1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
//===-- xray_mips64.cpp -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Implementation of MIPS64-specific routines.
//
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_common.h"
#include "xray_defs.h"
#include "xray_interface_internal.h"
#include <atomic>
namespace __xray {
// The machine codes for some instructions used in runtime patching.
enum PatchOpcodes : uint32_t {
PO_DADDIU = 0x64000000, // daddiu rt, rs, imm
PO_SD = 0xFC000000, // sd rt, base(offset)
PO_LUI = 0x3C000000, // lui rt, imm
PO_ORI = 0x34000000, // ori rt, rs, imm
PO_DSLL = 0x00000038, // dsll rd, rt, sa
PO_JALR = 0x00000009, // jalr rs
PO_LD = 0xDC000000, // ld rt, base(offset)
PO_B60 = 0x1000000f, // b #60
PO_NOP = 0x0, // nop
};
enum RegNum : uint32_t {
RN_T0 = 0xC,
RN_T9 = 0x19,
RN_RA = 0x1F,
RN_SP = 0x1D,
};
inline static uint32_t encodeInstruction(uint32_t Opcode, uint32_t Rs,
uint32_t Rt,
uint32_t Imm) XRAY_NEVER_INSTRUMENT {
return (Opcode | Rs << 21 | Rt << 16 | Imm);
}
inline static uint32_t
encodeSpecialInstruction(uint32_t Opcode, uint32_t Rs, uint32_t Rt, uint32_t Rd,
uint32_t Imm) XRAY_NEVER_INSTRUMENT {
return (Rs << 21 | Rt << 16 | Rd << 11 | Imm << 6 | Opcode);
}
inline static bool patchSled(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled,
void (*TracingHook)()) XRAY_NEVER_INSTRUMENT {
// When |Enable| == true,
// We replace the following compile-time stub (sled):
//
// xray_sled_n:
// B .tmpN
// 15 NOPs (60 bytes)
// .tmpN
//
// With the following runtime patch:
//
// xray_sled_n (64-bit):
// daddiu sp, sp, -16 ;create stack frame
// nop
// sd ra, 8(sp) ;save return address
// sd t9, 0(sp) ;save register t9
// lui t9, %highest(__xray_FunctionEntry/Exit)
// ori t9, t9, %higher(__xray_FunctionEntry/Exit)
// dsll t9, t9, 16
// ori t9, t9, %hi(__xray_FunctionEntry/Exit)
// dsll t9, t9, 16
// ori t9, t9, %lo(__xray_FunctionEntry/Exit)
// lui t0, %hi(function_id)
// jalr t9 ;call Tracing hook
// ori t0, t0, %lo(function_id) ;pass function id (delay slot)
// ld t9, 0(sp) ;restore register t9
// ld ra, 8(sp) ;restore return address
// daddiu sp, sp, 16 ;delete stack frame
//
// Replacement of the first 4-byte instruction should be the last and atomic
// operation, so that the user code which reaches the sled concurrently
// either jumps over the whole sled, or executes the whole sled when the
// latter is ready.
//
// When |Enable|==false, we set back the first instruction in the sled to be
// B #60
uint32_t *Address = reinterpret_cast<uint32_t *>(Sled.address());
if (Enable) {
uint32_t LoTracingHookAddr =
reinterpret_cast<int64_t>(TracingHook) & 0xffff;
uint32_t HiTracingHookAddr =
(reinterpret_cast<int64_t>(TracingHook) >> 16) & 0xffff;
uint32_t HigherTracingHookAddr =
(reinterpret_cast<int64_t>(TracingHook) >> 32) & 0xffff;
uint32_t HighestTracingHookAddr =
(reinterpret_cast<int64_t>(TracingHook) >> 48) & 0xffff;
uint32_t LoFunctionID = FuncId & 0xffff;
uint32_t HiFunctionID = (FuncId >> 16) & 0xffff;
Address[2] = encodeInstruction(PatchOpcodes::PO_SD, RegNum::RN_SP,
RegNum::RN_RA, 0x8);
Address[3] = encodeInstruction(PatchOpcodes::PO_SD, RegNum::RN_SP,
RegNum::RN_T9, 0x0);
Address[4] = encodeInstruction(PatchOpcodes::PO_LUI, 0x0, RegNum::RN_T9,
HighestTracingHookAddr);
Address[5] = encodeInstruction(PatchOpcodes::PO_ORI, RegNum::RN_T9,
RegNum::RN_T9, HigherTracingHookAddr);
Address[6] = encodeSpecialInstruction(PatchOpcodes::PO_DSLL, 0x0,
RegNum::RN_T9, RegNum::RN_T9, 0x10);
Address[7] = encodeInstruction(PatchOpcodes::PO_ORI, RegNum::RN_T9,
RegNum::RN_T9, HiTracingHookAddr);
Address[8] = encodeSpecialInstruction(PatchOpcodes::PO_DSLL, 0x0,
RegNum::RN_T9, RegNum::RN_T9, 0x10);
Address[9] = encodeInstruction(PatchOpcodes::PO_ORI, RegNum::RN_T9,
RegNum::RN_T9, LoTracingHookAddr);
Address[10] = encodeInstruction(PatchOpcodes::PO_LUI, 0x0, RegNum::RN_T0,
HiFunctionID);
Address[11] = encodeSpecialInstruction(PatchOpcodes::PO_JALR, RegNum::RN_T9,
0x0, RegNum::RN_RA, 0X0);
Address[12] = encodeInstruction(PatchOpcodes::PO_ORI, RegNum::RN_T0,
RegNum::RN_T0, LoFunctionID);
Address[13] = encodeInstruction(PatchOpcodes::PO_LD, RegNum::RN_SP,
RegNum::RN_T9, 0x0);
Address[14] = encodeInstruction(PatchOpcodes::PO_LD, RegNum::RN_SP,
RegNum::RN_RA, 0x8);
Address[15] = encodeInstruction(PatchOpcodes::PO_DADDIU, RegNum::RN_SP,
RegNum::RN_SP, 0x10);
uint32_t CreateStackSpace = encodeInstruction(
PatchOpcodes::PO_DADDIU, RegNum::RN_SP, RegNum::RN_SP, 0xfff0);
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint32_t> *>(Address), CreateStackSpace,
std::memory_order_release);
} else {
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint32_t> *>(Address),
uint32_t(PatchOpcodes::PO_B60), std::memory_order_release);
}
return true;
}
bool patchFunctionEntry(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled,
void (*Trampoline)()) XRAY_NEVER_INSTRUMENT {
return patchSled(Enable, FuncId, Sled, Trampoline);
}
bool patchFunctionExit(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
return patchSled(Enable, FuncId, Sled, __xray_FunctionExit);
}
bool patchFunctionTailExit(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
// FIXME: In the future we'd need to distinguish between non-tail exits and
// tail exits for better information preservation.
return patchSled(Enable, FuncId, Sled, __xray_FunctionExit);
}
bool patchCustomEvent(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
// FIXME: Implement in mips64?
return false;
}
bool patchTypedEvent(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
// FIXME: Implement in mips64?
return false;
}
} // namespace __xray
extern "C" void __xray_ArgLoggerEntry() XRAY_NEVER_INSTRUMENT {
// FIXME: this will have to be implemented in the trampoline assembly file
}
|