1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
|
//===-- tsan_rtl.cpp ------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// Main file (entry points) for the TSan run-time.
//===----------------------------------------------------------------------===//
#include "tsan_rtl.h"
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_file.h"
#include "sanitizer_common/sanitizer_interface_internal.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_symbolizer.h"
#include "tsan_defs.h"
#include "tsan_interface.h"
#include "tsan_mman.h"
#include "tsan_platform.h"
#include "tsan_suppressions.h"
#include "tsan_symbolize.h"
#include "ubsan/ubsan_init.h"
volatile int __tsan_resumed = 0;
extern "C" void __tsan_resume() {
__tsan_resumed = 1;
}
SANITIZER_WEAK_DEFAULT_IMPL
void __tsan_test_only_on_fork() {}
namespace __tsan {
#if !SANITIZER_GO
void (*on_initialize)(void);
int (*on_finalize)(int);
#endif
#if !SANITIZER_GO && !SANITIZER_APPLE
__attribute__((tls_model("initial-exec")))
THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(
SANITIZER_CACHE_LINE_SIZE);
#endif
static char ctx_placeholder[sizeof(Context)] ALIGNED(SANITIZER_CACHE_LINE_SIZE);
Context *ctx;
// Can be overriden by a front-end.
#ifdef TSAN_EXTERNAL_HOOKS
bool OnFinalize(bool failed);
void OnInitialize();
#else
SANITIZER_WEAK_CXX_DEFAULT_IMPL
bool OnFinalize(bool failed) {
# if !SANITIZER_GO
if (on_finalize)
return on_finalize(failed);
# endif
return failed;
}
SANITIZER_WEAK_CXX_DEFAULT_IMPL
void OnInitialize() {
# if !SANITIZER_GO
if (on_initialize)
on_initialize();
# endif
}
#endif
static TracePart* TracePartAlloc(ThreadState* thr) {
TracePart* part = nullptr;
{
Lock lock(&ctx->slot_mtx);
uptr max_parts = Trace::kMinParts + flags()->history_size;
Trace* trace = &thr->tctx->trace;
if (trace->parts_allocated == max_parts ||
ctx->trace_part_finished_excess) {
part = ctx->trace_part_recycle.PopFront();
DPrintf("#%d: TracePartAlloc: part=%p\n", thr->tid, part);
if (part && part->trace) {
Trace* trace1 = part->trace;
Lock trace_lock(&trace1->mtx);
part->trace = nullptr;
TracePart* part1 = trace1->parts.PopFront();
CHECK_EQ(part, part1);
if (trace1->parts_allocated > trace1->parts.Size()) {
ctx->trace_part_finished_excess +=
trace1->parts_allocated - trace1->parts.Size();
trace1->parts_allocated = trace1->parts.Size();
}
}
}
if (trace->parts_allocated < max_parts) {
trace->parts_allocated++;
if (ctx->trace_part_finished_excess)
ctx->trace_part_finished_excess--;
}
if (!part)
ctx->trace_part_total_allocated++;
else if (ctx->trace_part_recycle_finished)
ctx->trace_part_recycle_finished--;
}
if (!part)
part = new (MmapOrDie(sizeof(*part), "TracePart")) TracePart();
return part;
}
static void TracePartFree(TracePart* part) SANITIZER_REQUIRES(ctx->slot_mtx) {
DCHECK(part->trace);
part->trace = nullptr;
ctx->trace_part_recycle.PushFront(part);
}
void TraceResetForTesting() {
Lock lock(&ctx->slot_mtx);
while (auto* part = ctx->trace_part_recycle.PopFront()) {
if (auto trace = part->trace)
CHECK_EQ(trace->parts.PopFront(), part);
UnmapOrDie(part, sizeof(*part));
}
ctx->trace_part_total_allocated = 0;
ctx->trace_part_recycle_finished = 0;
ctx->trace_part_finished_excess = 0;
}
static void DoResetImpl(uptr epoch) {
ThreadRegistryLock lock0(&ctx->thread_registry);
Lock lock1(&ctx->slot_mtx);
CHECK_EQ(ctx->global_epoch, epoch);
ctx->global_epoch++;
CHECK(!ctx->resetting);
ctx->resetting = true;
for (u32 i = ctx->thread_registry.NumThreadsLocked(); i--;) {
ThreadContext* tctx = (ThreadContext*)ctx->thread_registry.GetThreadLocked(
static_cast<Tid>(i));
// Potentially we could purge all ThreadStatusDead threads from the
// registry. Since we reset all shadow, they can't race with anything
// anymore. However, their tid's can still be stored in some aux places
// (e.g. tid of thread that created something).
auto trace = &tctx->trace;
Lock lock(&trace->mtx);
bool attached = tctx->thr && tctx->thr->slot;
auto parts = &trace->parts;
bool local = false;
while (!parts->Empty()) {
auto part = parts->Front();
local = local || part == trace->local_head;
if (local)
CHECK(!ctx->trace_part_recycle.Queued(part));
else
ctx->trace_part_recycle.Remove(part);
if (attached && parts->Size() == 1) {
// The thread is running and this is the last/current part.
