nullptr);
void *AlignedP = reinterpret_cast<void *>(
scudo::roundUpTo(reinterpret_cast<scudo::uptr>(P), Align));
memset(AlignedP, 0xff, UserSize);
Allocator->deallocate(Options, P);
}
}
}
scudo::ScopedString Str;
Allocator->getStats(&Str);
Str.output();
}
TEST_F(MapAllocatorTest, SecondaryIterate) {
std::vector<void *> V;
const scudo::uptr PageSize = scudo::getPageSizeCached();
for (scudo::uptr I = 0; I < 32U; I++)
V.push_back(Allocator->allocate(Options, (std::rand() % 16) * PageSize));
auto Lambda = [&V](scudo::uptr Block) {
EXPECT_NE(std::find(V.begin(), V.end(), reinterpret_cast<void *>(Block)),
V.end());
};
Allocator->disable();
Allocator->iterateOverBlocks(Lambda);
Allocator->enable();
while (!V.empty()) {
Allocator->deallocate(Options, V.back());
V.pop_back();
}
scudo::ScopedString Str;
Allocator->getStats(&Str);
Str.output();
}
TEST_F(MapAllocatorTest, SecondaryOptions) {
// Attempt to set a maximum number of entries higher than the array size.
EXPECT_FALSE(
Allocator->setOption(scudo::Option::MaxCacheEntriesCount, 4096U));
// A negative number will be cast to a scudo::u32, and fail.
EXPECT_FALSE(Allocator->setOption(scudo::Option::MaxCacheEntriesCount, -1));
if (Allocator->canCache(0U)) {
// Various valid combinations.
EXPECT_TRUE(Allocator->setOption(scudo::Option::MaxCacheEntriesCount, 4U));
EXPECT_TRUE(
Allocator->setOption(scudo::Option::MaxCacheEntrySize, 1UL << 20));
EXPECT_TRUE(Allocator->canCache(1UL << 18));
EXPECT_TRUE(
Allocator->setOption(scudo::Option::MaxCacheEntrySize, 1UL << 17));
EXPECT_FALSE(Allocator->canCache(1UL << 18));
EXPECT_TRUE(Allocator->canCache(1UL << 16));
EXPECT_TRUE(Allocator->setOption(scudo::Option::MaxCacheEntriesCount, 0U));
EXPECT_FALSE(Allocator->canCache(1UL << 16));
EXPECT_TRUE(Allocator->setOption(scudo::Option::MaxCacheEntriesCount, 4U));
EXPECT_TRUE(
Allocator->setOption(scudo::Option::MaxCacheEntrySize, 1UL << 20));
EXPECT_TRUE(Allocator->canCache(1UL << 16));
}
}
struct MapAllocatorWithReleaseTest : public MapAllocatorTest {
void SetUp() override { Allocator->init(nullptr, /*ReleaseToOsInterval=*/0); }
void performAllocations() {
std::vector<void *> V;
const scudo::uptr PageSize = scudo::getPageSizeCached();
{
std::unique_lock<std::mutex> Lock(Mutex);
while (!Ready)
Cv.wait(Lock);
}
for (scudo::uptr I = 0; I < 128U; I++) {
// Deallocate 75% of the blocks.
const bool Deallocate = (rand() & 3) != 0;
void *P = Allocator->allocate(Options, (std::rand() % 16) * PageSize);
if (Deallocate)
Allocator->deallocate(Options, P);
else
V.push_back(P);
}
while (!V.empty()) {
Allocator->deallocate(Options, V.back());
V.pop_back();
}
}
std::mutex Mutex;
std::condition_variable Cv;
bool Ready = false;
};
TEST_F(MapAllocatorWithReleaseTest, SecondaryThreadsRace) {
std::thread Threads[16];
for (scudo::uptr I = 0; I < ARRAY_SIZE(Threads); I++)
Threads[I] =
std::thread(&MapAllocatorWithReleaseTest::performAllocations, this);
{
std::unique_lock<std::mutex> Lock(Mutex);
Ready = true;
Cv.notify_all();
}
for (auto &T : Threads)
T.join();
scudo::ScopedString Str;
Allocator->getStats(&Str);
Str.output();
}
|