File: tsan_shadow_test.cpp

package info (click to toggle)
llvm-toolchain-15 1%3A15.0.6-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,554,644 kB
  • sloc: cpp: 5,922,452; ansic: 1,012,136; asm: 674,362; python: 191,568; objc: 73,855; f90: 42,327; lisp: 31,913; pascal: 11,973; javascript: 10,144; sh: 9,421; perl: 7,447; ml: 5,527; awk: 3,523; makefile: 2,520; xml: 885; cs: 573; fortran: 567
file content (179 lines) | stat: -rw-r--r-- 6,396 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
//===-- tsan_shadow_test.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "tsan_platform.h"
#include "tsan_rtl.h"
#include "gtest/gtest.h"

namespace __tsan {

void CheckShadow(const Shadow *s, Sid sid, Epoch epoch, uptr addr, uptr size,
                 AccessType typ) {
  uptr addr1 = 0;
  uptr size1 = 0;
  AccessType typ1 = 0;
  s->GetAccess(&addr1, &size1, &typ1);
  CHECK_EQ(s->sid(), sid);
  CHECK_EQ(s->epoch(), epoch);
  CHECK_EQ(addr1, addr);
  CHECK_EQ(size1, size);
  CHECK_EQ(typ1, typ);
}

TEST(Shadow, Shadow) {
  Sid sid = static_cast<Sid>(11);
  Epoch epoch = static_cast<Epoch>(22);
  FastState fs;
  fs.SetSid(sid);
  fs.SetEpoch(epoch);
  CHECK_EQ(fs.sid(), sid);
  CHECK_EQ(fs.epoch(), epoch);
  CHECK_EQ(fs.GetIgnoreBit(), false);
  fs.SetIgnoreBit();
  CHECK_EQ(fs.GetIgnoreBit(), true);
  fs.ClearIgnoreBit();
  CHECK_EQ(fs.GetIgnoreBit(), false);

  Shadow s0(fs, 1, 2, kAccessWrite);
  CheckShadow(&s0, sid, epoch, 1, 2, kAccessWrite);
  Shadow s1(fs, 2, 3, kAccessRead);
  CheckShadow(&s1, sid, epoch, 2, 3, kAccessRead);
  Shadow s2(fs, 0xfffff8 + 4, 1, kAccessWrite | kAccessAtomic);
  CheckShadow(&s2, sid, epoch, 4, 1, kAccessWrite | kAccessAtomic);
  Shadow s3(fs, 0xfffff8 + 0, 8, kAccessRead | kAccessAtomic);
  CheckShadow(&s3, sid, epoch, 0, 8, kAccessRead | kAccessAtomic);

  CHECK(!s0.IsBothReadsOrAtomic(kAccessRead | kAccessAtomic));
  CHECK(!s1.IsBothReadsOrAtomic(kAccessAtomic));
  CHECK(!s1.IsBothReadsOrAtomic(kAccessWrite));
  CHECK(s1.IsBothReadsOrAtomic(kAccessRead));
  CHECK(s2.IsBothReadsOrAtomic(kAccessAtomic));
  CHECK(!s2.IsBothReadsOrAtomic(kAccessWrite));
  CHECK(!s2.IsBothReadsOrAtomic(kAccessRead));
  CHECK(s3.IsBothReadsOrAtomic(kAccessAtomic));
  CHECK(!s3.IsBothReadsOrAtomic(kAccessWrite));
  CHECK(s3.IsBothReadsOrAtomic(kAccessRead));

  CHECK(!s0.IsRWWeakerOrEqual(kAccessRead | kAccessAtomic));
  CHECK(s1.IsRWWeakerOrEqual(kAccessWrite));
  CHECK(s1.IsRWWeakerOrEqual(kAccessRead));
  CHECK(!s1.IsRWWeakerOrEqual(kAccessWrite | kAccessAtomic));

  CHECK(!s2.IsRWWeakerOrEqual(kAccessRead | kAccessAtomic));
  CHECK(s2.IsRWWeakerOrEqual(kAccessWrite | kAccessAtomic));
  CHECK(s2.IsRWWeakerOrEqual(kAccessRead));
  CHECK(s2.IsRWWeakerOrEqual(kAccessWrite));

  CHECK(s3.IsRWWeakerOrEqual(kAccessRead | kAccessAtomic));
  CHECK(s3.IsRWWeakerOrEqual(kAccessWrite | kAccessAtomic));
  CHECK(s3.IsRWWeakerOrEqual(kAccessRead));
  CHECK(s3.IsRWWeakerOrEqual(kAccessWrite));