// Set the trace position to the end of the current part
// to force the thread to call SwitchTracePart and re-attach
// to a new slot and allocate a new trace part.
// Note: the thread is concurrently modifying the position as well,
// so this is only best-effort. The thread can only modify position
// within this part, because switching parts is protected by
// slot/trace mutexes that we hold here.
atomic_store_relaxed(
&tctx->thr->trace_pos,
reinterpret_cast<uptr>(&part->events[TracePart::kSize]));
break;
}
parts->Remove(part);
TracePartFree(part);
}
CHECK_LE(parts->Size(), 1);
trace->local_head = parts->Front();
if (tctx->thr && !tctx->thr->slot) {
atomic_store_relaxed(&tctx->thr->trace_pos, 0);
tctx->thr->trace_prev_pc = 0;
}
if (trace->parts_allocated > trace->parts.Size()) {
ctx->trace_part_finished_excess +=
trace->parts_allocated - trace->parts.Size();
trace->parts_allocated = trace->parts.Size();
}
}
while (ctx->slot_queue.PopFront()) {
}
for (auto& slot : ctx->slots) {
slot.SetEpoch(kEpochZero);
slot.journal.Reset();
slot.thr = nullptr;
ctx->slot_queue.PushBack(&slot);
}
DPrintf("Resetting shadow...\n");
auto shadow_begin = ShadowBeg();
auto shadow_end = ShadowEnd();
#if SANITIZER_GO
CHECK_NE(0, ctx->mapped_shadow_begin);
shadow_begin = ctx->mapped_shadow_begin;
shadow_end = ctx->mapped_shadow_end;
VPrintf(2, "shadow_begin-shadow_end: (0x%zx-0x%zx)\n",
shadow_begin, shadow_end);
#endif
#if SANITIZER_WINDOWS
auto resetFailed =
!ZeroMmapFixedRegion(shadow_begin, shadow_end - shadow_begin);
#else
auto resetFailed =
!MmapFixedSuperNoReserve(shadow_begin, shadow_end-shadow_begin, "shadow");
#endif
if (resetFailed) {
Printf("failed to reset shadow memory\n");
Die();
}
DPrintf("Resetting meta shadow...\n");
ctx->metamap.ResetClocks();
StoreShadow(&ctx->last_spurious_race, Shadow::kEmpty);
ctx->resetting = false;
}
// Clang does not understand locking all slots in the loop:
// error: expecting mutex 'slot.mtx' to be held at start of each loop
void DoReset(ThreadState* thr, uptr epoch) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
for (auto& slot : ctx->slots) {
slot.mtx.Lock();
if (UNLIKELY(epoch == 0))
epoch = ctx->global_epoch;
if (UNLIKELY(epoch != ctx->global_epoch)) {
// Epoch can't change once we've locked the first slot.
CHECK_EQ(slot.sid, 0);
slot.mtx.Unlock();
return;
}
}
DPrintf("#%d: DoReset epoch=%lu\n", thr ? thr->tid : -1, epoch);
DoResetImpl(epoch);
for (auto& slot : ctx->slots) slot.mtx.Unlock();
}
void FlushShadowMemory() { DoReset(nullptr, 0); }
static TidSlot* FindSlotAndLock(ThreadState* thr)
SANITIZER_ACQUIRE(thr->slot->mtx) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
CHECK(!thr->slot);
TidSlot* slot = nullptr;
for (;;) {
uptr epoch;
{
Lock lock(&ctx->slot_mtx);
epoch = ctx->global_epoch;
if (slot) {
// This is an exhausted slot from the previous iteration.
