1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
|
// RUN: %clang_builtins %s %librt -o %t && %run %t
// REQUIRES: librt_has_atomic
//===-- atomic_test.c - Test support functions for atomic operations ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file performs some simple testing of the support functions for the
// atomic builtins. All tests are single-threaded, so this is only a sanity
// check.
//
//===----------------------------------------------------------------------===//
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#undef NDEBUG
#include <assert.h>
// We directly test the library atomic functions, not using the C builtins. This
// should avoid confounding factors, ensuring that we actually test the
// functions themselves, regardless of how the builtins are lowered. We need to
// use asm labels because we can't redeclare the builtins.
// Note: we need to prepend an underscore to this name for e.g. macOS.
#define _STRINGIFY(x) #x
#define STRINGIFY(x) _STRINGIFY(x)
#define EXTERNAL_NAME(name) asm(STRINGIFY(__USER_LABEL_PREFIX__) #name)
bool __atomic_is_lock_free_c(size_t size, void *ptr)
EXTERNAL_NAME(__atomic_is_lock_free);
void __atomic_load_c(int size, void *src, void *dest,
int model) EXTERNAL_NAME(__atomic_load);
uint8_t __atomic_load_1(uint8_t *src, int model);
uint16_t __atomic_load_2(uint16_t *src, int model);
uint32_t __atomic_load_4(uint32_t *src, int model);
uint64_t __atomic_load_8(uint64_t *src, int model);
void __atomic_store_c(int size, void *dest, const void *src,
int model) EXTERNAL_NAME(__atomic_store);
void __atomic_store_1(uint8_t *dest, uint8_t val, int model);
void __atomic_store_2(uint16_t *dest, uint16_t val, int model);
void __atomic_store_4(uint32_t *dest, uint32_t val, int model);
void __atomic_store_8(uint64_t *dest, uint64_t val, int model);
void __atomic_exchange_c(int size, void *ptr, const void *val, void *old,
int model) EXTERNAL_NAME(__atomic_exchange);
uint8_t __atomic_exchange_1(uint8_t *dest, uint8_t val, int model);
uint16_t __atomic_exchange_2(uint16_t *dest, uint16_t val, int model);
uint32_t __atomic_exchange_4(uint32_t *dest, uint32_t val, int model);
uint64_t __atomic_exchange_8(uint64_t *dest, uint64_t val, int model);
int __atomic_compare_exchange_c(int size, void *ptr, void *expected,
const void *desired, int success, int failure)
EXTERNAL_NAME(__atomic_compare_exchange);
bool __atomic_compare_exchange_1(uint8_t *ptr, uint8_t *expected,
uint8_t desired, int success, int failure);
bool __atomic_compare_exchange_2(uint16_t *ptr, uint16_t *expected,
uint16_t desired, int success, int failure);
bool __atomic_compare_exchange_4(uint32_t *ptr, uint32_t *expected,
uint32_t desired, int success, int failure);
bool __atomic_compare_exchange_8(uint64_t *ptr, uint64_t *expected,
uint64_t desired, int success, int failure);
uint8_t __atomic_fetch_add_1(uint8_t *ptr, uint8_t val, int model);
uint16_t __atomic_fetch_add_2(uint16_t *ptr, uint16_t val, int model);
uint32_t __atomic_fetch_add_4(uint32_t *ptr, uint32_t val, int model);
uint64_t __atomic_fetch_add_8(uint64_t *ptr, uint64_t val, int model);
uint8_t __atomic_fetch_sub_1(uint8_t *ptr, uint8_t val, int model);
uint16_t __atomic_fetch_sub_2(uint16_t *ptr, uint16_t val, int model);
uint32_t __atomic_fetch_sub_4(uint32_t *ptr, uint32_t val, int model);
uint64_t __atomic_fetch_sub_8(uint64_t *ptr, uint64_t val, int model);
uint8_t __atomic_fetch_and_1(uint8_t *ptr, uint8_t val, int model);