  Shadow sro(Shadow::kRodata);
  CheckShadow(&sro, static_cast<Sid>(0), kEpochZero, 0, 0, kAccessRead);
}

TEST(Shadow, Mapping) {
  static int global;
  int stack;
  void *heap = malloc(0);
  free(heap);

  CHECK(IsAppMem((uptr)&global));
  CHECK(IsAppMem((uptr)&stack));
  CHECK(IsAppMem((uptr)heap));

  CHECK(IsShadowMem(MemToShadow((uptr)&global)));
  CHECK(IsShadowMem(MemToShadow((uptr)&stack)));
  CHECK(IsShadowMem(MemToShadow((uptr)heap)));
}

TEST(Shadow, Celling) {
  u64 aligned_data[4];
  char *data = (char*)aligned_data;
  CHECK(IsAligned(reinterpret_cast<uptr>(data), kShadowSize));
  RawShadow *s0 = MemToShadow((uptr)&data[0]);
  CHECK(IsAligned(reinterpret_cast<uptr>(s0), kShadowSize));
  for (unsigned i = 1; i < kShadowCell; i++)
    CHECK_EQ(s0, MemToShadow((uptr)&data[i]));
  for (unsigned i = kShadowCell; i < 2*kShadowCell; i++)
    CHECK_EQ(s0 + kShadowCnt, MemToShadow((uptr)&data[i]));
  for (unsigned i = 2*kShadowCell; i < 3*kShadowCell; i++)
    CHECK_EQ(s0 + 2 * kShadowCnt, MemToShadow((uptr)&data[i]));
}

// Detect is the Mapping has kBroken field.
template <uptr>
struct Has {
  typedef bool Result;
};

template <typename Mapping>
bool broken(...) {
  return false;
}

template <typename Mapping>
bool broken(uptr what, typename Has<Mapping::kBroken>::Result = false) {
  return Mapping::kBroken & what;
}

struct MappingTest {
  template <typename Mapping>
  static void Apply() {
    // Easy (but ugly) way to print the mapping name.
    Printf("%s\n", __PRETTY_FUNCTION__);
    TestRegion<Mapping>(Mapping::kLoAppMemBeg, Mapping::kLoAppMemEnd);
    TestRegion<Mapping>(Mapping::kMidAppMemBeg, Mapping::kMidAppMemEnd);
    TestRegion<Mapping>(Mapping::kHiAppMemBeg, Mapping::kHiAppMemEnd);
    TestRegion<Mapping>(Mapping::kHeapMemBeg, Mapping::kHeapMemEnd);
  }

  template <typename Mapping>
  static void TestRegion(uptr beg, uptr end) {
    if (beg == end)
      return;
    Printf("checking region [0x%zx-0x%zx)\n", beg, end);
    uptr prev = 0;
    for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 256) {
      for (int x = -(int)kShadowCell; x <= (int)kShadowCell; x += kShadowCell) {
        const uptr p = RoundDown(p0 + x, kShadowCell);
        if (p < beg || p >= end)
          continue;
        const uptr s = MemToShadowImpl::Apply<Mapping>(p);
        u32 *const m = MemToMetaImpl::Apply<Mapping>(p);
        const uptr r = ShadowToMemImpl::Apply<Mapping>(s);
        Printf("  addr=0x%zx: shadow=0x%zx meta=%p reverse=0x%zx\n", p, s, m,
               r);
        CHECK(IsAppMemImpl::Apply<Mapping>(p));
        if (!broken<Mapping>(kBrokenMapping))
          CHECK(IsShadowMemImpl::Apply<Mapping>(s));
        CHECK(IsMetaMemImpl::Apply<Mapping>(reinterpret_cast<uptr>(m)));
        CHECK_EQ(p, RestoreAddrImpl::Apply<Mapping>(CompressAddr(p)));
        if (!broken<Mapping>(kBrokenReverseMapping))
          CHECK_EQ(p, r);
        if (prev && !broken<Mapping>(kBrokenLinearity)) {
          // Ensure that shadow and meta mappings are linear within a single
          // user range. Lots of code that processes memory ranges assumes it.
          const uptr prev_s = MemToShadowImpl::Apply<Mapping>(prev);
          u32 *const prev_m = MemToMetaImpl::Apply<Mapping>(prev);
          CHECK_EQ(s - prev_s, (p - prev) * kShadowMultiplier);
          CHECK_EQ(m - prev_m, (p - prev) / kMetaShadowCell);
        }
        prev = p;
      }
    }
  }
};

TEST(Shadow, AllMappings) { ForEachMapping<MappingTest>(); }

}  // namespace __tsan