if (ctx->slot_queue.Queued(slot))
ctx->slot_queue.Remove(slot);
thr->slot_locked = false;
slot->mtx.Unlock();
}
for (;;) {
slot = ctx->slot_queue.PopFront();
if (!slot)
break;
if (slot->epoch() != kEpochLast) {
ctx->slot_queue.PushBack(slot);
break;
}
}
}
if (!slot) {
DoReset(thr, epoch);
continue;
}
slot->mtx.Lock();
CHECK(!thr->slot_locked);
thr->slot_locked = true;
if (slot->thr) {
DPrintf("#%d: preempting sid=%d tid=%d\n", thr->tid, (u32)slot->sid,
slot->thr->tid);
slot->SetEpoch(slot->thr->fast_state.epoch());
slot->thr = nullptr;
}
if (slot->epoch() != kEpochLast)
return slot;
}
}
void SlotAttachAndLock(ThreadState* thr) {
TidSlot* slot = FindSlotAndLock(thr);
DPrintf("#%d: SlotAttach: slot=%u\n", thr->tid, static_cast<int>(slot->sid));
CHECK(!slot->thr);
CHECK(!thr->slot);
slot->thr = thr;
thr->slot = slot;
Epoch epoch = EpochInc(slot->epoch());
CHECK(!EpochOverflow(epoch));
slot->SetEpoch(epoch);
thr->fast_state.SetSid(slot->sid);
thr->fast_state.SetEpoch(epoch);
if (thr->slot_epoch != ctx->global_epoch) {
thr->slot_epoch = ctx->global_epoch;
thr->clock.Reset();
#if !SANITIZER_GO
thr->last_sleep_stack_id = kInvalidStackID;
thr->last_sleep_clock.Reset();
#endif
}
thr->clock.Set(slot->sid, epoch);
slot->journal.PushBack({thr->tid, epoch});
}
static void SlotDetachImpl(ThreadState* thr, bool exiting) {
TidSlot* slot = thr->slot;
thr->slot = nullptr;
if (thr != slot->thr) {
slot = nullptr; // we don't own the slot anymore
if (thr->slot_epoch != ctx->global_epoch) {
TracePart* part = nullptr;
auto* trace = &thr->tctx->trace;
{
Lock l(&trace->mtx);
auto* parts = &trace->parts;
// The trace can be completely empty in an unlikely event
// the thread is preempted right after it acquired the slot
// in ThreadStart and did not trace any events yet.
CHECK_LE(parts->Size(), 1);
part = parts->PopFront();
thr->tctx->trace.local_head = nullptr;
atomic_store_relaxed(&thr->trace_pos, 0);
thr->trace_prev_pc = 0;
}
if (part) {
Lock l(&ctx->slot_mtx);
TracePartFree(part);
}
}
return;
}
CHECK(exiting || thr->fast_state.epoch() == kEpochLast);
slot->SetEpoch(thr->fast_state.epoch());
slot->thr = nullptr;
}
void SlotDetach(ThreadState* thr) {
Lock lock(&thr->slot->mtx);
SlotDetachImpl(thr, true);
}
void SlotLock(ThreadState* thr) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
DCHECK(!thr->slot_locked);
#if SANITIZER_DEBUG
// Check these mutexes are not locked.
// We can call DoReset from SlotAttachAndLock, which will lock
// these mutexes, but it happens only every once in a while.
{ ThreadRegistryLock lock(&ctx->thread_registry); }
{ Lock lock(&ctx->slot_mtx); }
#endif
TidSlot* slot = thr->slot;
slot->mtx.Lock();
thr->slot_locked = true;
if (LIKELY(thr == slot->thr && thr->fast_state.epoch() != kEpochLast))
return;
SlotDetachImpl(thr, false);
thr->slot_locked = false;
slot->mtx.Unlock();
SlotAttachAndLock(thr);
}
void SlotUnlock(ThreadState* thr) {
DCHECK(thr->slot_locked);
thr->slot_locked = false;
thr->slot->mtx.Unlock();
}
Context::Context()
: initialized(),
report_mtx(MutexTypeReport),
nreported(),
thread_registry([](Tid tid) -> ThreadContextBase* {
return new (Alloc(sizeof(ThreadContext))) ThreadContext(tid);
}),
racy_mtx(MutexTypeRacy),
racy_stacks(),
fired_suppressions_mtx(MutexTypeFired),
slot_mtx(MutexTypeSlots),
resetting() {
fired_suppressions.reserve(8);
for (uptr i = 0; i < ARRAY_SIZE(slots); i++) {
TidSlot* slot = &slots[i];
slot->sid = static_cast<Sid>(i);
slot_queue.PushBack(slot);
}
global_epoch = 1;
}
TidSlot::TidSlot() : mtx(MutexTypeSlot) {}
// The objects are allocated in TLS, so one may rely on zero-initialization.
ThreadState::ThreadState(Tid tid)
// Do not touch these, rely on zero initialization,
// they may be accessed before the ctor.
// ignore_reads_and_writes()
// ignore_interceptors()
: tid(tid) {
CHECK_EQ(reinterpret_cast<uptr>(this) % SANITIZER_CACHE_LINE_SIZE, 0);
#if !SANITIZER_GO
// C/C++ uses fixed size shadow stack.
const int kInitStackSize = kShadowStackSize;
shadow_stack = static_cast<uptr*>(
MmapNoReserveOrDie(kInitStackSize * sizeof(uptr), "shadow stack"));
SetShadowRegionHugePageMode(reinterpret_cast<uptr>(shadow_stack),
kInitStackSize * sizeof(uptr));
#else
// Go uses malloc-allocated shadow stack with dynamic size.
