1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
//===-- profile_collector_test.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a function call tracing system.
//
//===----------------------------------------------------------------------===//
#include "gtest/gtest.h"
#include "xray_profile_collector.h"
#include "xray_profiling_flags.h"
#include <cstdint>
#include <cstring>
#include <memory>
#include <thread>
#include <utility>
#include <vector>
namespace __xray {
namespace {
static constexpr auto kHeaderSize = 16u;
constexpr uptr ExpectedProfilingVersion = 0x20180424;
struct ExpectedProfilingFileHeader {
const u64 MagicBytes = 0x7872617970726f66; // Identifier for XRay profiling
// files 'xrayprof' in hex.
const u64 Version = ExpectedProfilingVersion;
u64 Timestamp = 0;
u64 PID = 0;
};
void ValidateFileHeaderBlock(XRayBuffer B) {
ASSERT_NE(static_cast<const void *>(B.Data), nullptr);
ASSERT_EQ(B.Size, sizeof(ExpectedProfilingFileHeader));
typename std::aligned_storage<sizeof(ExpectedProfilingFileHeader)>::type
FileHeaderStorage;
ExpectedProfilingFileHeader ExpectedHeader;
std::memcpy(&FileHeaderStorage, B.Data, B.Size);
auto &FileHeader =
*reinterpret_cast<ExpectedProfilingFileHeader *>(&FileHeaderStorage);
ASSERT_EQ(ExpectedHeader.MagicBytes, FileHeader.MagicBytes);
ASSERT_EQ(ExpectedHeader.Version, FileHeader.Version);
}
void ValidateBlock(XRayBuffer B) {
profilingFlags()->setDefaults();
ASSERT_NE(static_cast<const void *>(B.Data), nullptr);
ASSERT_NE(B.Size, 0u);
ASSERT_GE(B.Size, kHeaderSize);
// We look at the block size, the block number, and the thread ID to ensure
// that none of them are zero (or that the header data is laid out as we
// expect).
char LocalBuffer[kHeaderSize] = {};
internal_memcpy(LocalBuffer, B.Data, kHeaderSize);
u32 BlockSize = 0;
u32 BlockNumber = 0;
u64 ThreadId = 0;
internal_memcpy(&BlockSize, LocalBuffer, sizeof(u32));
internal_memcpy(&BlockNumber, LocalBuffer + sizeof(u32), sizeof(u32));
internal_memcpy(&ThreadId, LocalBuffer + (2 * sizeof(u32)), sizeof(u64));
ASSERT_NE(BlockSize, 0u);
ASSERT_GE(BlockNumber, 0u);
ASSERT_NE(ThreadId, 0u);
}
std::tuple<u32, u32, u64> ParseBlockHeader(XRayBuffer B) {
char LocalBuffer[kHeaderSize] = {};
internal_memcpy(LocalBuffer, B.Data, kHeaderSize);
u32 BlockSize = 0;
u32 BlockNumber = 0;
u64 ThreadId = 0;
internal_memcpy(&BlockSize, LocalBuffer, sizeof(u32));
internal_memcpy(&BlockNumber, LocalBuffer + sizeof(u32), sizeof(u32));
internal_memcpy(&ThreadId, LocalBuffer + (2 * sizeof(u32)), sizeof(u64));
return std::make_tuple(BlockSize, BlockNumber, ThreadId);
}
struct Profile {
int64_t CallCount;
int64_t CumulativeLocalTime;
std::vector<int32_t> Path;
};
std::tuple<Profile, const char *> ParseProfile(const char *P) {
Profile Result;
// Read the path first, until we find a sentinel 0.
int32_t F;
do {
internal_memcpy(&F, P, sizeof(int32_t));
P += sizeof(int32_t);
Result.Path.push_back(F);
} while (F != 0);
// Then read the CallCount.
internal_memcpy(&Result.CallCount, P, sizeof(int64_t));
P += sizeof(int64_t);
// Then read the CumulativeLocalTime.
internal_memcpy(&Result.CumulativeLocalTime, P, sizeof(int64_t));
P += sizeof(int64_t);
return std::make_tuple(std::move(Result), P);
}
TEST(profileCollectorServiceTest, PostSerializeCollect) {
profilingFlags()->setDefaults();
bool Success = false;
BufferQueue BQ(profilingFlags()->per_thread_allocator_max,
profilingFlags()->buffers_max, Success);
ASSERT_EQ(Success, true);
FunctionCallTrie::Allocators::Buffers Buffers;
ASSERT_EQ(BQ.getBuffer(Buffers.NodeBuffer), BufferQueue::ErrorCode::Ok);
ASSERT_EQ(BQ.getBuffer(Buffers.RootsBuffer), BufferQueue::ErrorCode::Ok);
ASSERT_EQ(BQ.getBuffer(Buffers.ShadowStackBuffer),
BufferQueue::ErrorCode::Ok);
ASSERT_EQ(BQ.getBuffer(Buffers.NodeIdPairBuffer), BufferQueue::ErrorCode::Ok);
auto Allocators = FunctionCallTrie::InitAllocatorsFromBuffers(Buffers);
FunctionCallTrie T(Allocators);
// Populate the trie with some data.
