1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
//===-- tsan_trace_test.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "tsan_trace.h"
#include <pthread.h>
#include "gtest/gtest.h"
#include "tsan_rtl.h"
#if !defined(__x86_64__)
// These tests are currently crashing on ppc64:
// https://reviews.llvm.org/D110546#3025422
// due to the way we create thread contexts
// There must be some difference in thread initialization
// between normal execution and unit tests.
# define TRACE_TEST(SUITE, NAME) TEST(SUITE, DISABLED_##NAME)
#else
# define TRACE_TEST(SUITE, NAME) TEST(SUITE, NAME)
#endif
namespace __tsan {
// We need to run all trace tests in a new thread,
// so that the thread trace is empty initially.
template <uptr N>
struct ThreadArray {
ThreadArray() {
for (auto *&thr : threads) {
thr = static_cast<ThreadState *>(
MmapOrDie(sizeof(ThreadState), "ThreadState"));
Tid tid = ThreadCreate(cur_thread(), 0, 0, true);
Processor *proc = ProcCreate();
ProcWire(proc, thr);
ThreadStart(thr, tid, 0, ThreadType::Fiber);
}
}
~ThreadArray() {
for (uptr i = 0; i < N; i++) {
if (threads[i])
Finish(i);
}
}
void Finish(uptr i) {
auto *thr = threads[i];
threads[i] = nullptr;
Processor *proc = thr->proc();
ThreadFinish(thr);
ProcUnwire(proc, thr);
ProcDestroy(proc);
UnmapOrDie(thr, sizeof(ThreadState));
}
ThreadState *threads[N];
ThreadState *operator[](uptr i) { return threads[i]; }
ThreadState *operator->() { return threads[0]; }
operator ThreadState *() { return threads[0]; }
};
TRACE_TEST(Trace, RestoreAccess) {
// A basic test with some function entry/exit events,
// some mutex lock/unlock events and some other distracting
// memory events.
ThreadArray<1> thr;
TraceFunc(thr, 0x1000);
TraceFunc(thr, 0x1001);
TraceMutexLock(thr, EventType::kLock, 0x4000, 0x5000, 0x6000);
TraceMutexLock(thr, EventType::kLock, 0x4001, 0x5001, 0x6001);
TraceMutexUnlock(thr, 0x5000);
TraceFunc(thr);
CHECK(TryTraceMemoryAccess(thr, 0x2001, 0x3001, 8, kAccessRead));
TraceMutexLock(thr, EventType::kRLock, 0x4002, 0x5002, 0x6002);
TraceFunc(thr, 0x1002);
CHECK(TryTraceMemoryAccess(thr, 0x2000, 0x3000, 8, kAccessRead));
// This is the access we want to find.
// The previous one is equivalent, but RestoreStack must prefer
// the last of the matchig accesses.
CHECK(TryTraceMemoryAccess(thr, 0x2002, 0x3000, 8, kAccessRead));
Lock slot_lock(&ctx->slots[static_cast<uptr>(thr->fast_state.sid())].mtx);
ThreadRegistryLock lock1(&ctx->thread_registry);
Lock lock2(&ctx->slot_mtx);
Tid tid = kInvalidTid;
VarSizeStackTrace stk;
MutexSet mset;
uptr tag = kExternalTagNone;
bool res = RestoreStack(EventType::kAccessExt, thr->fast_state.sid(),
thr->fast_state.epoch(), 0x3000, 8, kAccessRead, &tid,
&stk, &mset, &tag);
CHECK(res);
CHECK_EQ(tid, thr->tid);
CHECK_EQ(stk.size, 3);
CHECK_EQ(stk.trace[0], 0x1000);
CHECK_EQ(stk.trace[1], 0x1002);
CHECK_EQ(stk.trace[2], 0x2002);
CHECK_EQ(mset.Size(), 2);
CHECK_EQ(mset.Get(0).addr, 0x5001);
CHECK_EQ(mset.Get(0).stack_id, 0x6001);
CHECK_EQ(mset.Get(0).write, true);
CHECK_EQ(mset.Get(1).addr, 0x5002);
CHECK_EQ(mset.Get(1).stack_id, 0x6002);
CHECK_EQ(mset.Get(1).write, false);
CHECK_EQ(tag, kExternalTagNone);
}
TRACE_TEST(Trace, MemoryAccessSize) {
// Test tracing and matching of accesses of different sizes.
struct Params {
uptr access_size, offset, size;
bool res;
};
Params tests[] = {
{1, 0, 1, true}, {4, 0, 2, true},
{4, 2, 2, true}, {8, 3, 1, true},
{2, 1, 1, true}, {1, 1, 1, false},
{8, 5, 4, false}, {4, static_cast<uptr>(-1l), 4, false},
};
for (auto params : tests) {
for (int type = 0; type < 3; type++) {
ThreadArray<1> thr;
Printf("access_size=%zu, offset=%zu, size=%zu, res=%d, type=%d\n",
params.access_size, params.offset, params.size, params.res, type);
TraceFunc(thr, 0x1000);
switch (type) {
case 0:
// This should emit compressed event.