const int kInitStackSize = 8;
shadow_stack = static_cast<uptr*>(Alloc(kInitStackSize * sizeof(uptr)));
#endif
shadow_stack_pos = shadow_stack;
shadow_stack_end = shadow_stack + kInitStackSize;
}
#if !SANITIZER_GO
void MemoryProfiler(u64 uptime) {
if (ctx->memprof_fd == kInvalidFd)
return;
InternalMmapVector<char> buf(4096);
WriteMemoryProfile(buf.data(), buf.size(), uptime);
WriteToFile(ctx->memprof_fd, buf.data(), internal_strlen(buf.data()));
}
static bool InitializeMemoryProfiler() {
ctx->memprof_fd = kInvalidFd;
const char *fname = flags()->profile_memory;
if (!fname || !fname[0])
return false;
if (internal_strcmp(fname, "stdout") == 0) {
ctx->memprof_fd = 1;
} else if (internal_strcmp(fname, "stderr") == 0) {
ctx->memprof_fd = 2;
} else {
InternalScopedString filename;
filename.append("%s.%d", fname, (int)internal_getpid());
ctx->memprof_fd = OpenFile(filename.data(), WrOnly);
if (ctx->memprof_fd == kInvalidFd) {
Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
filename.data());
return false;
}
}
MemoryProfiler(0);
return true;
}
static void *BackgroundThread(void *arg) {
// This is a non-initialized non-user thread, nothing to see here.
// We don't use ScopedIgnoreInterceptors, because we want ignores to be
// enabled even when the thread function exits (e.g. during pthread thread
// shutdown code).
cur_thread_init()->ignore_interceptors++;
const u64 kMs2Ns = 1000 * 1000;
const u64 start = NanoTime();
u64 last_flush = start;
uptr last_rss = 0;
while (!atomic_load_relaxed(&ctx->stop_background_thread)) {
SleepForMillis(100);
u64 now = NanoTime();
// Flush memory if requested.
if (flags()->flush_memory_ms > 0) {
if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
VReport(1, "ThreadSanitizer: periodic memory flush\n");
FlushShadowMemory();
now = last_flush = NanoTime();
}
}
if (flags()->memory_limit_mb > 0) {
uptr rss = GetRSS();
uptr limit = uptr(flags()->memory_limit_mb) << 20;
VReport(1,
"ThreadSanitizer: memory flush check"
" RSS=%llu LAST=%llu LIMIT=%llu\n",
(u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
if (2 * rss > limit + last_rss) {
VReport(1, "ThreadSanitizer: flushing memory due to RSS\n");
FlushShadowMemory();
rss = GetRSS();
now = NanoTime();
VReport(1, "ThreadSanitizer: memory flushed RSS=%llu\n",
(u64)rss >> 20);
}
last_rss = rss;
}
MemoryProfiler(now - start);
// Flush symbolizer cache if requested.
if (flags()->flush_symbolizer_ms > 0) {
u64 last = atomic_load(&ctx->last_symbolize_time_ns,
memory_order_relaxed);
if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
Lock l(&ctx->report_mtx);
ScopedErrorReportLock l2;
SymbolizeFlush();
atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
}
}
}
return nullptr;
}
static void StartBackgroundThread() {
ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
}
#ifndef __mips__
static void StopBackgroundThread() {
atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
internal_join_thread(ctx->background_thread);
ctx->background_thread = 0;
}
#endif
#endif
void DontNeedShadowFor(uptr addr, uptr size) {
ReleaseMemoryPagesToOS(reinterpret_cast<uptr>(MemToShadow(addr)),
reinterpret_cast<uptr>(MemToShadow(addr + size)));
}
#if !SANITIZER_GO
// We call UnmapShadow before the actual munmap, at that point we don't yet
// know if the provided address/size are sane. We can't call UnmapShadow
// after the actual munmap becuase at that point the memory range can
// already be reused for something else, so we can't rely on the munmap
// return value to understand is the values are sane.
// While calling munmap with insane values (non-canonical address, negative
// size, etc) is an error, the kernel won't crash. We must also try to not
// crash as the failure mode is very confusing (paging fault inside of the
// runtime on some derived shadow address).
static bool IsValidMmapRange(uptr addr, uptr size) {
if (size == 0)
return true;
if (static_cast<sptr>(size) < 0)
return false;
if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
return false;
// Check that if the start of the region belongs to one of app ranges,
// end of the region belongs to the same region.
const uptr ranges[][2] = {
{LoAppMemBeg(), LoAppMemEnd()},
{MidAppMemBeg(), MidAppMemEnd()},
{HiAppMemBeg(), HiAppMemEnd()},
};
for (auto range : ranges) {
if (addr >= range[0] && addr < range[1])
return addr + size <= range[1];
}
return false;
}
void UnmapShadow(ThreadState *thr, uptr addr, uptr size) {
if (size == 0 || !IsValidMmapRange(addr, size))
return;
DontNeedShadowFor(addr, size);
ScopedGlobalProcessor sgp;
SlotLocker locker(thr, true);
ctx->metamap.ResetRange(thr->proc(), addr, size, true);
}
#endif
void MapShadow(uptr addr, uptr size) {
// Ensure thead registry lock held, so as to synchronize
// with DoReset, which also access the mapped_shadow_* ctxt fields.
