1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
//===-- buffer_queue_test.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a function call tracing system.
//
//===----------------------------------------------------------------------===//
#include "xray_buffer_queue.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <atomic>
#include <future>
#include <thread>
#include <unistd.h>
namespace __xray {
namespace {
static constexpr size_t kSize = 4096;
using ::testing::Eq;
TEST(BufferQueueTest, API) {
bool Success = false;
BufferQueue Buffers(kSize, 1, Success);
ASSERT_TRUE(Success);
}
TEST(BufferQueueTest, GetAndRelease) {
bool Success = false;
BufferQueue Buffers(kSize, 1, Success);
ASSERT_TRUE(Success);
BufferQueue::Buffer Buf;
ASSERT_EQ(Buffers.getBuffer(Buf), BufferQueue::ErrorCode::Ok);
ASSERT_NE(nullptr, Buf.Data);
ASSERT_EQ(Buffers.releaseBuffer(Buf), BufferQueue::ErrorCode::Ok);
ASSERT_EQ(nullptr, Buf.Data);
}
TEST(BufferQueueTest, GetUntilFailed) {
bool Success = false;
BufferQueue Buffers(kSize, 1, Success);
ASSERT_TRUE(Success);
BufferQueue::Buffer Buf0;
EXPECT_EQ(Buffers.getBuffer(Buf0), BufferQueue::ErrorCode::Ok);
BufferQueue::Buffer Buf1;
EXPECT_EQ(BufferQueue::ErrorCode::NotEnoughMemory, Buffers.getBuffer(Buf1));
EXPECT_EQ(Buffers.releaseBuffer(Buf0), BufferQueue::ErrorCode::Ok);
}
TEST(BufferQueueTest, ReleaseUnknown) {
bool Success = false;
BufferQueue Buffers(kSize, 1, Success);
ASSERT_TRUE(Success);
BufferQueue::Buffer Buf;
Buf.Data = reinterpret_cast<void *>(0xdeadbeef);
Buf.Size = kSize;
Buf.Generation = Buffers.generation();
BufferQueue::Buffer Known;
EXPECT_THAT(Buffers.getBuffer(Known), Eq(BufferQueue::ErrorCode::Ok));
EXPECT_THAT(Buffers.releaseBuffer(Buf),
Eq(BufferQueue::ErrorCode::UnrecognizedBuffer));
EXPECT_THAT(Buffers.releaseBuffer(Known), Eq(BufferQueue::ErrorCode::Ok));
}
TEST(BufferQueueTest, ErrorsWhenFinalising) {
bool Success = false;
BufferQueue Buffers(kSize, 2, Success);
ASSERT_TRUE(Success);
BufferQueue::Buffer Buf;
ASSERT_EQ(Buffers.getBuffer(Buf), BufferQueue::ErrorCode::Ok);
ASSERT_NE(nullptr, Buf.Data);
ASSERT_EQ(Buffers.finalize(), BufferQueue::ErrorCode::Ok);
BufferQueue::Buffer OtherBuf;
ASSERT_EQ(BufferQueue::ErrorCode::QueueFinalizing,
Buffers.getBuffer(OtherBuf));
ASSERT_EQ(BufferQueue::ErrorCode::QueueFinalizing, Buffers.finalize());
ASSERT_EQ(Buffers.releaseBuffer(Buf), BufferQueue::ErrorCode::Ok);
}
TEST(BufferQueueTest, MultiThreaded) {
bool Success = false;
BufferQueue Buffers(kSize, 100, Success);
ASSERT_TRUE(Success);
auto F = [&] {
BufferQueue::Buffer B;
while (true) {
auto EC = Buffers.getBuffer(B);
if (EC != BufferQueue::ErrorCode::Ok)
return;
Buffers.releaseBuffer(B);
}
};
auto T0 = std::async(std::launch::async, F);
auto T1 = std::async(std::launch::async, F);
auto T2 = std::async(std::launch::async, [&] {
while (Buffers.finalize() != BufferQueue::ErrorCode::Ok)
;
});
F();
}
TEST(BufferQueueTest, Apply) {
bool Success = false;
BufferQueue Buffers(kSize, 10, Success);
ASSERT_TRUE(Success);
auto Count = 0;
BufferQueue::Buffer B;
for (int I = 0; I < 10; ++I) {
ASSERT_EQ(Buffers.getBuffer(B), BufferQueue::ErrorCode::Ok);
ASSERT_EQ(Buffers.releaseBuffer(B), BufferQueue::ErrorCode::Ok);
}
Buffers.apply([&](const BufferQueue::Buffer &B) { ++Count; });
ASSERT_EQ(Count, 10);
}
TEST(BufferQueueTest, GenerationalSupport) {
bool Success = false;
BufferQueue Buffers(kSize, 10, Success);
ASSERT_TRUE(Success);
BufferQueue::Buffer B0;
ASSERT_EQ(Buffers.getBuffer(B0), BufferQueue::ErrorCode::Ok);
ASSERT_EQ(Buffers.finalize(),
BufferQueue::ErrorCode::Ok); // No more new buffers.