CHECK(TryTraceMemoryAccess(thr, 0x2000, 0x3000, params.access_size,
kAccessRead));
break;
case 1:
// This should emit full event.
CHECK(TryTraceMemoryAccess(thr, 0x2000000, 0x3000, params.access_size,
kAccessRead));
break;
case 2:
TraceMemoryAccessRange(thr, 0x2000000, 0x3000, params.access_size,
kAccessRead);
break;
}
Lock slot_lock(&ctx->slots[static_cast<uptr>(thr->fast_state.sid())].mtx);
ThreadRegistryLock lock1(&ctx->thread_registry);
Lock lock2(&ctx->slot_mtx);
Tid tid = kInvalidTid;
VarSizeStackTrace stk;
MutexSet mset;
uptr tag = kExternalTagNone;
bool res =
RestoreStack(EventType::kAccessExt, thr->fast_state.sid(),
thr->fast_state.epoch(), 0x3000 + params.offset,
params.size, kAccessRead, &tid, &stk, &mset, &tag);
CHECK_EQ(res, params.res);
if (params.res) {
CHECK_EQ(stk.size, 2);
CHECK_EQ(stk.trace[0], 0x1000);
CHECK_EQ(stk.trace[1], type ? 0x2000000 : 0x2000);
}
}
}
}
TRACE_TEST(Trace, RestoreMutexLock) {
// Check of restoration of a mutex lock event.
ThreadArray<1> thr;
TraceFunc(thr, 0x1000);
TraceMutexLock(thr, EventType::kLock, 0x4000, 0x5000, 0x6000);
TraceMutexLock(thr, EventType::kRLock, 0x4001, 0x5001, 0x6001);
TraceMutexLock(thr, EventType::kRLock, 0x4002, 0x5001, 0x6002);
Lock slot_lock(&ctx->slots[static_cast<uptr>(thr->fast_state.sid())].mtx);
ThreadRegistryLock lock1(&ctx->thread_registry);
Lock lock2(&ctx->slot_mtx);
Tid tid = kInvalidTid;
VarSizeStackTrace stk;
MutexSet mset;
uptr tag = kExternalTagNone;
bool res = RestoreStack(EventType::kLock, thr->fast_state.sid(),
thr->fast_state.epoch(), 0x5001, 0, 0, &tid, &stk,
&mset, &tag);
CHECK(res);
CHECK_EQ(stk.size, 2);
CHECK_EQ(stk.trace[0], 0x1000);
CHECK_EQ(stk.trace[1], 0x4002);
CHECK_EQ(mset.Size(), 2);
CHECK_EQ(mset.Get(0).addr, 0x5000);
CHECK_EQ(mset.Get(0).stack_id, 0x6000);
CHECK_EQ(mset.Get(0).write, true);
CHECK_EQ(mset.Get(1).addr, 0x5001);
CHECK_EQ(mset.Get(1).stack_id, 0x6001);
CHECK_EQ(mset.Get(1).write, false);
}
TRACE_TEST(Trace, MultiPart) {
// Check replay of a trace with multiple parts.
ThreadArray<1> thr;
FuncEntry(thr, 0x1000);
FuncEntry(thr, 0x2000);
MutexPreLock(thr, 0x4000, 0x5000, 0);
MutexPostLock(thr, 0x4000, 0x5000, 0);
MutexPreLock(thr, 0x4000, 0x5000, 0);
MutexPostLock(thr, 0x4000, 0x5000, 0);
const uptr kEvents = 3 * sizeof(TracePart) / sizeof(Event);
for (uptr i = 0; i < kEvents; i++) {
FuncEntry(thr, 0x3000);
MutexPreLock(thr, 0x4002, 0x5002, 0);
MutexPostLock(thr, 0x4002, 0x5002, 0);
MutexUnlock(thr, 0x4003, 0x5002, 0);
FuncExit(thr);
}
FuncEntry(thr, 0x4000);
TraceMutexLock(thr, EventType::kRLock, 0x4001, 0x5001, 0x6001);
CHECK(TryTraceMemoryAccess(thr, 0x2002, 0x3000, 8, kAccessRead));
Lock slot_lock(&ctx->slots[static_cast<uptr>(thr->fast_state.sid())].mtx);
ThreadRegistryLock lock1(&ctx->thread_registry);
Lock lock2(&ctx->slot_mtx);
Tid tid = kInvalidTid;
VarSizeStackTrace stk;
MutexSet mset;
uptr tag = kExternalTagNone;
bool res = RestoreStack(EventType::kAccessExt, thr->fast_state.sid(),
thr->fast_state.epoch(), 0x3000, 8, kAccessRead, &tid,
&stk, &mset, &tag);
CHECK(res);
CHECK_EQ(tid, thr->tid);
CHECK_EQ(stk.size, 4);
CHECK_EQ(stk.trace[0], 0x1000);
CHECK_EQ(stk.trace[1], 0x2000);