ThreadRegistryLock lock0(&ctx->thread_registry);
static bool data_mapped = false;
#if !SANITIZER_GO
// Global data is not 64K aligned, but there are no adjacent mappings,
// so we can get away with unaligned mapping.
// CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment
const uptr kPageSize = GetPageSizeCached();
uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize);
uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize);
if (!MmapFixedNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow"))
Die();
#else
uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), (64 << 10));
uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), (64 << 10));
VPrintf(2, "MapShadow for (0x%zx-0x%zx), begin/end: (0x%zx-0x%zx)\n",
addr, addr + size, shadow_begin, shadow_end);
if (!data_mapped) {
// First call maps data+bss.
if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow"))
Die();
} else {
VPrintf(2, "ctx->mapped_shadow_{begin,end} = (0x%zx-0x%zx)\n",
ctx->mapped_shadow_begin, ctx->mapped_shadow_end);
// Second and subsequent calls map heap.
if (shadow_end <= ctx->mapped_shadow_end)
return;
if (ctx->mapped_shadow_begin < shadow_begin)
ctx->mapped_shadow_begin = shadow_begin;
if (shadow_begin < ctx->mapped_shadow_end)
shadow_begin = ctx->mapped_shadow_end;
VPrintf(2, "MapShadow begin/end = (0x%zx-0x%zx)\n",
shadow_begin, shadow_end);
if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin,
"shadow"))
Die();
ctx->mapped_shadow_end = shadow_end;
}
#endif
// Meta shadow is 2:1, so tread carefully.
static uptr mapped_meta_end = 0;
uptr meta_begin = (uptr)MemToMeta(addr);
uptr meta_end = (uptr)MemToMeta(addr + size);
meta_begin = RoundDownTo(meta_begin, 64 << 10);
meta_end = RoundUpTo(meta_end, 64 << 10);
if (!data_mapped) {
// First call maps data+bss.
data_mapped = true;
if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin,
"meta shadow"))
Die();
} else {
// Mapping continuous heap.
// Windows wants 64K alignment.
meta_begin = RoundDownTo(meta_begin, 64 << 10);
meta_end = RoundUpTo(meta_end, 64 << 10);
CHECK_GT(meta_end, mapped_meta_end);
if (meta_begin < mapped_meta_end)
meta_begin = mapped_meta_end;
if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin,
"meta shadow"))
Die();
mapped_meta_end = meta_end;
}
VPrintf(2, "mapped meta shadow for (0x%zx-0x%zx) at (0x%zx-0x%zx)\n", addr,
addr + size, meta_begin, meta_end);
}
#if !SANITIZER_GO
static void OnStackUnwind(const SignalContext &sig, const void *,
BufferedStackTrace *stack) {
stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
common_flags()->fast_unwind_on_fatal);
}
static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) {
HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr);
}
#endif
void CheckUnwind() {
// There is high probability that interceptors will check-fail as well,
// on the other hand there is no sense in processing interceptors
// since we are going to die soon.
ScopedIgnoreInterceptors ignore;
#if !SANITIZER_GO
ThreadState* thr = cur_thread();
thr->nomalloc = false;
thr->ignore_sync++;
thr->ignore_reads_and_writes++;
atomic_store_relaxed(&thr->in_signal_handler, 0);
#endif
PrintCurrentStackSlow(StackTrace::GetCurrentPc());
}
bool is_initialized;
void Initialize(ThreadState *thr) {
// Thread safe because done before all threads exist.
if (is_initialized)
return;
is_initialized = true;
// We are not ready to handle interceptors yet.
ScopedIgnoreInterceptors ignore;
SanitizerToolName = "ThreadSanitizer";
// Install tool-specific callbacks in sanitizer_common.
SetCheckUnwindCallback(CheckUnwind);
ctx = new(ctx_placeholder) Context;
const char *env_name = SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS";
const char *options = GetEnv(env_name);
CacheBinaryName();
CheckASLR();
InitializeFlags(&ctx->flags, options, env_name);
AvoidCVE_2016_2143();
__sanitizer::InitializePlatformEarly();
__tsan::InitializePlatformEarly();
#if !SANITIZER_GO
InitializeAllocator();
ReplaceSystemMalloc();
#endif
if (common_flags()->detect_deadlocks)
ctx->dd = DDetector::Create(flags());
Processor *proc = ProcCreate();
ProcWire(proc, thr);
InitializeInterceptors();
InitializePlatform();
InitializeDynamicAnnotations();
#if !SANITIZER_GO
InitializeShadowMemory();
InitializeAllocatorLate();
InstallDeadlySignalHandlers(TsanOnDeadlySignal);
#endif
// Setup correct file descriptor for error reports.