uint16_t __atomic_fetch_and_2(uint16_t *ptr, uint16_t val, int model);
uint32_t __atomic_fetch_and_4(uint32_t *ptr, uint32_t val, int model);
uint64_t __atomic_fetch_and_8(uint64_t *ptr, uint64_t val, int model);
uint8_t __atomic_fetch_or_1(uint8_t *ptr, uint8_t val, int model);
uint16_t __atomic_fetch_or_2(uint16_t *ptr, uint16_t val, int model);
uint32_t __atomic_fetch_or_4(uint32_t *ptr, uint32_t val, int model);
uint64_t __atomic_fetch_or_8(uint64_t *ptr, uint64_t val, int model);
uint8_t __atomic_fetch_xor_1(uint8_t *ptr, uint8_t val, int model);
uint16_t __atomic_fetch_xor_2(uint16_t *ptr, uint16_t val, int model);
uint32_t __atomic_fetch_xor_4(uint32_t *ptr, uint32_t val, int model);
uint64_t __atomic_fetch_xor_8(uint64_t *ptr, uint64_t val, int model);
uint8_t __atomic_fetch_nand_1(uint8_t *ptr, uint8_t val, int model);
uint16_t __atomic_fetch_nand_2(uint16_t *ptr, uint16_t val, int model);
uint32_t __atomic_fetch_nand_4(uint32_t *ptr, uint32_t val, int model);
uint64_t __atomic_fetch_nand_8(uint64_t *ptr, uint64_t val, int model);
// We conditionally test the *_16 atomic function variants based on the same
// condition that compiler_rt (atomic.c) uses to conditionally generate them.
// Currently atomic.c tests if __SIZEOF_INT128__ is defined (which can be the
// case on 32-bit platforms, by using -fforce-enable-int128), instead of using
// CRT_HAS_128BIT.
#ifdef __SIZEOF_INT128__
#define TEST_16
#endif
#ifdef TEST_16
typedef __uint128_t uint128_t;
typedef uint128_t maxuint_t;
uint128_t __atomic_load_16(uint128_t *src, int model);
void __atomic_store_16(uint128_t *dest, uint128_t val, int model);
uint128_t __atomic_exchange_16(uint128_t *dest, uint128_t val, int model);
bool __atomic_compare_exchange_16(uint128_t *ptr, uint128_t *expected,
uint128_t desired, int success, int failure);
uint128_t __atomic_fetch_add_16(uint128_t *ptr, uint128_t val, int model);
uint128_t __atomic_fetch_sub_16(uint128_t *ptr, uint128_t val, int model);
uint128_t __atomic_fetch_and_16(uint128_t *ptr, uint128_t val, int model);
uint128_t __atomic_fetch_or_16(uint128_t *ptr, uint128_t val, int model);
uint128_t __atomic_fetch_xor_16(uint128_t *ptr, uint128_t val, int model);
uint128_t __atomic_fetch_nand_16(uint128_t *ptr, uint128_t val, int model);
#else
typedef uint64_t maxuint_t;
#endif
#define U8(value) ((uint8_t)(value))
#define U16(value) ((uint16_t)(value))
#define U32(value) ((uint32_t)(value))
#define U64(value) ((uint64_t)(value))
#ifdef TEST_16
#define V ((((uint128_t)0x4243444546474849) << 64) | 0x4a4b4c4d4e4f5051)
#define ONES ((((uint128_t)0x0101010101010101) << 64) | 0x0101010101010101)
#else
#define V 0x4243444546474849
#define ONES 0x0101010101010101
#endif
#define LEN(array) (sizeof(array) / sizeof(array[0]))
__attribute__((aligned(16))) static const char data[] = {
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
};
uint8_t a8, b8;
uint16_t a16, b16;
uint32_t a32, b32;
uint64_t a64, b64;
#ifdef TEST_16
uint128_t a128, b128;
#endif
void set_a_values(maxuint_t value) {
a8 = U8(value);
a16 = U16(value);
a32 = U32(value);
a64 = U64(value);
#ifdef TEST_16
a128 = value;
#endif
}
void set_b_values(maxuint_t value) {
b8 = U8(value);
b16 = U16(value);
b32 = U32(value);
b64 = U64(value);
#ifdef TEST_16
b128 = value;
#endif
}
void test_loads(void) {
static int atomic_load_models[] = {
__ATOMIC_RELAXED,
__ATOMIC_CONSUME,
__ATOMIC_ACQUIRE,
__ATOMIC_SEQ_CST,
};
for (int m = 0; m < LEN(atomic_load_models); m++) {
int model = atomic_load_models[m];
// Test with aligned data.
