1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
//===-- tsan_shadow_test.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "tsan_platform.h"
#include "tsan_rtl.h"
#include "gtest/gtest.h"
namespace __tsan {
void CheckShadow(const Shadow *s, Sid sid, Epoch epoch, uptr addr, uptr size,
AccessType typ) {
uptr addr1 = 0;
uptr size1 = 0;
AccessType typ1 = 0;
s->GetAccess(&addr1, &size1, &typ1);
CHECK_EQ(s->sid(), sid);
CHECK_EQ(s->epoch(), epoch);
CHECK_EQ(addr1, addr);
CHECK_EQ(size1, size);
CHECK_EQ(typ1, typ);
}
TEST(Shadow, Shadow) {
Sid sid = static_cast<Sid>(11);
Epoch epoch = static_cast<Epoch>(22);
FastState fs;
fs.SetSid(sid);
fs.SetEpoch(epoch);
CHECK_EQ(fs.sid(), sid);
CHECK_EQ(fs.epoch(), epoch);
CHECK_EQ(fs.GetIgnoreBit(), false);
fs.SetIgnoreBit();
CHECK_EQ(fs.GetIgnoreBit(), true);
fs.ClearIgnoreBit();
CHECK_EQ(fs.GetIgnoreBit(), false);
Shadow s0(fs, 1, 2, kAccessWrite);
CheckShadow(&s0, sid, epoch, 1, 2, kAccessWrite);
Shadow s1(fs, 2, 3, kAccessRead);
CheckShadow(&s1, sid, epoch, 2, 3, kAccessRead);
Shadow s2(fs, 0xfffff8 + 4, 1, kAccessWrite | kAccessAtomic);
CheckShadow(&s2, sid, epoch, 4, 1, kAccessWrite | kAccessAtomic);
Shadow s3(fs, 0xfffff8 + 0, 8, kAccessRead | kAccessAtomic);
CheckShadow(&s3, sid, epoch, 0, 8, kAccessRead | kAccessAtomic);
CHECK(!s0.IsBothReadsOrAtomic(kAccessRead | kAccessAtomic));
CHECK(!s1.IsBothReadsOrAtomic(kAccessAtomic));
CHECK(!s1.IsBothReadsOrAtomic(kAccessWrite));
CHECK(s1.IsBothReadsOrAtomic(kAccessRead));
CHECK(s2.IsBothReadsOrAtomic(kAccessAtomic));
CHECK(!s2.IsBothReadsOrAtomic(kAccessWrite));
CHECK(!s2.IsBothReadsOrAtomic(kAccessRead));
CHECK(s3.IsBothReadsOrAtomic(kAccessAtomic));
CHECK(!s3.IsBothReadsOrAtomic(kAccessWrite));
CHECK(s3.IsBothReadsOrAtomic(kAccessRead));
CHECK(!s0.IsRWWeakerOrEqual(kAccessRead | kAccessAtomic));
CHECK(s1.IsRWWeakerOrEqual(kAccessWrite));
CHECK(s1.IsRWWeakerOrEqual(kAccessRead));
CHECK(!s1.IsRWWeakerOrEqual(kAccessWrite | kAccessAtomic));
CHECK(!s2.IsRWWeakerOrEqual(kAccessRead | kAccessAtomic));
CHECK(s2.IsRWWeakerOrEqual(kAccessWrite | kAccessAtomic));
CHECK(s2.IsRWWeakerOrEqual(kAccessRead));
CHECK(s2.IsRWWeakerOrEqual(kAccessWrite));
CHECK(s3.IsRWWeakerOrEqual(kAccessRead | kAccessAtomic));
CHECK(s3.IsRWWeakerOrEqual(kAccessWrite | kAccessAtomic));
CHECK(s3.IsRWWeakerOrEqual(kAccessRead));
CHECK(s3.IsRWWeakerOrEqual(kAccessWrite));
Shadow sro(Shadow::kRodata);
CheckShadow(&sro, static_cast<Sid>(0), kEpochZero, 0, 0, kAccessRead);
}
TEST(Shadow, Mapping) {
static int global;
int stack;
void *heap = malloc(0);
free(heap);
CHECK(IsAppMem((uptr)&global));
CHECK(IsAppMem((uptr)&stack));
CHECK(IsAppMem((uptr)heap));
CHECK(IsShadowMem(MemToShadow((uptr)&global)));
CHECK(IsShadowMem(MemToShadow((uptr)&stack)));