__sanitizer_set_report_path(common_flags()->log_path);
InitializeSuppressions();
#if !SANITIZER_GO
InitializeLibIgnore();
Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
#endif
VPrintf(1, "***** Running under ThreadSanitizer v3 (pid %d) *****\n",
(int)internal_getpid());
// Initialize thread 0.
Tid tid = ThreadCreate(nullptr, 0, 0, true);
CHECK_EQ(tid, kMainTid);
ThreadStart(thr, tid, GetTid(), ThreadType::Regular);
#if TSAN_CONTAINS_UBSAN
__ubsan::InitAsPlugin();
#endif
#if !SANITIZER_GO
Symbolizer::LateInitialize();
if (InitializeMemoryProfiler() || flags()->force_background_thread)
MaybeSpawnBackgroundThread();
#endif
ctx->initialized = true;
if (flags()->stop_on_start) {
Printf("ThreadSanitizer is suspended at startup (pid %d)."
" Call __tsan_resume().\n",
(int)internal_getpid());
while (__tsan_resumed == 0) {}
}
OnInitialize();
}
void MaybeSpawnBackgroundThread() {
// On MIPS, TSan initialization is run before
// __pthread_initialize_minimal_internal() is finished, so we can not spawn
// new threads.
#if !SANITIZER_GO && !defined(__mips__)
static atomic_uint32_t bg_thread = {};
if (atomic_load(&bg_thread, memory_order_relaxed) == 0 &&
atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) {
StartBackgroundThread();
SetSandboxingCallback(StopBackgroundThread);
}
#endif
}
int Finalize(ThreadState *thr) {
bool failed = false;
#if !SANITIZER_GO
if (common_flags()->print_module_map == 1)
DumpProcessMap();
#endif
if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
internal_usleep(u64(flags()->atexit_sleep_ms) * 1000);
{
// Wait for pending reports.
ScopedErrorReportLock lock;
}
#if !SANITIZER_GO
if (Verbosity()) AllocatorPrintStats();
#endif
ThreadFinalize(thr);
if (ctx->nreported) {
failed = true;
#if !SANITIZER_GO
Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
#else
Printf("Found %d data race(s)\n", ctx->nreported);
#endif
}
if (common_flags()->print_suppressions)
PrintMatchedSuppressions();
failed = OnFinalize(failed);
return failed ? common_flags()->exitcode : 0;
}
#if !SANITIZER_GO
void ForkBefore(ThreadState* thr, uptr pc) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
GlobalProcessorLock();
// Detaching from the slot makes OnUserFree skip writing to the shadow.
// The slot will be locked so any attempts to use it will deadlock anyway.
SlotDetach(thr);
for (auto& slot : ctx->slots) slot.mtx.Lock();
ctx->thread_registry.Lock();
ctx->slot_mtx.Lock();
ScopedErrorReportLock::Lock();
AllocatorLock();
// Suppress all reports in the pthread_atfork callbacks.
// Reports will deadlock on the report_mtx.
// We could ignore sync operations as well,
// but so far it's unclear if it will do more good or harm.
// Unnecessarily ignoring things can lead to false positives later.
thr->suppress_reports++;
// On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and
// we'll assert in CheckNoLocks() unless we ignore interceptors.
// On OS X libSystem_atfork_prepare/parent/child callbacks are called
// after/before our callbacks and they call free.
thr->ignore_interceptors++;
// Disables memory write in OnUserAlloc/Free.
thr->ignore_reads_and_writes++;
__tsan_test_only_on_fork();
}
static void ForkAfter(ThreadState* thr) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
thr->suppress_reports--; // Enabled in ForkBefore.
thr->ignore_interceptors--;
thr->ignore_reads_and_writes--;
AllocatorUnlock();
ScopedErrorReportLock::Unlock();
ctx->slot_mtx.Unlock();
ctx->thread_registry.Unlock();
for (auto& slot : ctx->slots) slot.mtx.Unlock();
SlotAttachAndLock(thr);
SlotUnlock(thr);
GlobalProcessorUnlock();
}
void ForkParentAfter(ThreadState* thr, uptr pc) { ForkAfter(thr); }
void ForkChildAfter(ThreadState* thr, uptr pc, bool start_thread) {
ForkAfter(thr);
u32 nthread = ctx->thread_registry.OnFork(thr->tid);
VPrintf(1,
"ThreadSanitizer: forked new process with pid %d,"
" parent had %d threads\n",
(int)internal_getpid(), (int)nthread);
if (nthread == 1) {
if (start_thread)
StartBackgroundThread();
} else {
// We've just forked a multi-threaded process. We cannot reasonably function
// after that (some mutexes may be locked before fork). So just enable
// ignores for everything in the hope that we will exec soon.