for (int n = 1; n <= LEN(data); n++) {
__attribute__((aligned(16))) char dst[LEN(data)] = {0};
__atomic_load_c(n, data, dst, model);
if (memcmp(dst, data, n) != 0)
abort();
}
// Test with unaligned data.
for (int n = 1; n < LEN(data); n++) {
__attribute__((aligned(16))) char dst[LEN(data)] = {0};
__atomic_load_c(n, data + 1, dst + 1, model);
if (memcmp(dst + 1, data + 1, n) != 0)
abort();
}
set_a_values(V + m);
if (__atomic_load_1(&a8, model) != U8(V + m))
abort();
if (__atomic_load_2(&a16, model) != U16(V + m))
abort();
if (__atomic_load_4(&a32, model) != U32(V + m))
abort();
if (__atomic_load_8(&a64, model) != U64(V + m))
abort();
#ifdef TEST_16
if (__atomic_load_16(&a128, model) != V + m)
abort();
#endif
}
}
void test_stores(void) {
static int atomic_store_models[] = {
__ATOMIC_RELAXED,
__ATOMIC_RELEASE,
__ATOMIC_SEQ_CST,
};
for (int m = 0; m < LEN(atomic_store_models); m++) {
int model = atomic_store_models[m];
// Test with aligned data.
for (int n = 1; n <= LEN(data); n++) {
__attribute__((aligned(16))) char dst[LEN(data)];
__atomic_store_c(n, dst, data, model);
if (memcmp(data, dst, n) != 0)
abort();
}
// Test with unaligned data.
for (int n = 1; n < LEN(data); n++) {
__attribute__((aligned(16))) char dst[LEN(data)];
__atomic_store_c(n, dst + 1, data + 1, model);
if (memcmp(data + 1, dst + 1, n) != 0)
abort();
}
__atomic_store_1(&a8, U8(V + m), model);
if (a8 != U8(V + m))
abort();
__atomic_store_2(&a16, U16(V + m), model);
if (a16 != U16(V + m))
abort();
__atomic_store_4(&a32, U32(V + m), model);
if (a32 != U32(V + m))
abort();
__atomic_store_8(&a64, U64(V + m), model);
if (a64 != U64(V + m))
abort();
#ifdef TEST_16
__atomic_store_16(&a128, V + m, model);
if (a128 != V + m)
abort();
#endif
}
}
void test_exchanges(void) {
static int atomic_exchange_models[] = {
__ATOMIC_RELAXED,
__ATOMIC_ACQUIRE,
__ATOMIC_RELEASE,
__ATOMIC_ACQ_REL,
__ATOMIC_SEQ_CST,
};
set_a_values(V);
for (int m = 0; m < LEN(atomic_exchange_models); m++) {
int model = atomic_exchange_models[m];
// Test with aligned data.
for (int n = 1; n <= LEN(data); n++) {
__attribute__((aligned(16))) char dst[LEN(data)];
__attribute__((aligned(16))) char old[LEN(data)];
for (int i = 0; i < LEN(dst); i++)
dst[i] = i + m;
__atomic_exchange_c(n, dst, data, old, model);
for (int i = 0; i < n; i++) {
if (dst[i] != 0x10 + i || old[i] != i + m)
abort();
}
}
// Test with unaligned data.
for (int n = 1; n < LEN(data); n++) {
__attribute__((aligned(16))) char dst[LEN(data)];
__attribute__((aligned(16))) char old[LEN(data)];
for (int i = 1; i < LEN(dst); i++)
dst[i] = i - 1 + m;
__atomic_exchange_c(n, dst + 1, data + 1, old + 1, model);
for (int i = 1; i < n; i++) {
if (dst[i] != 0x10 + i || old[i] != i - 1 + m)
abort();
}
}
if (__atomic_exchange_1(&a8, U8(V + m + 1), model) != U8(V + m))
abort();
if (__atomic_exchange_2(&a16, U16(V + m + 1), model) != U16(V + m))
abort();
if (__atomic_exchange_4(&a32, U32(V + m + 1), model) != U32(V + m))
abort();
if (__atomic_exchange_8(&a64, U64(V + m + 1), model) != U64(V + m))
abort();
#ifdef TEST_16
if (__atomic_exchange_16(&a128, V + m + 1, model) != V + m)
abort();
#endif
}
}
void test_compare_exchanges(void) {
static int atomic_compare_exchange_models[] = {
__ATOMIC_RELAXED,
__ATOMIC_CONSUME,
__ATOMIC_ACQUIRE,
__ATOMIC_SEQ_CST,
__ATOMIC_RELEASE,
__ATOMIC_ACQ_REL,
};
for (int m1 = 0; m1 < LEN(atomic_compare_exchange_models); m1++) {
// Skip the last two: __ATOMIC_RELEASE and __ATOMIC_ACQ_REL.
