1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
//===-- tsan_vector_clock.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "tsan_vector_clock.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "tsan_mman.h"
namespace __tsan {
#if TSAN_VECTORIZE
const uptr kVectorClockSize = kThreadSlotCount * sizeof(Epoch) / sizeof(m128);
#endif
VectorClock::VectorClock() { Reset(); }
void VectorClock::Reset() {
#if !TSAN_VECTORIZE
for (uptr i = 0; i < kThreadSlotCount; i++)
clk_[i] = kEpochZero;
#else
m128 z = _mm_setzero_si128();
m128* vclk = reinterpret_cast<m128*>(clk_);
for (uptr i = 0; i < kVectorClockSize; i++) _mm_store_si128(&vclk[i], z);
#endif
}
void VectorClock::Acquire(const VectorClock* src) {
if (!src)
return;
#if !TSAN_VECTORIZE
for (uptr i = 0; i < kThreadSlotCount; i++)
clk_[i] = max(clk_[i], src->clk_[i]);
#else
m128* __restrict vdst = reinterpret_cast<m128*>(clk_);
m128 const* __restrict vsrc = reinterpret_cast<m128 const*>(src->clk_);
for (uptr i = 0; i < kVectorClockSize; i++) {
m128 s = _mm_load_si128(&vsrc[i]);
m128 d = _mm_load_si128(&vdst[i]);
m128 m = _mm_max_epu16(s, d);
_mm_store_si128(&vdst[i], m);
}
#endif
}
static VectorClock* AllocClock(VectorClock** dstp) {
if (UNLIKELY(!*dstp))
*dstp = New<VectorClock>();
return *dstp;
}
void VectorClock::Release(VectorClock** dstp) const {
VectorClock* dst = AllocClock(dstp);
dst->Acquire(this);
}
void VectorClock::ReleaseStore(VectorClock** dstp) const {
VectorClock* dst = AllocClock(dstp);
*dst = *this;
}
VectorClock& VectorClock::operator=(const VectorClock& other) {
#if !TSAN_VECTORIZE
for (uptr i = 0; i < kThreadSlotCount; i++)
clk_[i] = other.clk_[i];
#else
m128* __restrict vdst = reinterpret_cast<m128*>(clk_);
m128 const* __restrict vsrc = reinterpret_cast<m128 const*>(other.clk_);
for (uptr i = 0; i < kVectorClockSize; i++) {
m128 s = _mm_load_si128(&vsrc[i]);
_mm_store_si128(&vdst[i], s);
}
#endif
return *this;
}
void VectorClock::ReleaseStoreAcquire(VectorClock** dstp) {
VectorClock* dst = AllocClock(dstp);
#if !TSAN_VECTORIZE
for (uptr i = 0; i < kThreadSlotCount; i++) {
Epoch tmp = dst->clk_[i];
dst->clk_[i] = clk_[i];
clk_[i] = max(clk_[i], tmp);
}
#else
m128* __restrict vdst = reinterpret_cast<m128*>(dst->clk_);
m128* __restrict vclk = reinterpret_cast<m128*>(clk_);
for (uptr i = 0; i < kVectorClockSize; i++) {
m128 t = _mm_load_si128(&vdst[i]);
m128 c = _mm_load_si128(&vclk[i]);
m128 m = _mm_max_epu16(c, t);
_mm_store_si128(&vdst[i], c);
_mm_store_si128(&vclk[i], m);
}
#endif
}
void VectorClock::ReleaseAcquire(VectorClock** dstp) {
VectorClock* dst = AllocClock(dstp);
#if !TSAN_VECTORIZE
for (uptr i = 0; i < kThreadSlotCount; i++) {
dst->clk_[i] = max(dst->clk_[i], clk_[i]);
clk_[i] = dst->clk_[i];
}
#else
m128* __restrict vdst = reinterpret_cast<m128*>(dst->clk_);
m128* __restrict vclk = reinterpret_cast<m128*>(clk_);
for (uptr i = 0; i < kVectorClockSize; i++) {
m128 c = _mm_load_si128(&vclk[i]);
m128 d = _mm_load_si128(&vdst[i]);
m128 m = _mm_max_epu16(c, d);
_mm_store_si128(&vdst[i], m);
_mm_store_si128(&vclk[i], m);
}
#endif
}
} // namespace __tsan
|