ctx->after_multithreaded_fork = true;
thr->ignore_interceptors++;
thr->suppress_reports++;
ThreadIgnoreBegin(thr, pc);
ThreadIgnoreSyncBegin(thr, pc);
}
}
#endif
#if SANITIZER_GO
NOINLINE
void GrowShadowStack(ThreadState *thr) {
const int sz = thr->shadow_stack_end - thr->shadow_stack;
const int newsz = 2 * sz;
auto *newstack = (uptr *)Alloc(newsz * sizeof(uptr));
internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
Free(thr->shadow_stack);
thr->shadow_stack = newstack;
thr->shadow_stack_pos = newstack + sz;
thr->shadow_stack_end = newstack + newsz;
}
#endif
StackID CurrentStackId(ThreadState *thr, uptr pc) {
#if !SANITIZER_GO
if (!thr->is_inited) // May happen during bootstrap.
return kInvalidStackID;
#endif
if (pc != 0) {
#if !SANITIZER_GO
DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
#else
if (thr->shadow_stack_pos == thr->shadow_stack_end)
GrowShadowStack(thr);
#endif
thr->shadow_stack_pos[0] = pc;
thr->shadow_stack_pos++;
}
StackID id = StackDepotPut(
StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
if (pc != 0)
thr->shadow_stack_pos--;
return id;
}
static bool TraceSkipGap(ThreadState* thr) {
Trace *trace = &thr->tctx->trace;
Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(&thr->trace_pos));
DCHECK_EQ(reinterpret_cast<uptr>(pos + 1) & TracePart::kAlignment, 0);
auto *part = trace->parts.Back();
DPrintf("#%d: TraceSwitchPart enter trace=%p parts=%p-%p pos=%p\n", thr->tid,
trace, trace->parts.Front(), part, pos);
if (!part)
return false;
// We can get here when we still have space in the current trace part.
// The fast-path check in TraceAcquire has false positives in the middle of
// the part. Check if we are indeed at the end of the current part or not,
// and fill any gaps with NopEvent's.
Event* end = &part->events[TracePart::kSize];
DCHECK_GE(pos, &part->events[0]);
DCHECK_LE(pos, end);
if (pos + 1 < end) {
if ((reinterpret_cast<uptr>(pos) & TracePart::kAlignment) ==
TracePart::kAlignment)
*pos++ = NopEvent;
*pos++ = NopEvent;
DCHECK_LE(pos + 2, end);
atomic_store_relaxed(&thr->trace_pos, reinterpret_cast<uptr>(pos));
return true;
}
// We are indeed at the end.
for (; pos < end; pos++) *pos = NopEvent;
return false;
}
NOINLINE
void TraceSwitchPart(ThreadState* thr) {
if (TraceSkipGap(thr))
return;
#if !SANITIZER_GO
if (ctx->after_multithreaded_fork) {
// We just need to survive till exec.
TracePart* part = thr->tctx->trace.parts.Back();
if (part) {
atomic_store_relaxed(&thr->trace_pos,
reinterpret_cast<uptr>(&part->events[0]));
return;
}
}
#endif
TraceSwitchPartImpl(thr);
}
void TraceSwitchPartImpl(ThreadState* thr) {
SlotLocker locker(thr, true);
Trace* trace = &thr->tctx->trace;
TracePart* part = TracePartAlloc(thr);
part->trace = trace;
thr->trace_prev_pc = 0;
TracePart* recycle = nullptr;
// Keep roughly half of parts local to the thread
// (not queued into the recycle queue).
uptr local_parts = (Trace::kMinParts + flags()->history_size + 1) / 2;
{
Lock lock(&trace->mtx);
if (trace->parts.Empty())
trace->local_head = part;
if (trace->parts.Size() >= local_parts) {
recycle = trace->local_head;
trace->local_head = trace->parts.Next(recycle);
}
trace->parts.PushBack(part);
atomic_store_relaxed(&thr->trace_pos,
reinterpret_cast<uptr>(&part->events[0]));
}
// Make this part self-sufficient by restoring the current stack
// and mutex set in the beginning of the trace.
TraceTime(thr);
{
// Pathologically large stacks may not fit into the part.
// In these cases we log only fixed number of top frames.
const uptr kMaxFrames = 1000;
// Check that kMaxFrames won't consume the whole part.
static_assert(kMaxFrames < TracePart::kSize / 2, "kMaxFrames is too big");
uptr* pos = Max(&thr->shadow_stack[0], thr->shadow_stack_pos - kMaxFrames);
for (; pos < thr->shadow_stack_pos; pos++) {
if (TryTraceFunc(thr, *pos))
continue;
CHECK(TraceSkipGap(thr));
CHECK(TryTraceFunc(thr, *pos));
}
}
for (uptr i = 0; i < thr->mset.Size(); i++) {
MutexSet::Desc d = thr->mset.Get(i);
for (uptr i = 0; i < d.count; i++)
TraceMutexLock(thr, d.write ? EventType::kLock : EventType::kRLock, 0,
d.addr, d.stack_id);
}
// Callers of TraceSwitchPart expect that TraceAcquire will always succeed
// after the call. It's possible that TryTraceFunc/TraceMutexLock above
// filled the trace part exactly up to the TracePart::kAlignment gap
// and the next TraceAcquire won't succeed. Skip the gap to avoid that.