// See <http://wg21.link/p0418> for details.
for (int m2 = 0; m2 < LEN(atomic_compare_exchange_models) - 2; m2++) {
int m_succ = atomic_compare_exchange_models[m1];
int m_fail = atomic_compare_exchange_models[m2];
// Test with aligned data.
for (int n = 1; n <= LEN(data); n++) {
__attribute__((aligned(16))) char dst[LEN(data)] = {0};
__attribute__((aligned(16))) char exp[LEN(data)] = {0};
if (!__atomic_compare_exchange_c(n, dst, exp, data, m_succ, m_fail))
abort();
if (memcmp(dst, data, n) != 0)
abort();
if (__atomic_compare_exchange_c(n, dst, exp, data, m_succ, m_fail))
abort();
if (memcmp(exp, data, n) != 0)
abort();
}
// Test with unaligned data.
for (int n = 1; n < LEN(data); n++) {
__attribute__((aligned(16))) char dst[LEN(data)] = {0};
__attribute__((aligned(16))) char exp[LEN(data)] = {0};
if (!__atomic_compare_exchange_c(n, dst + 1, exp + 1, data + 1,
m_succ, m_fail))
abort();
if (memcmp(dst + 1, data + 1, n) != 0)
abort();
if (__atomic_compare_exchange_c(n, dst + 1, exp + 1, data + 1, m_succ,
m_fail))
abort();
if (memcmp(exp + 1, data + 1, n) != 0)
abort();
}
set_a_values(ONES);
set_b_values(ONES * 2);
if (__atomic_compare_exchange_1(&a8, &b8, U8(V + m1), m_succ, m_fail))
abort();
if (a8 != U8(ONES) || b8 != U8(ONES))
abort();
if (!__atomic_compare_exchange_1(&a8, &b8, U8(V + m1), m_succ, m_fail))
abort();
if (a8 != U8(V + m1) || b8 != U8(ONES))
abort();
if (__atomic_compare_exchange_2(&a16, &b16, U16(V + m1), m_succ, m_fail))
abort();
if (a16 != U16(ONES) || b16 != U16(ONES))
abort();
if (!__atomic_compare_exchange_2(&a16, &b16, U16(V + m1), m_succ, m_fail))
abort();
if (a16 != U16(V + m1) || b16 != U16(ONES))
abort();
if (__atomic_compare_exchange_4(&a32, &b32, U32(V + m1), m_succ, m_fail))
abort();
if (a32 != U32(ONES) || b32 != U32(ONES))
abort();
if (!__atomic_compare_exchange_4(&a32, &b32, U32(V + m1), m_succ, m_fail))
abort();
if (a32 != U32(V + m1) || b32 != U32(ONES))
abort();
if (__atomic_compare_exchange_8(&a64, &b64, U64(V + m1), m_succ, m_fail))
abort();
if (a64 != U64(ONES) || b64 != U64(ONES))
abort();
if (!__atomic_compare_exchange_8(&a64, &b64, U64(V + m1), m_succ, m_fail))
abort();
if (a64 != U64(V + m1) || b64 != U64(ONES))
abort();
#ifdef TEST_16
if (__atomic_compare_exchange_16(&a128, &b128, V + m1, m_succ, m_fail))
abort();
if (a128 != ONES || b128 != ONES)
abort();
if (!__atomic_compare_exchange_16(&a128, &b128, V + m1, m_succ, m_fail))
abort();
if (a128 != V + m1 || b128 != ONES)
abort();
#endif
}
}
}
void test_fetch_op(void) {
static int atomic_fetch_models[] = {
__ATOMIC_RELAXED,
__ATOMIC_CONSUME,
__ATOMIC_ACQUIRE,
__ATOMIC_RELEASE,
__ATOMIC_ACQ_REL,
__ATOMIC_SEQ_CST,
};
for (int m = 0; m < LEN(atomic_fetch_models); m++) {
int model = atomic_fetch_models[m];
// Fetch add.