CHECK_EQ(stk.trace[2], 0x4000);
CHECK_EQ(stk.trace[3], 0x2002);
CHECK_EQ(mset.Size(), 2);
CHECK_EQ(mset.Get(0).addr, 0x5000);
CHECK_EQ(mset.Get(0).write, true);
CHECK_EQ(mset.Get(0).count, 2);
CHECK_EQ(mset.Get(1).addr, 0x5001);
CHECK_EQ(mset.Get(1).write, false);
CHECK_EQ(mset.Get(1).count, 1);
}
TRACE_TEST(Trace, DeepSwitch) {
ThreadArray<1> thr;
for (int i = 0; i < 2000; i++) {
FuncEntry(thr, 0x1000);
const uptr kEvents = sizeof(TracePart) / sizeof(Event);
for (uptr i = 0; i < kEvents; i++) {
TraceMutexLock(thr, EventType::kLock, 0x4000, 0x5000, 0x6000);
TraceMutexUnlock(thr, 0x5000);
}
}
}
void CheckTraceState(uptr count, uptr finished, uptr excess, uptr recycle) {
Lock l(&ctx->slot_mtx);
Printf("CheckTraceState(%zu/%zu, %zu/%zu, %zu/%zu, %zu/%zu)\n",
ctx->trace_part_total_allocated, count,
ctx->trace_part_recycle_finished, finished,
ctx->trace_part_finished_excess, excess,
ctx->trace_part_recycle.Size(), recycle);
CHECK_EQ(ctx->trace_part_total_allocated, count);
CHECK_EQ(ctx->trace_part_recycle_finished, finished);
CHECK_EQ(ctx->trace_part_finished_excess, excess);
CHECK_EQ(ctx->trace_part_recycle.Size(), recycle);
}
TRACE_TEST(TraceAlloc, SingleThread) {
TraceResetForTesting();
auto check_thread = [&](ThreadState *thr, uptr size, uptr count,
uptr finished, uptr excess, uptr recycle) {
CHECK_EQ(thr->tctx->trace.parts.Size(), size);
CheckTraceState(count, finished, excess, recycle);
};
ThreadArray<2> threads;
check_thread(threads[0], 0, 0, 0, 0, 0);
TraceSwitchPartImpl(threads[0]);
check_thread(threads[0], 1, 1, 0, 0, 0);
TraceSwitchPartImpl(threads[0]);
check_thread(threads[0], 2, 2, 0, 0, 0);
TraceSwitchPartImpl(threads[0]);
check_thread(threads[0], 3, 3, 0, 0, 1);
TraceSwitchPartImpl(threads[0]);
check_thread(threads[0], 3, 3, 0, 0, 1);
threads.Finish(0);
CheckTraceState(3, 3, 0, 3);
threads.Finish(1);
CheckTraceState(3, 3, 0, 3);
}
TRACE_TEST(TraceAlloc, FinishedThreadReuse) {
TraceResetForTesting();
constexpr uptr Hi = Trace::kFinishedThreadHi;
constexpr uptr kThreads = 4 * Hi;
ThreadArray<kThreads> threads;
for (uptr i = 0; i < kThreads; i++) {
Printf("thread %zu\n", i);
TraceSwitchPartImpl(threads[i]);
if (i <= Hi)
CheckTraceState(i + 1, i, 0, i);
else if (i <= 2 * Hi)
CheckTraceState(Hi + 1, Hi, i - Hi, Hi);
else
CheckTraceState(Hi + 1, Hi, Hi, Hi);
threads.Finish(i);
if (i < Hi)
CheckTraceState(i + 1, i + 1, 0, i + 1);
else if (i < 2 * Hi)
CheckTraceState(Hi + 1, Hi + 1, i - Hi + 1, Hi + 1);
else
CheckTraceState(Hi + 1, Hi + 1, Hi + 1, Hi + 1);
}
}
TRACE_TEST(TraceAlloc, FinishedThreadReuse2) {
TraceResetForTesting();
// constexpr uptr Lo = Trace::kFinishedThreadLo;
// constexpr uptr Hi = Trace::kFinishedThreadHi;
constexpr uptr Min = Trace::kMinParts;
constexpr uptr kThreads = 10;
constexpr uptr kParts = 2 * Min;
ThreadArray<kThreads> threads;
for (uptr i = 0; i < kThreads; i++) {
Printf("thread %zu\n", i);
for (uptr j = 0; j < kParts; j++) TraceSwitchPartImpl(threads[i]);
if (i == 0)
CheckTraceState(Min, 0, 0, 1);
else
CheckTraceState(2 * Min, 0, Min, Min + 1);
threads.Finish(i);
if (i == 0)
CheckTraceState(Min, Min, 0, Min);
else
CheckTraceState(2 * Min, 2 * Min, Min, 2 * Min);
}
}
} // namespace __tsan
|