CHECK(IsShadowMem(MemToShadow((uptr)heap)));
}
TEST(Shadow, Celling) {
u64 aligned_data[4];
char *data = (char*)aligned_data;
CHECK(IsAligned(reinterpret_cast<uptr>(data), kShadowSize));
RawShadow *s0 = MemToShadow((uptr)&data[0]);
CHECK(IsAligned(reinterpret_cast<uptr>(s0), kShadowSize));
for (unsigned i = 1; i < kShadowCell; i++)
CHECK_EQ(s0, MemToShadow((uptr)&data[i]));
for (unsigned i = kShadowCell; i < 2*kShadowCell; i++)
CHECK_EQ(s0 + kShadowCnt, MemToShadow((uptr)&data[i]));
for (unsigned i = 2*kShadowCell; i < 3*kShadowCell; i++)
CHECK_EQ(s0 + 2 * kShadowCnt, MemToShadow((uptr)&data[i]));
}
// Detect is the Mapping has kBroken field.
template <uptr>
struct Has {
typedef bool Result;
};
template <typename Mapping>
bool broken(...) {
return false;
}
template <typename Mapping>
bool broken(uptr what, typename Has<Mapping::kBroken>::Result = false) {
return Mapping::kBroken & what;
}
struct MappingTest {
template <typename Mapping>
static void Apply() {
// Easy (but ugly) way to print the mapping name.
Printf("%s\n", __PRETTY_FUNCTION__);
TestRegion<Mapping>(Mapping::kLoAppMemBeg, Mapping::kLoAppMemEnd);
TestRegion<Mapping>(Mapping::kMidAppMemBeg, Mapping::kMidAppMemEnd);
TestRegion<Mapping>(Mapping::kHiAppMemBeg, Mapping::kHiAppMemEnd);
TestRegion<Mapping>(Mapping::kHeapMemBeg, Mapping::kHeapMemEnd);
}
template <typename Mapping>
static void TestRegion(uptr beg, uptr end) {
if (beg == end)
return;
Printf("checking region [0x%zx-0x%zx)\n", beg, end);
uptr prev = 0;
for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 256) {
for (int x = -(int)kShadowCell; x <= (int)kShadowCell; x += kShadowCell) {
const uptr p = RoundDown(p0 + x, kShadowCell);
if (p < beg || p >= end)
continue;
const uptr s = MemToShadowImpl::Apply<Mapping>(p);
u32 *const m = MemToMetaImpl::Apply<Mapping>(p);
const uptr r = ShadowToMemImpl::Apply<Mapping>(s);
Printf(" addr=0x%zx: shadow=0x%zx meta=%p reverse=0x%zx\n", p, s, m,
r);
CHECK(IsAppMemImpl::Apply<Mapping>(p));
if (!broken<Mapping>(kBrokenMapping))
CHECK(IsShadowMemImpl::Apply<Mapping>(s));
CHECK(IsMetaMemImpl::Apply<Mapping>(reinterpret_cast<uptr>(m)));
CHECK_EQ(p, RestoreAddrImpl::Apply<Mapping>(CompressAddr(p)));
if (!broken<Mapping>(kBrokenReverseMapping))
CHECK_EQ(p, r);
if (prev && !broken<Mapping>(kBrokenLinearity)) {
// Ensure that shadow and meta mappings are linear within a single
// user range. Lots of code that processes memory ranges assumes it.
const uptr prev_s = MemToShadowImpl::Apply<Mapping>(prev);
u32 *const prev_m = MemToMetaImpl::Apply<Mapping>(prev);
CHECK_EQ(s - prev_s, (p - prev) * kShadowMultiplier);
CHECK_EQ(m - prev_m, (p - prev) / kMetaShadowCell);
}
prev = p;
}
}
}
};
TEST(Shadow, AllMappings) { ForEachMapping<MappingTest>(); }
} // namespace __tsan
|