set_a_values(V + m);
set_b_values(0);
b8 = __atomic_fetch_add_1(&a8, U8(ONES), model);
if (b8 != U8(V + m) || a8 != U8(V + m + ONES))
abort();
b16 = __atomic_fetch_add_2(&a16, U16(ONES), model);
if (b16 != U16(V + m) || a16 != U16(V + m + ONES))
abort();
b32 = __atomic_fetch_add_4(&a32, U32(ONES), model);
if (b32 != U32(V + m) || a32 != U32(V + m + ONES))
abort();
b64 = __atomic_fetch_add_8(&a64, U64(ONES), model);
if (b64 != U64(V + m) || a64 != U64(V + m + ONES))
abort();
#ifdef TEST_16
b128 = __atomic_fetch_add_16(&a128, ONES, model);
if (b128 != V + m || a128 != V + m + ONES)
abort();
#endif
// Fetch sub.
set_a_values(V + m);
set_b_values(0);
b8 = __atomic_fetch_sub_1(&a8, U8(ONES), model);
if (b8 != U8(V + m) || a8 != U8(V + m - ONES))
abort();
b16 = __atomic_fetch_sub_2(&a16, U16(ONES), model);
if (b16 != U16(V + m) || a16 != U16(V + m - ONES))
abort();
b32 = __atomic_fetch_sub_4(&a32, U32(ONES), model);
if (b32 != U32(V + m) || a32 != U32(V + m - ONES))
abort();
b64 = __atomic_fetch_sub_8(&a64, U64(ONES), model);
if (b64 != U64(V + m) || a64 != U64(V + m - ONES))
abort();
#ifdef TEST_16
b128 = __atomic_fetch_sub_16(&a128, ONES, model);
if (b128 != V + m || a128 != V + m - ONES)
abort();
#endif
// Fetch and.
set_a_values(V + m);
set_b_values(0);
b8 = __atomic_fetch_and_1(&a8, U8(V + m), model);
if (b8 != U8(V + m) || a8 != U8(V + m))
abort();
b16 = __atomic_fetch_and_2(&a16, U16(V + m), model);
if (b16 != U16(V + m) || a16 != U16(V + m))
abort();
b32 = __atomic_fetch_and_4(&a32, U32(V + m), model);
if (b32 != U32(V + m) || a32 != U32(V + m))
abort();
b64 = __atomic_fetch_and_8(&a64, U64(V + m), model);
if (b64 != U64(V + m) || a64 != U64(V + m))
abort();
#ifdef TEST_16
b128 = __atomic_fetch_and_16(&a128, V + m, model);
if (b128 != V + m || a128 != V + m)
abort();
#endif
// Fetch or.
set_a_values(V + m);
set_b_values(0);
b8 = __atomic_fetch_or_1(&a8, U8(ONES), model);
if (b8 != U8(V + m) || a8 != U8((V + m) | ONES))
abort();
b16 = __atomic_fetch_or_2(&a16, U16(ONES), model);
if (b16 != U16(V + m) || a16 != U16((V + m) | ONES))
abort();
b32 = __atomic_fetch_or_4(&a32, U32(ONES), model);
if (b32 != U32(V + m) || a32 != U32((V + m) | ONES))
abort();
b64 = __atomic_fetch_or_8(&a64, U64(ONES), model);
if (b64 != U64(V + m) || a64 != U64((V + m) | ONES))
abort();
#ifdef TEST_16
b128 = __atomic_fetch_or_16(&a128, ONES, model);
if (b128 != V + m || a128 != ((V + m) | ONES))
abort();
#endif
// Fetch xor.