EventFunc *ev;
if (!TraceAcquire(thr, &ev)) {
CHECK(TraceSkipGap(thr));
CHECK(TraceAcquire(thr, &ev));
}
{
Lock lock(&ctx->slot_mtx);
// There is a small chance that the slot may be not queued at this point.
// This can happen if the slot has kEpochLast epoch and another thread
// in FindSlotAndLock discovered that it's exhausted and removed it from
// the slot queue. kEpochLast can happen in 2 cases: (1) if TraceSwitchPart
// was called with the slot locked and epoch already at kEpochLast,
// or (2) if we've acquired a new slot in SlotLock in the beginning
// of the function and the slot was at kEpochLast - 1, so after increment
// in SlotAttachAndLock it become kEpochLast.
if (ctx->slot_queue.Queued(thr->slot)) {
ctx->slot_queue.Remove(thr->slot);
ctx->slot_queue.PushBack(thr->slot);
}
if (recycle)
ctx->trace_part_recycle.PushBack(recycle);
}
DPrintf("#%d: TraceSwitchPart exit parts=%p-%p pos=0x%zx\n", thr->tid,
trace->parts.Front(), trace->parts.Back(),
atomic_load_relaxed(&thr->trace_pos));
}
void ThreadIgnoreBegin(ThreadState* thr, uptr pc) {
DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
thr->ignore_reads_and_writes++;
CHECK_GT(thr->ignore_reads_and_writes, 0);
thr->fast_state.SetIgnoreBit();
#if !SANITIZER_GO
if (pc && !ctx->after_multithreaded_fork)
thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
#endif
}
void ThreadIgnoreEnd(ThreadState *thr) {
DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
CHECK_GT(thr->ignore_reads_and_writes, 0);
thr->ignore_reads_and_writes--;
if (thr->ignore_reads_and_writes == 0) {
thr->fast_state.ClearIgnoreBit();
#if !SANITIZER_GO
thr->mop_ignore_set.Reset();
#endif
}
}
#if !SANITIZER_GO
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
uptr __tsan_testonly_shadow_stack_current_size() {
ThreadState *thr = cur_thread();
return thr->shadow_stack_pos - thr->shadow_stack;
}
#endif
void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) {
DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
thr->ignore_sync++;
CHECK_GT(thr->ignore_sync, 0);
#if !SANITIZER_GO
if (pc && !ctx->after_multithreaded_fork)
thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
#endif
}
void ThreadIgnoreSyncEnd(ThreadState *thr) {
DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
CHECK_GT(thr->ignore_sync, 0);
thr->ignore_sync--;
#if !SANITIZER_GO
if (thr->ignore_sync == 0)
thr->sync_ignore_set.Reset();
#endif
}
bool MD5Hash::operator==(const MD5Hash &other) const {
return hash[0] == other.hash[0] && hash[1] == other.hash[1];
}
#if SANITIZER_DEBUG
void build_consistency_debug() {}
#else
void build_consistency_release() {}
#endif
} // namespace __tsan
#if SANITIZER_CHECK_DEADLOCKS
namespace __sanitizer {
using namespace __tsan;
MutexMeta mutex_meta[] = {
{MutexInvalid, "Invalid", {}},
{MutexThreadRegistry,
"ThreadRegistry",
{MutexTypeSlots, MutexTypeTrace, MutexTypeReport}},
{MutexTypeReport, "Report", {MutexTypeTrace}},
{MutexTypeSyncVar, "SyncVar", {MutexTypeReport, MutexTypeTrace}},
{MutexTypeAnnotations, "Annotations", {}},
{MutexTypeAtExit, "AtExit", {}},
{MutexTypeFired, "Fired", {MutexLeaf}},
{MutexTypeRacy, "Racy", {MutexLeaf}},
{MutexTypeGlobalProc, "GlobalProc", {MutexTypeSlot, MutexTypeSlots}},
{MutexTypeInternalAlloc, "InternalAlloc", {MutexLeaf}},
{MutexTypeTrace, "Trace", {}},
{MutexTypeSlot,
"Slot",
{MutexMulti, MutexTypeTrace, MutexTypeSyncVar, MutexThreadRegistry,
MutexTypeSlots}},
{MutexTypeSlots, "Slots", {MutexTypeTrace, MutexTypeReport}},
{},
};
void PrintMutexPC(uptr pc) { StackTrace(&pc, 1).Print(); }
} // namespace __sanitizer
#endif
|