1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
//===-- tsan_dense_alloc.h --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// A DenseSlabAlloc is a freelist-based allocator of fixed-size objects.
// DenseSlabAllocCache is a thread-local cache for DenseSlabAlloc.
// The only difference with traditional slab allocators is that DenseSlabAlloc
// allocates/free indices of objects and provide a functionality to map
// the index onto the real pointer. The index is u32, that is, 2 times smaller
// than uptr (hense the Dense prefix).
//===----------------------------------------------------------------------===//
#ifndef TSAN_DENSE_ALLOC_H
#define TSAN_DENSE_ALLOC_H
#include "sanitizer_common/sanitizer_common.h"
#include "tsan_defs.h"
namespace __tsan {
class DenseSlabAllocCache {
static const uptr kSize = 128;
typedef u32 IndexT;
uptr pos;
IndexT cache[kSize];
template <typename, uptr, uptr, u64>
friend class DenseSlabAlloc;
};
template <typename T, uptr kL1Size, uptr kL2Size, u64 kReserved = 0>
class DenseSlabAlloc {
public:
typedef DenseSlabAllocCache Cache;
typedef typename Cache::IndexT IndexT;
static_assert((kL1Size & (kL1Size - 1)) == 0,
"kL1Size must be a power-of-two");
static_assert((kL2Size & (kL2Size - 1)) == 0,
"kL2Size must be a power-of-two");
static_assert((kL1Size * kL2Size) <= (1ull << (sizeof(IndexT) * 8)),
"kL1Size/kL2Size are too large");
static_assert(((kL1Size * kL2Size - 1) & kReserved) == 0,
"reserved bits don't fit");
static_assert(sizeof(T) > sizeof(IndexT),
"it doesn't make sense to use dense alloc");
DenseSlabAlloc(LinkerInitialized, const char *name) : name_(name) {}
explicit DenseSlabAlloc(const char *name)
: DenseSlabAlloc(LINKER_INITIALIZED, name) {
// It can be very large.
// Don't page it in for linker initialized objects.
internal_memset(map_, 0, sizeof(map_));
}
~DenseSlabAlloc() {
for (uptr i = 0; i < kL1Size; i++) {
if (map_[i] != 0)
UnmapOrDie(map_[i], kL2Size * sizeof(T));
}
}
IndexT Alloc(Cache *c) {
if (c->pos == 0)
Refill(c);
return c->cache[--c->pos];
}
void Free(Cache *c, IndexT idx) {
DCHECK_NE(idx, 0);
if (c->pos == Cache::kSize)
Drain(c);
c->cache[c->pos++] = idx;
}
T *Map(IndexT idx) {
DCHECK_NE(idx, 0);
DCHECK_LE(idx, kL1Size * kL2Size);
return &map_[idx / kL2Size][idx % kL2Size];
}
void FlushCache(Cache *c) {
if (!c->pos)
return;
SpinMutexLock lock(&mtx_);
while (c->pos) {
IndexT idx = c->cache[--c->pos];
*(IndexT*)Map(idx) = freelist_;
freelist_ = idx;
}
}
void InitCache(Cache *c) {
c->pos = 0;
internal_memset(c->cache, 0, sizeof(c->cache));
}
uptr AllocatedMemory() const {
return atomic_load_relaxed(&fillpos_) * kL2Size * sizeof(T);
}
private:
T *map_[kL1Size];
SpinMutex mtx_;
IndexT freelist_ = {0};
atomic_uintptr_t fillpos_ = {0};
const char *const name_;
void Refill(Cache *c) {
SpinMutexLock lock(&mtx_);
if (freelist_ == 0) {
uptr fillpos = atomic_load_relaxed(&fillpos_);
if (fillpos == kL1Size) {
Printf("ThreadSanitizer: %s overflow (%zu*%zu). Dying.\n",
name_, kL1Size, kL2Size);
Die();
}
VPrintf(2, "ThreadSanitizer: growing %s: %zu out of %zu*%zu\n", name_,
fillpos, kL1Size, kL2Size);
T *batch = (T*)MmapOrDie(kL2Size * sizeof(T), name_);
// Reserve 0 as invalid index.
IndexT start = fillpos == 0 ? 1 : 0;
for (IndexT i = start; i < kL2Size; i++) {
new(batch + i) T;
*(IndexT *)(batch + i) = i + 1 + fillpos * kL2Size;
}
*(IndexT*)(batch + kL2Size - 1) = 0;
freelist_ = fillpos * kL2Size + start;
map_[fillpos] = batch;
atomic_store_relaxed(&fillpos_, fillpos + 1);
}
for (uptr i = 0; i < Cache::kSize / 2 && freelist_ != 0; i++) {
IndexT idx = freelist_;
c->cache[c->pos++] = idx;
freelist_ = *(IndexT*)Map(idx);
}
}
void Drain(Cache *c) {
SpinMutexLock lock(&mtx_);
for (uptr i = 0; i < Cache::kSize / 2; i++) {
IndexT idx = c->cache[--c->pos];
*(IndexT*)Map(idx) = freelist_;
freelist_ = idx;
}
}
};
} // namespace __tsan
#endif // TSAN_DENSE_ALLOC_H
|