set_a_values(V + m);
set_b_values(0);
b8 = __atomic_fetch_xor_1(&a8, U8(ONES), model);
if (b8 != U8(V + m) || a8 != U8((V + m) ^ ONES))
abort();
b16 = __atomic_fetch_xor_2(&a16, U16(ONES), model);
if (b16 != U16(V + m) || a16 != U16((V + m) ^ ONES))
abort();
b32 = __atomic_fetch_xor_4(&a32, U32(ONES), model);
if (b32 != U32(V + m) || a32 != U32((V + m) ^ ONES))
abort();
b64 = __atomic_fetch_xor_8(&a64, U64(ONES), model);
if (b64 != U64(V + m) || a64 != U64((V + m) ^ ONES))
abort();
#ifdef TEST_16
b128 = __atomic_fetch_xor_16(&a128, ONES, model);
if (b128 != (V + m) || a128 != ((V + m) ^ ONES))
abort();
#endif
// Fetch nand.
set_a_values(V + m);
set_b_values(0);
b8 = __atomic_fetch_nand_1(&a8, U8(ONES), model);
if (b8 != U8(V + m) || a8 != U8(~((V + m) & ONES)))
abort();
b16 = __atomic_fetch_nand_2(&a16, U16(ONES), model);
if (b16 != U16(V + m) || a16 != U16(~((V + m) & ONES)))
abort();
b32 = __atomic_fetch_nand_4(&a32, U32(ONES), model);
if (b32 != U32(V + m) || a32 != U32(~((V + m) & ONES)))
abort();
b64 = __atomic_fetch_nand_8(&a64, U64(ONES), model);
if (b64 != U64(V + m) || a64 != U64(~((V + m) & ONES)))
abort();
#ifdef TEST_16
b128 = __atomic_fetch_nand_16(&a128, ONES, model);
if (b128 != (V + m) || a128 != ~((V + m) & ONES))
abort();
#endif
// Check signed integer overflow behavior
set_a_values(V + m);
__atomic_fetch_add_1(&a8, U8(V), model);
if (a8 != U8(V * 2 + m))
abort();
__atomic_fetch_sub_1(&a8, U8(V), model);
if (a8 != U8(V + m))
abort();
__atomic_fetch_add_2(&a16, U16(V), model);
if (a16 != U16(V * 2 + m))
abort();
__atomic_fetch_sub_2(&a16, U16(V), model);
if (a16 != U16(V + m))
abort();
__atomic_fetch_add_4(&a32, U32(V), model);
if (a32 != U32(V * 2 + m))
abort();
__atomic_fetch_sub_4(&a32, U32(V), model);
if (a32 != U32(V + m))
abort();
__atomic_fetch_add_8(&a64, U64(V), model);
if (a64 != U64(V * 2 + m))
abort();
__atomic_fetch_sub_8(&a64, U64(V), model);
if (a64 != U64(V + m))
abort();
#ifdef TEST_16
__atomic_fetch_add_16(&a128, V, model);
if (a128 != V * 2 + m)
abort();
__atomic_fetch_sub_16(&a128, V, model);
if (a128 != V + m)
abort();
#endif
}
}
void test_is_lock_free(void) {
// The result of __atomic_is_lock_free is architecture dependent, so we only
// check for a true return value for the sizes where we know that at compile
// time that they are supported. If __atomic_always_lock_free() returns false
// for a given size, we can only check that __atomic_is_lock_free() returns
// false for unaligned values.
// Note: This assumption will have to be revisited when we support an
// architecture that allows for unaligned atomics.
// XXX: Do any architectures report true for unaligned atomics?
// All atomic.c implementations fall back to the non-specialized case for
// size=0, so despite the operation being a no-op, they still take locks and
// therefore __atomic_is_lock_free should return false.
