1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
//===-- tsan_shadow.h -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef TSAN_SHADOW_H
#define TSAN_SHADOW_H
#include "tsan_defs.h"
namespace __tsan {
class FastState {
public:
FastState() { Reset(); }
void Reset() {
part_.unused0_ = 0;
part_.sid_ = static_cast<u8>(kFreeSid);
part_.epoch_ = static_cast<u16>(kEpochLast);
part_.unused1_ = 0;
part_.ignore_accesses_ = false;
}
void SetSid(Sid sid) { part_.sid_ = static_cast<u8>(sid); }
Sid sid() const { return static_cast<Sid>(part_.sid_); }
Epoch epoch() const { return static_cast<Epoch>(part_.epoch_); }
void SetEpoch(Epoch epoch) { part_.epoch_ = static_cast<u16>(epoch); }
void SetIgnoreBit() { part_.ignore_accesses_ = 1; }
void ClearIgnoreBit() { part_.ignore_accesses_ = 0; }
bool GetIgnoreBit() const { return part_.ignore_accesses_; }
private:
friend class Shadow;
struct Parts {
u32 unused0_ : 8;
u32 sid_ : 8;
u32 epoch_ : kEpochBits;
u32 unused1_ : 1;
u32 ignore_accesses_ : 1;
};
union {
Parts part_;
u32 raw_;
};
};
static_assert(sizeof(FastState) == kShadowSize, "bad FastState size");
class Shadow {
public:
static constexpr RawShadow kEmpty = static_cast<RawShadow>(0);
Shadow(FastState state, u32 addr, u32 size, AccessType typ) {
raw_ = state.raw_;
DCHECK_GT(size, 0);
DCHECK_LE(size, 8);
UNUSED Sid sid0 = part_.sid_;
UNUSED u16 epoch0 = part_.epoch_;
raw_ |= (!!(typ & kAccessAtomic) << kIsAtomicShift) |
(!!(typ & kAccessRead) << kIsReadShift) |
(((((1u << size) - 1) << (addr & 0x7)) & 0xff) << kAccessShift);
// Note: we don't check kAccessAtomic because it overlaps with
// FastState::ignore_accesses_ and it may be set spuriously.
DCHECK_EQ(part_.is_read_, !!(typ & kAccessRead));
DCHECK_EQ(sid(), sid0);
DCHECK_EQ(epoch(), epoch0);
}
explicit Shadow(RawShadow x = Shadow::kEmpty) { raw_ = static_cast<u32>(x); }
RawShadow raw() const { return static_cast<RawShadow>(raw_); }
Sid sid() const { return part_.sid_; }
Epoch epoch() const { return static_cast<Epoch>(part_.epoch_); }
u8 access() const { return part_.access_; }
void GetAccess(uptr *addr, uptr *size, AccessType *typ) const {
DCHECK(part_.access_ != 0 || raw_ == static_cast<u32>(Shadow::kRodata));
if (addr)
*addr = part_.access_ ? __builtin_ffs(part_.access_) - 1 : 0;
if (size)
*size = part_.access_ == kFreeAccess ? kShadowCell
: __builtin_popcount(part_.access_);
if (typ) {
*typ = part_.is_read_ ? kAccessRead : kAccessWrite;
if (part_.is_atomic_)
*typ |= kAccessAtomic;
if (part_.access_ == kFreeAccess)
*typ |= kAccessFree;
}
}
ALWAYS_INLINE
bool IsBothReadsOrAtomic(AccessType typ) const {
u32 is_read = !!(typ & kAccessRead);
u32 is_atomic = !!(typ & kAccessAtomic);
bool res =
raw_ & ((is_atomic << kIsAtomicShift) | (is_read << kIsReadShift));
DCHECK_EQ(res,
(part_.is_read_ && is_read) || (part_.is_atomic_ && is_atomic));
return res;
}
ALWAYS_INLINE
bool IsRWWeakerOrEqual(AccessType typ) const {
u32 is_read = !!(typ & kAccessRead);
u32 is_atomic = !!(typ & kAccessAtomic);
UNUSED u32 res0 =
(part_.is_atomic_ > is_atomic) ||
(part_.is_atomic_ == is_atomic && part_.is_read_ >= is_read);
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
const u32 kAtomicReadMask = (1 << kIsAtomicShift) | (1 << kIsReadShift);
bool res = (raw_ & kAtomicReadMask) >=
((is_atomic << kIsAtomicShift) | (is_read << kIsReadShift));
DCHECK_EQ(res, res0);
return res;
#else
return res0;
#endif
}
// The FreedMarker must not pass "the same access check" so that we don't
// return from the race detection algorithm early.
static RawShadow FreedMarker() {
FastState fs;
fs.SetSid(kFreeSid);
fs.SetEpoch(kEpochLast);
Shadow s(fs, 0, 8, kAccessWrite);
return s.raw();
}
static RawShadow FreedInfo(Sid sid, Epoch epoch) {
Shadow s;
s.part_.sid_ = sid;
s.part_.epoch_ = static_cast<u16>(epoch);
s.part_.access_ = kFreeAccess;
return s.raw();
}
private:
struct Parts {
u8 access_;
Sid sid_;
u16 epoch_ : kEpochBits;
u16 is_read_ : 1;
u16 is_atomic_ : 1;
};
union {
Parts part_;
u32 raw_;
};
static constexpr u8 kFreeAccess = 0x81;
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
static constexpr uptr kAccessShift = 0;
static constexpr uptr kIsReadShift = 30;
static constexpr uptr kIsAtomicShift = 31;
#else
static constexpr uptr kAccessShift = 24;
static constexpr uptr kIsReadShift = 1;
static constexpr uptr kIsAtomicShift = 0;
#endif
public:
// .rodata shadow marker, see MapRodata and ContainsSameAccessFast.
static constexpr RawShadow kRodata =
static_cast<RawShadow>(1 << kIsReadShift);
};
static_assert(sizeof(Shadow) == kShadowSize, "bad Shadow size");
ALWAYS_INLINE RawShadow LoadShadow(RawShadow *p) {
return static_cast<RawShadow>(
atomic_load((atomic_uint32_t *)p, memory_order_relaxed));
}
ALWAYS_INLINE void StoreShadow(RawShadow *sp, RawShadow s) {
atomic_store((atomic_uint32_t *)sp, static_cast<u32>(s),
memory_order_relaxed);
}
} // namespace __tsan
#endif
|