T.enterFunction(1, 1, 0);
T.enterFunction(2, 2, 0);
T.exitFunction(2, 3, 0);
T.exitFunction(1, 4, 0);
// Reset the collector data structures.
profileCollectorService::reset();
// Then we post the data to the global profile collector service.
profileCollectorService::post(&BQ, std::move(T), std::move(Allocators),
std::move(Buffers), 1);
// Then we serialize the data.
profileCollectorService::serialize();
// Then we go through two buffers to see whether we're getting the data we
// expect. The first block must always be as large as a file header, which
// will have a fixed size.
auto B = profileCollectorService::nextBuffer({nullptr, 0});
ValidateFileHeaderBlock(B);
B = profileCollectorService::nextBuffer(B);
ValidateBlock(B);
u32 BlockSize;
u32 BlockNum;
u64 ThreadId;
std::tie(BlockSize, BlockNum, ThreadId) = ParseBlockHeader(B);
// We look at the serialized buffer to see whether the Trie we're expecting
// to see is there.
auto DStart = static_cast<const char *>(B.Data) + kHeaderSize;
std::vector<char> D(DStart, DStart + BlockSize);
B = profileCollectorService::nextBuffer(B);
ASSERT_EQ(B.Data, nullptr);
ASSERT_EQ(B.Size, 0u);
Profile Profile1, Profile2;
auto P = static_cast<const char *>(D.data());
std::tie(Profile1, P) = ParseProfile(P);
std::tie(Profile2, P) = ParseProfile(P);
ASSERT_NE(Profile1.Path.size(), Profile2.Path.size());
auto &P1 = Profile1.Path.size() < Profile2.Path.size() ? Profile2 : Profile1;
auto &P2 = Profile1.Path.size() < Profile2.Path.size() ? Profile1 : Profile2;
std::vector<int32_t> P1Expected = {2, 1, 0};
std::vector<int32_t> P2Expected = {1, 0};
ASSERT_EQ(P1.Path.size(), P1Expected.size());
ASSERT_EQ(P2.Path.size(), P2Expected.size());
ASSERT_EQ(P1.Path, P1Expected);
ASSERT_EQ(P2.Path, P2Expected);
}
// We break out a function that will be run in multiple threads, one that will
// use a thread local allocator, and will post the FunctionCallTrie to the
// profileCollectorService. This simulates what the threads being profiled would
// be doing anyway, but through the XRay logging implementation.
void threadProcessing() {
static bool Success = false;
static BufferQueue BQ(profilingFlags()->per_thread_allocator_max,
profilingFlags()->buffers_max, Success);
thread_local FunctionCallTrie::Allocators::Buffers Buffers = [] {
FunctionCallTrie::Allocators::Buffers B;
BQ.getBuffer(B.NodeBuffer);
BQ.getBuffer(B.RootsBuffer);
BQ.getBuffer(B.ShadowStackBuffer);
BQ.getBuffer(B.NodeIdPairBuffer);
return B;
}();
thread_local auto Allocators =
FunctionCallTrie::InitAllocatorsFromBuffers(Buffers);
FunctionCallTrie T(Allocators);
T.enterFunction(1, 1, 0);
T.enterFunction(2, 2, 0);
T.exitFunction(2, 3, 0);
T.exitFunction(1, 4, 0);
profileCollectorService::post(&BQ, std::move(T), std::move(Allocators),
std::move(Buffers), GetTid());
}
TEST(profileCollectorServiceTest, PostSerializeCollectMultipleThread) {
profilingFlags()->setDefaults();
profileCollectorService::reset();
std::thread t1(threadProcessing);
std::thread t2(threadProcessing);
t1.join();
t2.join();
// At this point, t1 and t2 are already done with what they were doing.
profileCollectorService::serialize();
// Ensure that we see two buffers.
auto B = profileCollectorService::nextBuffer({nullptr, 0});
ValidateFileHeaderBlock(B);
B = profileCollectorService::nextBuffer(B);
ValidateBlock(B);
B = profileCollectorService::nextBuffer(B);
ValidateBlock(B);
}
} // namespace
} // namespace __xray
|