// Re-initialise the queue.
ASSERT_EQ(Buffers.init(kSize, 10), BufferQueue::ErrorCode::Ok);
BufferQueue::Buffer B1;
ASSERT_EQ(Buffers.getBuffer(B1), BufferQueue::ErrorCode::Ok);
// Validate that the buffers come from different generations.
ASSERT_NE(B0.Generation, B1.Generation);
// We stash the current generation, for use later.
auto PrevGen = B1.Generation;
// At this point, we want to ensure that we can return the buffer from the
// first "generation" would still be accepted in the new generation...
EXPECT_EQ(Buffers.releaseBuffer(B0), BufferQueue::ErrorCode::Ok);
// ... and that the new buffer is also accepted.
EXPECT_EQ(Buffers.releaseBuffer(B1), BufferQueue::ErrorCode::Ok);
// A next round will do the same, ensure that we are able to do multiple
// rounds in this case.
ASSERT_EQ(Buffers.finalize(), BufferQueue::ErrorCode::Ok);
ASSERT_EQ(Buffers.init(kSize, 10), BufferQueue::ErrorCode::Ok);
EXPECT_EQ(Buffers.getBuffer(B0), BufferQueue::ErrorCode::Ok);
EXPECT_EQ(Buffers.getBuffer(B1), BufferQueue::ErrorCode::Ok);
// Here we ensure that the generation is different from the previous
// generation.
EXPECT_NE(B0.Generation, PrevGen);
EXPECT_EQ(B1.Generation, B1.Generation);
ASSERT_EQ(Buffers.finalize(), BufferQueue::ErrorCode::Ok);
EXPECT_EQ(Buffers.releaseBuffer(B0), BufferQueue::ErrorCode::Ok);
EXPECT_EQ(Buffers.releaseBuffer(B1), BufferQueue::ErrorCode::Ok);
}
TEST(BufferQueueTest, GenerationalSupportAcrossThreads) {
bool Success = false;
BufferQueue Buffers(kSize, 10, Success);
ASSERT_TRUE(Success);
std::atomic<int> Counter{0};
// This function allows us to use thread-local storage to isolate the
// instances of the buffers to be used. It also allows us signal the threads
// of a new generation, and allow those to get new buffers. This is
// representative of how we expect the buffer queue to be used by the XRay
// runtime.
auto Process = [&] {
thread_local BufferQueue::Buffer B;
ASSERT_EQ(Buffers.getBuffer(B), BufferQueue::ErrorCode::Ok);
auto FirstGen = B.Generation;
// Signal that we've gotten a buffer in the thread.
Counter.fetch_add(1, std::memory_order_acq_rel);
while (!Buffers.finalizing()) {
Buffers.releaseBuffer(B);
Buffers.getBuffer(B);
}
// Signal that we've exited the get/release buffer loop.
Counter.fetch_sub(1, std::memory_order_acq_rel);
if (B.Data != nullptr)
Buffers.releaseBuffer(B);
// Spin until we find that the Buffer Queue is no longer finalizing.
while (Buffers.getBuffer(B) != BufferQueue::ErrorCode::Ok)
;
// Signal that we've successfully gotten a buffer in the thread.
Counter.fetch_add(1, std::memory_order_acq_rel);
EXPECT_NE(FirstGen, B.Generation);
EXPECT_EQ(Buffers.releaseBuffer(B), BufferQueue::ErrorCode::Ok);
// Signal that we've successfully exited.
Counter.fetch_sub(1, std::memory_order_acq_rel);
};
// Spawn two threads running Process.
std::thread T0(Process), T1(Process);
// Spin until we find the counter is up to 2.
while (Counter.load(std::memory_order_acquire) != 2)
;
// Then we finalize, then re-initialize immediately.
Buffers.finalize();
// Spin until we find the counter is down to 0.
while (Counter.load(std::memory_order_acquire) != 0)
;
// Then we re-initialize.
EXPECT_EQ(Buffers.init(kSize, 10), BufferQueue::ErrorCode::Ok);
T0.join();
T1.join();
ASSERT_EQ(Counter.load(std::memory_order_acquire), 0);
}
} // namespace
} // namespace __xray
|