assert(!__atomic_is_lock_free_c(0, NULL) && "size zero should never be lock-free");
assert(!__atomic_is_lock_free_c(0, (void *)8) && "size zero should never be lock-free");
if (__atomic_always_lock_free(1, 0)) {
assert(__atomic_is_lock_free_c(1, NULL) && "aligned size=1 should always be lock-free");
assert(__atomic_is_lock_free_c(1, (void *)1) && "aligned size=1 should always be lock-free");
}
if (__atomic_always_lock_free(2, 0)) {
assert(__atomic_is_lock_free_c(2, NULL) && "aligned size=2 should always be lock-free");
assert(__atomic_is_lock_free_c(2, (void *)2) && "aligned size=2 should always be lock-free");
}
assert(!__atomic_is_lock_free_c(2, (void *)1) && "unaligned size=2 should not be lock-free");
if (__atomic_always_lock_free(4, 0)) {
assert(__atomic_is_lock_free_c(4, NULL) && "aligned size=4 should always be lock-free");
assert(__atomic_is_lock_free_c(4, (void *)4) && "aligned size=4 should always be lock-free");
}
assert(!__atomic_is_lock_free_c(4, (void *)3) && "unaligned size=4 should not be lock-free");
assert(!__atomic_is_lock_free_c(4, (void *)2) && "unaligned size=4 should not be lock-free");
assert(!__atomic_is_lock_free_c(4, (void *)1) && "unaligned size=4 should not be lock-free");
if (__atomic_always_lock_free(8, 0)) {
assert(__atomic_is_lock_free_c(8, NULL) && "aligned size=8 should always be lock-free");
assert(__atomic_is_lock_free_c(8, (void *)8) && "aligned size=8 should always be lock-free");
}
assert(!__atomic_is_lock_free_c(8, (void *)7) && "unaligned size=8 should not be lock-free");
assert(!__atomic_is_lock_free_c(8, (void *)4) && "unaligned size=8 should not be lock-free");
assert(!__atomic_is_lock_free_c(8, (void *)2) && "unaligned size=8 should not be lock-free");
assert(!__atomic_is_lock_free_c(8, (void *)1) && "unaligned size=8 should not be lock-free");
if (__atomic_always_lock_free(16, 0)) {
assert(__atomic_is_lock_free_c(16, NULL) && "aligned size=16 should always be lock-free");
assert(__atomic_is_lock_free_c(16, (void *)16) && "aligned size=16 should always be lock-free");
}
assert(!__atomic_is_lock_free_c(16, (void *)15) && "unaligned size=16 should not be lock-free");
assert(!__atomic_is_lock_free_c(16, (void *)8) && "unaligned size=16 should not be lock-free");
assert(!__atomic_is_lock_free_c(16, (void *)4) && "unaligned size=16 should not be lock-free");
assert(!__atomic_is_lock_free_c(16, (void *)2) && "unaligned size=16 should not be lock-free");
assert(!__atomic_is_lock_free_c(16, (void *)1) && "unaligned size=16 should not be lock-free");
// In the current implementation > 16 bytes are never lock-free:
assert(!__atomic_is_lock_free_c(32, NULL) && "aligned size=32 should not be lock-free");
assert(!__atomic_is_lock_free_c(32, (void*)32) && "aligned size=32 should not be lock-free");
assert(!__atomic_is_lock_free_c(32, (void*)31) && "unaligned size=32 should not be lock-free");
// We also don't support non-power-of-two sizes:
assert(!__atomic_is_lock_free_c(3, NULL) && "aligned size=3 should not be lock-free");
assert(!__atomic_is_lock_free_c(5, NULL) && "aligned size=5 should not be lock-free");
assert(!__atomic_is_lock_free_c(6, NULL) && "aligned size=6 should not be lock-free");
assert(!__atomic_is_lock_free_c(7, NULL) && "aligned size=7 should not be lock-free");
assert(!__atomic_is_lock_free_c(9, NULL) && "aligned size=9 should not be lock-free");
assert(!__atomic_is_lock_free_c(10, NULL) && "aligned size=10 should not be lock-free");
assert(!__atomic_is_lock_free_c(11, NULL) && "aligned size=11 should not be lock-free");
assert(!__atomic_is_lock_free_c(12, NULL) && "aligned size=12 should not be lock-free");
assert(!__atomic_is_lock_free_c(13, NULL) && "aligned size=13 should not be lock-free");
assert(!__atomic_is_lock_free_c(14, NULL) && "aligned size=14 should not be lock-free");
assert(!__atomic_is_lock_free_c(15, NULL) && "aligned size=15 should not be lock-free");
assert(!__atomic_is_lock_free_c(17, NULL) && "aligned size=17 should not be lock-free");
}
int main() {
test_loads();
test_stores();
test_exchanges();
test_compare_exchanges();
test_fetch_op();
test_is_lock_free();
return 0;
}
|